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Abstract

The Internet of Things refers to network-enabled technologies, including mobile and wearable 

devices, which are capable of sensing and actuation as well as interaction and communication with 

other similar devices over the Internet. The IoT is profoundly redefining the way we create, 

consume, and share information. Ordinary citizens increasingly use these technologies to track 

their sleep, food intake, activity, vital signs, and other physiological statuses. This activity is 

complemented by IoT systems that continuously collect and process environment-related data that 

has a bearing on human health. This synergy has created an opportunity for a new generation of 

healthcare solutions.

The paradigm shift from reactive medicine to proactive and preventive medicine is primarily 

motivated by economic imperatives such as the rising cost of healthcare, as well as 

continued improvements on quality of life and longevity. According to the Centers for 

Medicare and Medicaid Services (CMS), in 2016 the cost of healthcare in the US reached 

$3.6 trillion and is expected to increase to $5.5 trillion by 2025 (www.advisory.com/daily-

briefing/2017/02/16/spending-growth). On the other hand, the global smart healthcare 

industry is expected to reach $169.30 billion by 2020.

It’s also projected that by 2019, 87 percent of US healthcare organizations will have adopted 

Internet of Things (IoT) technology (www.i-scoop.eu/internet-of-things-guide/internet-

things-healthcare), of which 73 percent will be used to reduce cost, and 64 percent will be 

for patient monitoring.

IoT data itself isn’t adequate to understand an individual’s health and associated aspects of 

well-being and fitness; it’s usually necessary to look at that individual’s clinical record and 

behavioral information, as well as social and environmental information affecting that 

individual. Interpreting how well a patient is doing also requires looking at his adherence to 

respective health objectives, application of relevant clinical knowledge and desired 

outcomes, such as the patient’s preference for quality of life versus longevity and expert 

knowledge.
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Augmented Personalized Healthcare (APH) is a vision (http://wiki.knoesis.org/index.php/

Augmented_Personalized_Health:_How_Smart_Data_with_IoTs_and_AI_is_about_to_Cha

nge_Healthcare)1 for exploiting the extensive variety of relevant data and medical 

knowledge using artificial intelligence (AI) techniques to extend and enhance human health 

and well-being. It anticipates the use of physical, cyber, and social data obtained from 

wearables and IoT devices; clinical information including electronic medical records 

(EMRs); mobile applications supporting targeted interactions and engagement with the 

patients; and web-based information including web services (such as those providing health-

relevant data on allergens and air quality), social media (such as posts by patients with 

similar concerns and conditions), and extensive online knowledge bases of clinical practice 

and medicine. Data can be collected at the personal, public, and population levels, and be 

combined with knowledge that affects human health. Augmentation refers to aggregating 

this data and converting into actionable information that can improve health-related 

outcomes through better and more timely decisions. This embodiment of APH is an entirely 

new approach to human healthcare in comparison with the current episodic system of 

periodic care primarily centered around healthcare establishments (such as clinics, hospitals, 

and labs).

APH involves continuous monitoring, engagement, and health management in which, 

instead of treating a patient for a disease, the focus shifts to involving the patient in 

preventing disease, predicting possible adverse outcomes and intervening to mitigate or 

eliminate them through proactive measures, and trying to keep citizens healthy and fit with 

continuous lifestyle changes. Rather than only focusing on the management of chronic 

conditions, APH proposes a holistic approach for improving the overall quality of life.

Patient-generated health data (PGHD) is the heart of APH. It’s primarily generated by IoT 

devices and captures the digital footprint representative of patients’ health over time with 

finer details that are distinct from the data generated in clinical settings through EMRs and 

personal health records (PHRs). The two main IoT categories for patient health monitoring 

are wearable sensors and environmental sensors. Wearable sensors are portable sensors that 

patients wear most, if not all, of the time. These close-vicinity wearable sensors monitor 

patients’ physiological markers, such as heart rate, breathing rate, and blood pressure. 

They’re designed to integrate into patients’ daily routines to enable passive and continuous 

sensing and monitoring for timely interventions. Environmental sensors, on the other hand, 

are sensors that collect environmental data relevant to patients. These sensors are normally 

not portable, but can sometimes provide critical information for health management. For 

example, weather data, such as humidity, pollen index, and air quality, are important for 

managing asthma. However, this data provides a coarse population-level measure, and 

wouldn’t account for the differences of individual patients. To mitigate this, different sensors 

can be utilized as a complementarity. For example, Foobot (https://foobot.io) monitors 

indoor air quality and reflects a closer overview of a patient’s environment. Hence, these 

sensors enable personalization and allow both physicians and patients to monitor asthma at a 

finer level.
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STAGES OF TECHNOLOGY-ENABLED HEALTH AUGMENTATION

In this section, we review various stages of augmented health management strategies using 

APH technology.

Self-Monitoring

Currently, doctors see patients infrequently or as needed for new conditions; or, for people 

with chronic conditions and disease, they are at well-defined time intervals (monthly, 

quarterly, etc.), depending on the established medical protocols and severity of the medical 

condition. A doctor’s understanding of a patient’s condition often comes primarily from the 

patient’s self-description (self-reporting) in addition to the observations gathered by the 

clinician during the visit. This has limitations, of course, as sometimes not all significant 

events or issues are recalled at the time of the visit. In addition, the exact timing, location, 

and reasons for the triggering event might not be available. With continuous monitoring 

using IoT-enabled sensor devices, wearables, and a periodically administered contextually 

relevant questionnaire, we can better capture relevant aspects of a patient’s surroundings, 

diet, activities, and other factors related to health. All of these aspects, when analyzed, can 

help to determine possible and precise contributing factors of patients’ conditions or level of 

well-being. PGHD plays an important role in supplementing existing avenues for collecting 

clinical data and filling in information gaps on a routine basis, thus generating a more 

comprehensive picture of long-term patient health (www.healthit.gov/policy-researchers-

implementers/patient-generated-health-data).

Self-Appraisal

Self-appraisal describes the patient’s ability to evaluate the relevance of a variety of data and 

observations within the context of his or her general health objectives or specific health 

concerns. Wearable devices are used to keep track of patients’ day-to-day activities. 

However, there’s a big gap between simply having the access to relevant data generated from 

self-monitoring and being able to analyze and interpret the data in a useful way. Patients are 

interested in understanding if they are keeping up with progress toward their health goals. 

Consider, for example, using a Fitbit2 to measure the number of steps taken each day and the 

quality and duration of sleep. Is this data helping the patient fulfill their desired objective or 

do they need to do something more? What is the distinction between expending 1,700 

calories and 2,200 calories per day vis-à-vis the objective to shed 5 pounds in next 3 months 

to improve the management of diabetes? What about the existence and impact of any 

abnormal behavior on body activity? For example, for patients taking asthma meds, if their 

Fitbit shows a heart rate of 100+ while asleep, is that a serious enough condition to require 

clinical consultation?

Self-Management

Self-management refers to the patient’s decisions and behaviors that impact management of 

their chronic conditions. Generally, the impact that a patient may seek is getting back in line 

with the prescribed medical care plan or agreed upon health objective. Patients empowered 

with IoT-generated PGHD have a better sense of their health condition and can make 

informed decisions about care as opposed to episodic clinical visits in which patients aren’t 
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aware of their state until diagnosed. An APH technology that intends to support self-

management is expected to identify actionable information, such as increasing weight-

bearing exercise or reducing consumption of energy-dense food. An APH technology can 

aid patients by providing alerts about potential triggers (such as high pollen counts) or 

feedback on adherence (such as unexpected weight gain or not meeting activity targets), 

which can be used to keep patients on course. This improves the effective use of IoT for both 

data collection and relevant data/analysis/alert access by the patient. It can then provide 

alternatives to the patient to take steps to better adhere to the physician-specified care plan to 

reduce adverse impact due to deviation from the plan or improve the outcome of the 

objective (for example, an APH technology used to promote self-management for patients 

who are obese can use IoT capabilities, such as activity monitoring and fluid consumption to 

also measure increases in activity level and targeted water intake if weight gain continues 

after use of oral steroid has ended).

Intervention

The next step up in health management is clinical intervention, which includes a change in 

the care plan prescribed by the clinician. An APH technology can use the data it gathers to 

help clinicians provide PGHD, environmental, and other data as well as corresponding 

analysis and interpretation to help evaluate and adjust a patient’s clinical plan. The timely 

analysis of IoT data can yield insights for early intervention before a patient’s situation 

deteriorates. In the case of kHealth Asthma, which developed an APH technology for 

managing asthma in children, the observed deterioration of asthma symptoms through 

PGHD can suggest change in medication or its dosage, develop trigger-avoidance plans, and 

so on. The IoT data collected from individuals can help clinicians develop a personalized, 

patient-centric recommendations for use in the healthcare system with implicit feedback and 

support adherence to physician-prescribed protocols.

Disease Progression Tracking and Prediction

Going beyond immediate and short-term management of health concerns, it would be highly 

rewarding on the individual and public health levels if the longitudinal collection of 

personalized health data including PGHD and environmental data could facilitate tracking 

how a disease is progressing, predicting significant changes in health status, and identifying 

and taking remedial actions. For example, for a patient who is pre-diabetic and has an A1C 

score higher than 6, it would be highly valuable to be able to track the score’s changes and 

issue an alert when it has reached diabetic status (A1C ≥ 6.5), thus predicting the high 

probability that a patient becomes diabetic and requires insulin treatment. For an asthmatic 

patient who is overweight and is on long-term steroid medication—which may lead to a 

number of adverse situations including higher energy intake—it would be important to track 

associated weight gain and compute the probability of worsening of asthma severity. A more 

straightforward strategy would be for the clinician to periodically review the patient’s data 

and make an educated judgment on the disease progression. A more advanced strategy 

would be to use the personalized health data and analyze it vis-à-vis published clinical 

studies and longitudinal data collected with relevant cohort population.
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The objective is to devise more proactive interventions and incorporate more nonmedical 

solutions, such as lifestyle changes that are often very effective but take a longer time to 

show benefit. Individual and public health will greatly improve based on what we learn from 

such strategies, which will become evidence-based enhancements of widely accepted 

clinical pathways and protocols.

APH SHOWCASE AND APPLICATION SCENARIO

The knowledge-enabled healthcare (kHealth) initiative at Kno.e.sis is an example of an APH 

framework to enhance decision making and improve health, fitness, and well-being (http://

bit.ly/kAsthma). The early prototyping and testing involved kHealth–ADHF, a mobile app 

and a sensor kit designed to reduce readmission in patients with Active Decompensated 

Heart Failure (ADHF). kHealth–ADHF involved continuous monitoring using targeted 

questions driven by application-specific (cardiovascular) knowledge as well as sensors to 

record blood pressure, heart rate, and body weight. These measurements provided 

observational data via Bluetooth to the mobile app, which also asked the patient pertinent 

questions and analyzed answers and collected data and then generated alerts.

A follow-on application, kHealth–asthma, designed to better control asthma in children, 

extends physical data collection using cyber and social data. Figure 1 shows an instance of 

the kHealth–Asthma application collecting multimodal data to monitor pediatric asthma, 

which is a multifactorial and multifaceted disease. We are running a trial with 200 patients 

with asthma, collecting possibly the broadest modality of data, with an average 124 readings 

collected per day (2 tablet readings per day, 24 Fitbit readings per day, 2 Peak flow readings, 

96 Foobot readings per day), for a duration of 1, 3, and 6 months. This vast amount of 

multimodal and multisensory data poses a big data challenge (due to the data variety and 

associated challenges with integration) in comparison to other mHealth studies like Google 

Verily, IBM, and Swiss startup Docdok.health project, as well as the Stanford wearable 

study that deals with fewer modalities and a smaller sample size. To address the 

aforementioned problem, kHealth supports contextual (condition-specific) annotation, 

integration, and interpretation of sensor data using Semantic Sensor Network (SSN) 

ontology. Furthermore, kHealth supports contextualized actionable feature selection in 

PGHD to generate Smart Data using SSN and domain-specific knowledge sources. 

Utilization of Smart Data provides timely medical intervention and remediation measures. In 

a broad sense, a knowledge graph is a knowledge base that provides semantic annotation 

using its characteristic functionalities like fact extraction, named entity recognition, 

relationship identification, locale-specific information, event extraction, and intent 

identification to enrich information.

We describe the kHealth APH approach with an example. Sara is a 10-year-old girl. With the 

help of our kHealth kit (Figure 1), she is able to monitor her daily activities, helping her and 

her clinician to intervene and update her treatment plan accordingly. Self-monitoring refers 

to the data collection using the mobile devices and sensors. Sara completes her mHealth 

application questionnaire twice a day, collects her daily activity level and sleep pattern using 

Fitbit2 (http://bit.ly/1VdkW3I) and places an indoor air quality monitor to measure her 

indoor environment at home. Self-monitoring in many cases, won’t be helpful if collected 
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data aren’t acted upon. In general, we don’t want a technology to make a clinical decision 

and change the care plan, but to enable adherence to a care plan specified by the patient’s 

physician. Self-appraisal refers to the process of self-monitoring and self-reconciliation of 

the observed data. Self-management helps a patient to make better judgment or action within 

the scope of the care plan. For instance, a patient might observe that every time he goes out 

and has allergic symptoms, the APH systems has found a strong correlation with high 

pollen. The intervention involves looping in the clinician for monitoring the severity level of 

patient and alter the care plan. Activities involved in the intervention may include the 

addition of new medication, changing the course of intake of medication or suggesting 

preventive medication considering the historical observations of the patient by involving the 

clinical and support services in care and health monitoring process. Assessment of post-

intervention processes is crucial for reclassification of patient’s disease. For instance, the 

collected evidences can help the physician to reclassify the asthma from mild persistent to 

moderate persistent and adjust the care plan with modification in the medication.

CHALLENGES IN CONVERTING BIG DATA INTO SMART DATA

A variety of studies involving PGHD and other health-relevant data using a broad variety of 

IoT are ongoing for developing personalized digital care solutions for a variety of health 

related objectives, as shown in Figure 2. These systems need to deal with a host of data 

related challenges such as accessing, storing, querying, and managing large volumes of 

highly dynamic data, and systems related challenges such as interoperability and integration, 

security, privacy, trust, scalability, and reliability.3 We characterized the ongoing efforts 

along two critical dimensions: abstractions (making the data meaningful and interpretable 

with respect to an individual’s health) and actionable information (supporting decision 

making and actions informed from the data). These involve addressing challenges in data 

analysis including semantic data modeling, annotation, knowledge representation (for 

example, modeling for constrained environments, complexity issues, and time/location 

dependency of data), and so on. While statistical analysis of the data collected helps one 

identify correlations, it’s widely observed that a correlation doesn’t necessarily imply a 

causation. Working with domain experts (that is, clinicians for the health applications) for 

understanding correlations between observations from different modalities is the key in 

associating meaning to the variations in observations that can then support derivation of 

causations. Another challenge is that the clinicians, health practitioners, and patients cannot 

keep up with an enormous amount of data being generated. Patients can’t interpret the data 

in the context of health conditions and objectives and clinicians don’t have time to look at it. 

There’s an urgent need to convert the raw data into Smart Data. By making sense out of big 

data (http://j.mp/SmData), Smart Data provides value from harnessing the challenges posed 

by volume, velocity, variety, and veracity of big data, in turn providing actionable 

information and improving the decision-making process. Smart Data is focused on the 

actionable value achieved by human involvement in data creation, processing, and 

consumption phases for improving the human experience (http://bit.ly/HumanExperience). 

We propose the following evidence-based semantic perception approaches: (a) 

contextualization, (b) abstraction, and (c) personalization.
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Contextualization

Contextualization refers to data interpretation in terms of knowledge (context). PGHD 

consists of demographic and medical information from EMRs and time-series data collected 

from various environmental sensors, physiological sensors, and public web resources. 

Contextualization supports ranking a patient’s diagnosis and patient similarity based on 

demographics and PGHD. It deals with low-level fine-grain data covering various facets by 

determining the data type and value, and then situates it in relation to other domain concepts, 

thus developing a meaningful interpretation of results. A large body of existing research on 

ontologies and semantic web techniques and technologies can be leveraged for this purpose.
4 However, relying solely on description logics or formal knowledge representation alone is 

often not sufficient to understand the complex nature of many health conditions. 

Probabilistic graph models from representing knowledge graphs, combined with machine 

learning and NLP on relevant data is an alternative some recent approaches have used.

Abstraction

Abstraction is a computational technique that maps and associates raw data to action-related 

information, taking into account personal details but ignoring inessential differences to 

provide an integrated view of proper remediation measures. For example, high activity 

translates to different workout durations based on age, weight, current health, weather, and 

sport; or a low risk of heart problems depends on demographic and genetic information, as 

well as diet. In some cases, abstraction can be embedded on the device: for example, 

question-answering systems in mobile health applications as a way of indirectly supervising 

personalization of healthcare. However, one of the challenges is the need to formalize 

normalcy and detect an anomaly. Anomaly detection is nontrivial because the notion of 

normalcy itself is intrinsically dynamic, based on spatiotemporal and personal context. It 

also requires personalization and the ability to uncover various correlations among 

multimodal data streams and discovering medically relevant abstract interpretations and the 

factors that influence them. The challenge itself can be overcome if sufficient patient data 

can be obtained through large-scale clinical studies, followed by identification of 

correlations, and then analyzed and explained by those with domain knowledge and 

expertise to derive causations.

Personalization

Personalization in healthcare refers to the determination of a treatment plan based on 

severity of disease, the prevalence of triggers, and vulnerabilities vis-à-vis the use of past 

and current health data. For example, a low-dose SABA (Short-Acting Beta Agonists) might 

help someone keep asthma symptoms in check during the fall season, but it might not work 

for another patient who needs a higher dosage due to more severe asthma and a greater 

prevalence and intensity of triggers during the spring season. IoT data provides an 

opportunity for personalization of future course of action and treatment plans by taking into 

account the contextual factors such as patient’s health history, physical characteristics, 

environmental factors, activity, and lifestyle.

With contextualization, abstraction, and personalization in place, the next problem is how to 

synthesize a personalized vulnerability score for a patient’s given medical condition or 
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disease with respect to relevant health management objectives to better establish a control 

level, and to quantify and express the effectiveness of remedial measures in a manner readily 

accessible to both patient and clinician.

CONCLUSION

In terms of IoT and health, most current efforts are focused on data collection and improving 

understanding what the data implies at a basic level. Collected data needs to be analyzed and 

validated with EMRs that capture patient-care objectives, plans, and information self-

reported by patients. The key aspect is generating actionable information that will be 

acceptable, easy to use and integrate into clinical pathways used by other systems, and can 

be given at the right time with the right modality to the end beneficiaries (clinicians and 

patients) with appropriate information governance procedures and privacy/security 

measures. The privacy issues in healthcare data can be dealt with by homomorphic 

encryption schemes, differential privacy, and data perturbation. Depending on the privacy 

level needed, additional cryptographic services can be introduced into the framework.

Transitioning from cohort-based treatment to more personalized treatment, basic statistical 

computing with causality and machine learning algorithms won’t suffice. There’s a need to 

combine and integrate machine learning and data analytics with reasoning engines and 

knowledge bases, thus propelling us into the realm of augmented personalized healthcare 

management and well-being applications and services.
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Figure 1. 
kHealth, an mHealth application that gathers patient-generated health data (PGHD) through 

contextually relevant questions (tablet), sensors (Foobot, peak flow meter), wearable (Fitbit), 

and from external data sources for contextual (such as location-specific) environmental data.
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Figure 2. 
Example efforts involving PGHD and other health-relevant data. Converting PGHD data into 

actionable information. [References for kHealth Bariatrics,5 kHealth ADHF,6 kHealth 

Dementia,8 TIHM7 provide further details.]
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