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Abstract

With this paper we explore the sensitivity of study results to spatial displacements associated with 

Demographic and Health Survey (DHS) data in research that integrates ancillary raster data. 

Through simulation studies, we found that the impact of DHS point displacements on raster-based 

analyses can be moderated through the generation of covariates representing average values from 

neighborhood buffers. Additionally, raster surface characteristics (i.e., spatial smoothness) were 

found to affect the extent of bias introduced through point displacements. Although simple point 

extraction produced unbiased estimates in analyses involving smooth continuous surfaces, it is not 

recommended in analyses that involve categorical raster surfaces.

1 Background

Demographic and Health Survey (DHS) spatial data are widely used to evaluate the effects 

of environmental or contextual exposures on health outcomes (for example, see Balk et al. 

(2004); Simler (2006); Baschieri (2007); Feldacker et al. (2010); Jankowska et al. (2012); 

Messina et al. (2010, 2011); De Castro and Fisher (2012)). One of the most common uses of 

this data involves linking DHS clusters to environmental or contextual data in order to 

generate new covariates of interest. However, because the locations of DHS clusters are 

randomly displaced to protect the confidentiality of survey respondents, measurement error 

and covariate misspecification can be introduced by spatial uncertainty associated with the 

displacement procedure.

Statistical impacts of positional error have been noted in previous studies. For instance, the 

recently described Uncertain Geographical Context Problem (UGCoP), in which statistical 

bias is introduced when the method of delineating contextual areas/neighborhoods, affects 

the results of an analysis Kwan (2012). In the case of UGCoP, when buffers around clusters 

are used to generate an ecological variable (such as percentage of crop land or degree of 

exposure to traffic pollution), the buffer must be large enough to incorporate the true area 
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associated with the cluster locations prior to displacement, which complicates the already 

difficult task of defining the proper contextual area/neighborhood associated with a cluster. 

Monte Carlo simulation can be used as one approach to handle spatial error associated with 

UGCoP. With this approach, positional error can be modeled through a simulated sampling 

of inputs whose errors behave according to a known probability distribution Hengl et al. 

(2010); Heuvelink et al. (1989). Heuvelink et al. (1989) note that Monte Carlo simulation 

techniques have essentially taken over the field of error propagation modeling.

Other efforts to characterize the bias introduced by positional error have used sensitivity 

analysis as a tool. This approach has been used in studies attempting to understand the 

effects of environmental exposure on a variety of health outcomes. Zandbergen and Green 

(2007ab), for example, compared methods of street geocoding with modeling of children's 

exposure to traffic pollution. Their results found bias and error in proximity analyses of 

distances less than 500 m, with consistent overestimation of exposed children Zandbergen 

(2007); Zandbergen and Green (2007). Whitsel et al. (2006) also found exposure 

misspecification in their study on the accuracy of commercial geocoding techniques Whitsel, 

Quibrera, Smith, Catellier, Liao, Henley, and Heiss (Whitsel et al.). A study conducted by 

Ward et al. (2005) of non-Hodgkins lymphoma compared two geocoding methods to 

characterize the positional error and test the sensitivity and specificity of each to crop 

occurrence within 500 m, 250 m, and 100 m of both sets of geocoded households Ward et al. 

(2005). They found that geocoding errors affected crop exposure classification at 100 m. 

Each of these studies shows that the spatial scale of the analysis is an important 

consideration, analogous to concerns related to the use of ancillary raster data with displaced 

DHS clusters.

A related concern involves studies that extract data from raster surfaces using map overlay 

techniques. Zandbergen et al. (2012) examined the effect of geocoding error on association 

with 30-m resolution land cover by generating an error matrix to determine the agreement 

between the results for reference locations and geocoded locations in six US counties. They 

found that areas with relatively homogenous land cover resulted in fewer errors in matching 

points with the correct land cover type, whereas areas with heterogeneous land cover types 

were associated with larger error. One solution they offer is, if possible, to reclassify areas 

with heterogeneous land cover types into fewer categories Zandbergen et al. (2012).

With this paper we explore the sensitivity of study results to spatial displacements associated 

with DHS data in studies involving integration of ancillary raster data, and provide 

guidelines on the use of DHS spatial data to reduce the impact of resulting covariate 

misspecification. We propose simulation studies to investigate how the random displacement 

of DHS cluster locations affect statistical inferences and conclusions drawn from analyses 

involving covariates generated from ancillary raster data. We address how covariates 

generated from continuous as well as categorical raster surfaces can be altered differentially 

by point displacement, and propose the use of buffer means to mitigate the potential bias 

associated with misspecification of covariates due to these random displacements. We 

evaluate the performance of these methods (i.e., buffer means) across raster surfaces with 

varying levels of spatial smoothness (i.e., spatial autocorrelation) and varying coverage of 

raster cell types (for categorical rasters). It is expected that raster characteristics such as 
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these would likely influence the extent of bias brought about through point displacements. 

Therefore, the effectiveness of proposed neighborhood definitions (for obtaining buffer 

means) to reduce the bias associated with point displacement is evaluated across several 

simulated raster surfaces.

2 Methods

2.1 GPS Data Displacement

DHS data have geo-located survey locations dating to 1986. The collection of GPS locations 

for surveys has become fairly standard practice since the early 2000s. Currently, there are 

over 130 surveys with GPS or geo-located data. To protect the confidentiality of respondents 

the geo-located data is displaced. The displacement process moves the latitude and longitude 

to a new location under set parameters. Urban locations are displaced 0-2 km while rural 

locations are displaced 0-5 km with 1% (or every 100th point) displaced 0-10 km. The 

displacement is a random direction/random distance process. The steps in the displacement 

are: (1) A random direction (angle) between 0 and 360 degrees is chosen; (2) A random 

distance according to the urban and rural parameters is chosen; (3) The new location is 

created combining steps 1 and 2 to create a new latitude and longitude for the cluster; and 

(4) The new location is checked to ensure it falls within designated administrative 

boundaries Burgert et al. (2013). In surveys after 2008 this is usually administrative 2 

boundaries while surveys before 2008 were restricted to DHS regional boundaries or 

national boundaries.

For purposes of this analysis, we used the Uganda DHS 2011 data, including the GPS data 

for the 404 clusters covered in the survey. GPS points represented the approximate center of 

a cluster of households. The data were verified by DHS Program staff to be in the proper 

administrative areas; 7 points were gazetted to the nearest village. A total of 400 clusters 

were verified and 4 were listed as missing GPS data and removed from subsequent analyses. 

The verified cluster locations were displaced according to DHS protocol restricting the 

displacement to the first administrative level.

2.2 Generation of Raster Surfaces

When linking DHS data with ancillary raster data investigators should consider the potential 

effects of surface characteristics on covariate assignments. For instance, the spatial 

smoothness of an ancillary surface (i.e., how similar nearby cells are to each other) could 

impact the extent to which the cell value at a displaced location differs from that of the true 

location. Thus, if neighboring cell values are very similar, then displacement will likely have 

little effect on covariate assignment. A second consideration relates to the relevant scale of 

analysis for a given spatial process. In other words, investigators should consider whether 

interest lies in capturing data that represent point-level processes, or data that correspond to 

contextual effects occurring at some defined neighborhood scale. In subsequent simulation 

studies, we consider the effect of point displacements on both point-level and contextual 

spatial processes, as well as varying degrees of surface smoothness. Details regarding the 

simulation of corresponding raster surfaces are provided in the following sections.
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2.2.1 Continuous Raster Surfaces—In both simulation studies (continuous and 

discrete raster), we require simulated raster surfaces in order to define the covariates of 

interest. Continuous raster surfaces were simulated to represent varying degrees of spatial 

smoothness (Figure 2). First, a regular grid of 65×65 points was generated to encompass the 

entire Uganda study area. For each point in the regular grid, neighboring points were 

identified within a 10 km radius of the point, and a row-standardized weights matrix (W) 

was generated from the resulting neighbors list. Each grid point (i, j) for row i and column j 
was then assigned a value Zij which was dependent on the mean values of its neighbors. 

Specifically, the spatial autoregressive random vector Z = (Z1,1, …, Z65,65)T was generated 

by: (1) constructing the 65×65 inverse matrix V = (I – ρW)−1 Bivand (2013), where ρ 
represents a predefined autoregressive parameter, and (2) defining the product Z = Vq, 

where q was a vector of independent standard normal random variables. The resulting vector 

Z represented a spatially correlated multivariate normal random vector with mean equal to 

the zero vector and covariance equal to VVT = (I — ρW)−1(I – ρW)−T. Z was defined for 

three different values of ρ, i.e., 0.05, 0.50, and 0.95. Using different ρ values, the spatial 

autoregressive point process could take on varying levels of smoothness such that at ρ = 0.05 

the point process would exhibit very low levels of spatial autocorrelation, whereas at ρ = 

0.95 the point process would exhibit very high levels of spatial autocorrelation. The 

generated gridded points for each level of ρ were then used to interpolate a continuous 

surface by using the kriging tool in ArcMap 10 ESRI (2011) with an output cell size of 500 

m.

2.2.2 Categorical Raster Surfaces—For categorical raster surfaces, smoothness may be 

better described according to degrees of “patch-iness” of certain cell types. Landscape 

ecologists have described “patchiness” of such surfaces using a variety of indices (see 

Mcgarigal et al. (2002); McGarigal et al. (2009) for examples), though the external validity 

of such metrics across categorical surfaces is questionable. As with analyses involving the 

assignment of covariate values from continuous raster surfaces, sensitivity of results to point 

displacements could be affected by the proportion of cell types within an ancillary 

categorical raster surface. For instance, the proportion of a given cell type within a given 

study area can influence the probability that neighboring cells are of the same type; however, 

prevalence alone cannot account for shape complexity resulting from patches of similar cell 

types. Moreover, grid cell sizes will also influence this patchiness and the resulting 

sensitivity of point displacements to raster-based covariate assignments. With a binary raster 

surface, covariate misclassification due to point displacement may contribute to bias in effect 

size estimates associated with point-level spatial processes. For instance, the more frequently 

observed cluster locations lie along boundaries of binary grid cell patches, the higher the 

probability of covariate misclassification will be for these locations. In this way, guidelines 

associated with the integration of data from ancillary discrete raster surfaces can be based on 

misclassification rates estimated from these surfaces. We provide an R function to estimate 

misclassification rates, i.e. proportion of locations with non-zero probability of 

misclassification, for displaced DHS cluster locations via simulation in Appendix C.

For the purposes of this study we generated multiple categorical raster surfaces with varying 

surface characteristics, namely cell type prevalence and patch aggregations, to evaluate 
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sensitivity of results to point displacement. Specifically, continuous rasters described above 

were discretized into categorical rasters that represented rare, moderately prevalent, and 

prevalent cell types (approximated 15, 30, and 45% coverage, respectively). Continuous 

raster values were converted to binary values by setting all grid cells with values less than 

those pertaining to the 15th, 30th, and 45th percentiles, respectively, to one, and all other 

values to zero for rare, moderately prevalent, and prevalent cell types. We considered more 

surfaces for this simulation study, compared to the continuous raster simulation study, in 

order to account for the effect of a wide range of surface misclassification rates on bias. This 

was done by discretizing continuous surfaces generated using using ρ= -0.95, -0.50, 0.05, 

0.50, and 0.95, rather than just the latter three. The resulting surfaces, along with associated 

misclassification rates, are shown in Appendix D. Figure 3 presents a subset of three 

generated surfaces that differ with respect to misclassification rates.

2.3 Generation of Analysis Datasets

2.3.1 Continuous Raster Simulation Study—For the simulation study, we generated 

datasets for analysis, and collected covariate data during each analysis to aid in answering 

proposed questions of interest. We defined the true covariate of interest as the average of the 

continuous values within a 2 km buffer of the true DHS cluster location for urban clusters 

and 5 km for rural clusters. The choice of 2 km and 5 km neighborhood scales for the truth 

was based on cell sizes comprising the simulated raster surfaces, 500 m in this case. 

Neighborhood sizes were therefore defined to capture data from multiple cells. 

Neighborhoods less than 2 km were expected to reflect results overly similar to point 

extraction, thus, this was set as the minimum distance at which neighborhood processes 

would differ from local point processes. Next, we considered the form of statistical model 

we planned to evaluate with respect to bias in parameter estimates. For these analyses we 

focused on Poisson regression, since count data from DHS clusters is commonly used to 

define outcome variables of interest. We chose regression coefficient values for the Poisson 

statistical regression model considered in the study such that β0 = 1.00 and β1 = −0.27. 

These values were obtained as random variates from a normal distribution with mean 0 and 

standard deviation 1.5. Using these fixed β = (β0, β1)T parameters, we are able to generate a 

dataset of Poisson distributed data, one datapoint for each DHS cluster. The proposed model 

is given as

Y i |λi ~indPoission(λi), ln (λi) = β0 + β1xi
(t) (1)

where xi
(t) is the average of the continuous values within the specified buffer created around 

the true location of DHS cluster i. Recall that the covariate xi
(t) is unknown to researchers in 

practice due to the random displacement. Multiple displaced datasets were created for the 

simulations. To facilitate this process a displacement function was created in R that mirrored 

the DHS displacement python script in ArcGIS. The codes are listed in the additional files 

(Appendix A). For each location (i.e., DHS cluster) we simulated 100 displaced point 

datasets, and these points were used in subsequent simulation case studies (Figure 1). We 
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generated 100 independent datasets, each associated with a particular joint displacement of 

DHS clusters. By repeating the process under each spatial smoothness setting we simulated 

a total of 300 datasets.

Noting that continuous raster surfaces will vary with regard to their respective scales of 

measurements for the data they represent, for this empirical study the covariate of interest 

was standardized to have a mean and variance of one in order to allow for the generation of 

more generalizable guidelines. Because the variability of a surface (i.e., how wide the spread 

of possible values spans), in addition to its smoothness, can influence the magnitude of the 

estimated effect sizes and corresponding standard errors, standardization of covariates 

extracted from such surfaces allows for the sole consideration of spatial smoothness without 

loss of generalizability when developing guidelines. Thus, since guidelines here are 

developed based on standardized data, investigators should center and scale their covariate 

data accordingly when applying proposed guidelines from this study.

2.3.2 Categorical Raster Simulation Study—In order to simulate a single dataset, we 

used the true (non-displaced) Uganda DHS cluster locations along with the created raster 

surfaces which have been reclassified to represent binary data. We then defined the true 

covariate of interest as the proportion of the considered cell type within a 2 km buffer of the 

true DHS cluster location for urban clusters and 5 km for rural clusters. As a separate 

analysis considering a difference spatial scale, we also defined the true covariate of interest 

as the precise cell values which overlaid the true DHS cluster locations. We made use of the 

same regression coefficient values used for the continuous raster simulation study, i.e. β0 = 

1.00 and β1 = −0.27, and defined the outcome variable using the Poisson model from (1). In 

this setting, however xi
(t) corresponds to the proportion of a considered cell type within the 

specified buffer created around the true location of DHS cluster i. Recall that this proportion 

covariate xi
(t) is unknown to researchers in practice. Using the 100 sets of displaced 

locations, we generated 100 independent datasets and repeated the process under each 

simulated surface for a total of 1100 datasets.

2.4 Analysis

We propose 14 statistical models, each associated with a different method of covariate 

assignment, to analyze the generated datasets of interest; they include the following:

• Method 1 (True covariate assignment): Maximum likelihood estimation of the 

data using the true buffer average covariate (for neighborhood-level covariates) 

or true cell extraction value (for point-level covariates) based on the true DHS 

cluster location ( xi
(t)) (unknown to researcher),

• Method 2 (Simple point extraction): Maximum likelihood estimation of the data 

using the point extracted cell value based on the displaced DHS cluster location 

( xi
(0)), and

• Methods (u, r) (Buffer means): Maximum likelihood estimation of the data using 

the estimated neighborhood mean covariate created using a combination of three 
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urban (u=1 km, 2 km, 5 km) and four rural (r=1 km, 5 km, 10 km, and 20 km) 

buffer sizes created around the displaced DHS location ( xi
(t)(u, r)).

Method 1 represents the optimal analysis, based on the true covariate of interest. Use of 

Method 1 is not possible in practice because access to the true DHS locations needed to 

calculate true covariate values is not available. Method 2 represents the naive analysis which 

has been used in previous studies. This analysis fits the correct statistical model, similar to 

Method 1, with the incorrect covariate xi
(0)) based on cell extraction of the displaced DHS 

location. Methods (u, r) fits the same statistical model as methods 1 and 2, while using 

estimates of the true neighborhood-level covariate xi
(t)(u, r). These estimates are obtained 

using a combination of urban/rural buffer sizes and calculating the buffer averages 

accordingly.

In addition to being able to provide urban and rural-specific guidelines, assessment of the 

different combinations of these two neighborhood definitions would also allow for the 

determination of optimal combinations of urban and rural buffer settings that minimize the 

bias associated with point displacements. Method (u, r) can be used by all researchers since 

it is based on the displaced DHS cluster locations and represents a compromise between 

methods 1 and 2.

2.4.1 Simulation Study—For each of the continuous and categorical raster surfaces 

generated we fit each of the fourteen methods defined above to a single generated dataset 

and collected information from each of the model fits. We collect the estimate of β1, β̂1
(j), 

for each method j = 1, …, 14. β1 represents the main parameter of interest in the study 

because it describes the association between the average cell values surrounding a DHS 

cluster and the target outcome. Collection of β̂1
(j) allowed us to estimate the bias of the 

estimator from each method, E[β̂1(j)] – β1.

We used standard linear mixed models, which account for the fact that each method is 

applied to the same dataset through use of random effects. We then tested whether the bias 

of the estimator associated with each method was significantly different from zero and 

whether this bias changes across spatial smoothness and cell prevalence settings. These 

analyses are repeated separately for each of the raster surfaces considered. Determining what 

combinations of urban-rural buffer definitions and surface characteristics lead to unbiased 

effect size estimates will help develop guidelines pertaining to the use of DHS GPS data in 

studies linking data from ancillary raster surfaces. Specifically, results here will define 

appropriate scales of analysis needed to minimize bias associated with effect estimates and 

covariate misspecification.

2.4.2 Case Study: Anemia Risk and Parasite Prevalence—The goal of this case 

study was to determine whether the predicted prevalence of malarial parasite infections in a 

neighborhood is associated with the number of people who are anemic (among all 

respondents tested) in a DHS cluster. Raster data on Plasmodium falciparum prevalence was 

obtained from the Malaria Atlas Project (Gething et al. (2011); Figure 5). The outcome of 
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interest, i.e., number of respondents who are anemic in DHS clusters, was obtained from the 

2011 Uganda DHS.

To determine how smooth a raster surface is, in terms of proposed guidelines, investigators 

can convert a raster surface to a points shapefile, and fit a simultaneous autoregressive 

regression model on the points generated from the raster (Appendix B). Average parasite 

prevalence was calculated using urban and rural buffer sizes determined by simulation study 

results. Using both, true, non-displaced DHS cluster locations, along with the publicly 

available displaced locations, effect estimates associated with predictor variables generated 

for both true and displaced clusters were compared. Specifically, a Poisson regression model 

was fit to the data with anemia counts per cluster as the outcome variable, neighborhood 

parasite prevalence as the predictor variable, and an offset accounting for cluster-level 

population size. Slope parameters and standard errors were compared for the true and 

displaced datasets.

2.4.3 Case Study: Anemia Risk and Cropland Cover—The motivating research 

question for this case study was to determine whether the amount of cropland cover in a 

neighborhood is associated with the number of women who are anemic (i.e., anemia of any 

severity) within a DHS cluster. Raster data on land cover was acquired from LP DAAC 

(https://lpdaac.usgs.gov/; Figure 7). The outcome of interest, i.e., number of women who are 

anemic in DHS clusters, was obtained from the 2011 Uganda DHS.

For this case study, the percentage of cropland cover for the displaced data was calculated 

using urban and rural buffer sizes determined by simulation study results. To determine 

misclassification rates, in terms of proposed guidelines, investigators can use the function 

provided in the additional files (Appendix C). True percentage of cropland cover for DHS 

cluster i was calculated as the proportion of cells within the corresponding circular radius of 

2 or 5 km, for urban and rural locations respectively. Using both true, non-displaced DHS 

cluster locations along with the publicly available displaced locations, effect estimates 

associated with predictor variables generated for both true and displaced clusters were 

compared. Specifically, a Poisson regression model was fit to the data with anemia counts 

per cluster as the outcome variable and neighborhood percent cropland cover as the predictor 

variable; slope parameters and standard errors were compared for the true and displaced 

datasets. Additionally, for illustrative purposes, the analysis was repeated using the method 

of exact cell extraction.

3 Results and Discussion

3.1 Continuous Raster Simulation Study

One-sample t-tests from linear mixed models that addressed whether the bias in regression 

parameter estimates associated with neighborhood definitions (i.e., buffers around displaced 

points) was significantly different than zero indicated that across surfaces with moderate to 

high levels of spatial autocorrelation, estimates were unbiased when coverage was calculated 

for neighborhoods composed of rural buffer sizes between 1 and 10 km and urban buffer 

sizes between 1 and 5 km (Fig. 4B and 4C). The bias of estimates was dependent on the 

smoothness of the ancillary surface, with sensitivity to point displacements being higher 
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when using surfaces with very low autocorrelation (ρ = 0.05; Fig. 4A). In other words, for a 

very noisy, unsmooth surface, point displacements can drastically alter observed raster 

values, and buffer averaging fails to help reduce any resulting bias. For an extremely smooth 

surface, however, any urban-rural buffer definition is adequate (among those considered) 

because neighboring values will be similar up to very large distances away from the true 

DHS location. Interestingly, however, for a moderately smooth surface, if rural buffers are 

too large, the potential to capture data outside of a smooth region increases and 

neighborhood averages begin to deviate more significantly from values obtained at true DHS 

cluster locations.

Low levels of bias were noted with one-sample t-tests from linear mixed models addressing 

whether the bias in regression parameter estimates associated with point extraction was 

significantly different than zero. Overall, point extraction provided unbiased results across 

most autocorrelation surfaces tested, and was thus shown to be relatively robust to point 

displacement (Table 1). Only point extractions from surfaces with very low spatial 

autocorrelation(ρ = 0.05) were found to be associated with significantly biased results.

3.1.1 Proposed Guidelines: Continuous Raster Data—According to results from 

this simulation study, in studies that integrate ancillary continuous raster data for analyses 

with DHS GPS data, the random displacements used to protect the privacy of DHS survey 

respondents could result in misspecified assignments of predictor variables at the DHS 

cluster-level depending on characteristics of the surface from which data is being linked. For 

relatively smooth surfaces, bias was low for both point extraction and most urban/rural 

neighborhood definitions. Thus, when working with ancillary continuous surfaces with high 

spatial autocorrelation either buffer means or point extraction will provide unbiased 

regression parameter estimates. Moreover, because highly non-smooth surfaces yielded 

biased estimates from both point extraction and neighborhood buffer approaches, we further 

recommend that if investigators plan on working with such rasters, they attempt to smooth 

the surface in some way to mitigate the effects of such potential bias.

Table 3 provides an overview of proposed guidelines. Note that these guidelines provide 

general rules to consider when linking continuous raster data to randomly displaced DHS 

point data. We have shown that the extent of bias in inferences drawn from linking ancillary 

continuous data to displaced DHS GPS data depends heavily on the smoothness of the 

ancillary raster surface.

3.2 Categorical Raster Simulation Study

One-sample t-tests addressing whether the bias in regression parameter estimates associated 

with neighborhood definitions (i.e., buffers around displaced points) was significantly 

different than zero indicated that misclassification rates, which are a function of both surface 

smoothness and cell type prevalence, could affect bias in effect size estimates. In other 

words, depending on the overall rate of misclassification, different neighborhood definitions 

would yield unbiased effect size estimates. Thus, guidelines on the usage of DHS GPS data 

will depend on these factors.
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Across simulated categorical raster surfaces, average misclassification rates across all 

locations ranged between 0.11 and 0.78. Only two surfaces associated with average 

misclassification probabilities of less than 0.20 yielded covariates for which results were 

unbiased (Figure 3AB). These surfaces corresponded to discretized versions of continuous 

surfaces with high spatial autocorrelation (ρ = 0.95) and cell type prevalence less than 45% 

(Figure 2C). Overall, estimates corresponding to these surfaces were unbiased when 

coverage was calculated for neighborhoods composed of rural buffer sizes between 5 and 10 

km and urban buffers between 1 and 5 km (Figure 6).

One-sample t-tests of mean bias addressing whether the bias in regression parameter 

estimates associated with point extraction was significantly different than zero indicated 

strong bias. Overall, point extraction failed to provide unbiased results across all surfaces 

tested, and was thus shown to be highly sensitive to point displacement (Table 2).

3.2.1 Proposed Guidelines: Categorical Raster Data—According to results from 

this simulation, in studies that integrate ancillary categorical raster data for analyses with 

DHS GPS data, the random displacements used to protect the privacy of DHS survey 

respondents could result in misclassified assignment of predictor variables at the DHS 

cluster level, depending on how the ancillary data is linked to DHS data. The magnitude of 

this bias, however, could be made negligible by use of mean cell values across urban and 

rural neighborhoods of 1 and 5 km radii. Direct cell extraction is not recommended, because 

this sort of data and subsequent inferences from analyses are highly sensitive to random 

point displacements. Given that most displacements for DHS GPS data occur between 0 and 

5 km, the proposed minimum buffer sizes of 1 and 5 km for urban and rural locations is 

reasonable. We found that surface misclassification rates, which are a function of both the 

smoothness of the ancillary raster surface and the prevalence of cell types of interest, could 

also influence proper specification of covariate data and bias in regression estimates. 

Surfaces associated with misclassification rates less than 20% resulted in lower bias than 

surfaces associated with higher misclassification rates. Thus, investigators who plan to link 

environmental surface data to DHS GPS data should also consider the nature of the raster 

surface in question; for example, the prevalence of boundaries or edges along which points 

may lie could contribute to high misclassification rates. Table 3 presents an overview of 

proposed guidelines. As before, these guidelines provide general rules to consider when 

linking categorical raster data to randomly displaced DHS point data. We have shown that 

the extent of bias in inferences drawn from linking ancillary categorical data to displaced 

DHS GPS data will depend on the scale of neighborhoods used to define the process of 

interest and characteristics of the ancillary surface that could result in higher rates of 

covariate misspecification. Single point extraction is highly discouraged, because our 

empirical results suggest that using a neighborhood average will best mitigate the potential 

bias associated with systematic geographic displacements.

3.3 Case Study: Anemia Risk and Parasite Prevalence

The raster surface associated with P. falciparum prevalence fit under the highly 

autocorrelated surface category explored in the simulation study (ρ = 0.998). Proposed 

guidelines suggest that to avoid bias in effect estimates when using continuous raster data 
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from highly smooth surfaces investigators could either use point extraction or define 

neighborhoods around DHS clusters as having buffers of 5 km radius. Thus, average parasite 

prevalence was calculated using urban and rural buffer sizes of 5 km radii for each DHS 

cluster. For comparative purposes, simple point extraction was also used to assign covariate 

values to the DHS clusters. Using neighborhood definitions from the proposed guidelines, 

the estimated effect sizes for the true and displaced datasets did not differ significantly. The 

estimated slope parameter, using the true dataset, was 0.137 (95% CI: 0.054, 0.219); for the 

displaced data, it was 0.132 (95% CI: 0.049, 0.214). If direct cell extraction was used to 

generate covariates of interest, effect estimates obtained from the displaced and true DHS 

GPS data were also similar. The estimated slope parameter obtained using direct cell 

extraction with the true data was 0.978 (95% CI: 0.353, 1.604); for the displaced data, it was 

0.995 (95% CI: 0.369, 1.620).

3.4 Case Study: Anemia Risk and Cropland Cover

Estimated misclassification rate for the cropland cover surface was 92%. Based on 

guidelines, the scale of underlying spatial processes should be re-evaluated. Rather than 

trying to capture a neighborhood process occurring within 2 or 5 km of DHS cluster 

locations, the resulting covariate should thus represent a more coarse spatial process, such as 

that within a 10 km radius. After rescaling the measurement of the cropland cover covariate, 

estimated effect sizes for the true and displaced datasets did not differ significantly. The 

estimated slope parameter for the analysis using the true data was 0.064 (95%CI: -0.017, 

0.145); for the displaced dataset, the estimated slope parameter was 0.072 (95%CI: -0.009, 

0.154).

If misclassification probabilities were ignored, and the targeted spatial scale of the process 

remained at 2 or 5 km, differences between true and observed parameter estimates were 

more pronounced. The estimated slope parameter for the analysis using the true data was 

0.12 (95% CI: 0.041, 0.208); for the displaced dataset, the estimated slope parameter was 

0.097 (95% CI:0.014, 0.179). Moreover, if proposed guidelines were further disregarded 

with respect to point extraction, effect estimates obtained from the true and displaced DHS 

GPS data also differed and yielded different conclusions based on p-values. The estimated 

slope parameter obtained using direct cell extraction with the true data was 0.202 (95% CI: 

0.021, 0.383); for the displaced data, it was 0.161 (95% CI: -0.012, 0.334).

4 Conclusions

Guidelines on the usage of DHS GPS data in the context of integrating ancillary raster data 

should be based on minimizing bias in the effect estimates of interest. Based on the 

continuous raster simulation results, for studies aimed at addressing the influence of 

contextual environmental data on DHS cluster-level outcomes, use of urban buffer sizes 

between 1 and 5 km and rural buffer sizes between 1 and 20 km provided unbiased estimates 

under surfaces of moderate to high autocorrelation. Under surfaces of low spatial 

autocorrelation, all neighborhood definitions failed to provide unbiased parameter estimates. 

Moreover, point extraction led to unbiased parameter estimates for continuous surfaces with 

moderate to high spatial autocorrelation, but performed poorly for non-smooth surfaces. 
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Based on the categorical raster simulation results, for studies aimed at addressing the 

influence of contextual environmental data on DHS cluster-level outcomes, it is appropriate 

to use a buffer between 1 and 5 km to define urban neighborhoods if misclassification rates 

for the ancillary raster surface is less than 20%. The definition of rural neighborhoods will 

depend on specific characteristics of the surface at hand; however, generally, rural buffers of 

5 km will provide unbiased estimates for surfaces that are associated with misclassification 

rates less than 20%. These are general and conservative guidelines because we note that 

prevalence of cell types along with surface smoothness and cell size can influence the bias of 

an estimate (Appendix D).

This analysis of anemia risk and malaria parasite prevalence in Uganda was carried out for 

purposes of illustration; it is likely that the true effect of malaria prevalence on anemia 

incidence will be moderated by other unaccounted variables. The purpose of this case study 

was to demonstrate how well guidelines, which were established following empirical results 

of a simulation study, perform in a realistic application of DHS GPS data. Results showed 

that the proposed guidelines performed well in practice.

We note here that the impacts of point displacements on misspecification of covariates and 

interpretation of analytic results are affected by the smoothness of the raster surface to which 

DHS GPS data is linked. Overall, empirical results obtained using simulated surfaces 

indicated that the impact of this displacement could be moderated through the generation of 

average values using neighborhood buffers. Guidelines here were developed based on 

standardized data, thus investigators should center and scale their covariate data accordingly 

(i.e., convert values to z-scores) when applying proposed guidelines from this study. Point 

extraction is generally not recommended with categorical raster data because this most often 

leads to biased results; however, it may be an adequate approach with continuous raster data. 

Empirical results suggest taking averages across circular rural and urban buffers of around 5 

km. We note, however, that other continuous and/or categorical raster surfaces may yield 

different results due to differences in misclassification rates associated with smoothness 

and/or grid cell size.

In addition to surface smoothness, the guidelines presented in this report are also dependent 

on the scale of true processes of interest. With the raster-based simulations we demonstrated 

how buffer means could be used to generate covariates of interest. There we assumed that 

the true process of interest was occurring at a particular neighborhood scale, i.e., 2 km in 

urban areas and 5 km in rural areas. If, however, interest lay in understanding mechanisms 

associated processes occurring at a larger spatial scale, say 10 km neighborhoods, then 

covariates generated at this scale or something slightly larger would likely be more 

appropriate than those generated using a 5 km buffer. In other words, based on the raster 

simulation results, neighborhood-level covariates should be defined with regard to the spatial 

scale of underlying processes under investigation. Moreover, when working with categorical 

raster surfaces that yield misclassification rates of greater than 20%, investigators may 

consider re-evaluating the scale of spatial processes if it is too fine.

Guidelines provided here also assume that ancillary data are of good quality and relevant to 

DHS GPS data with regard to temporal overlap. Failure to uphold these assumptions will 
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likely lead to further problems in generating interpretable and relevant study results. For 

example, linking DHS data to an interpolated surface with high levels of prediction error 

will result in misspecification of covariates due to problems with the ancillary data file, 

rather than issues associated with random DHS point displacement. Likewise, if linking 

DHS data to temporally varying data such as census-based data or land cover data, special 

care should be given to ensuring that the time periods represented by the ancillary datasets 

correspond to the time periods associated with the DHS surveys to which data will be linked. 

Otherwise, any associations identified in subsequent analyses are likely to be confounded by 

temporally disjunct processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of 100 randomly generated displaced locations based on DHS displacement 

guidelines. The central point in red represents the true DHS cluster point, while the black 

dots that fill the circular buffer around the true point represent randomly displaced locations.
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Figure 2. 
Continuous raster surfaces used in subsequent simulation studies. Each panel represents the 

surface generated assuming alternate definitions of ρ: (A) ρ = 0.05, (B) ρ = 0.50, and (C) ρ = 

0.95.
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Figure 3. 
Subset of categorical raster surfaces used in subsequent simulation studies. Each surface 

represented in the first row varies with respect to average misclassification probabilities: (A) 

Misclassification rate ≤ 11%, (B) 11% < Misclassification rate < 20%, and (C) 

Misclassification rate ≥ 20%. The second row of plots demonstrates how the probability of 

misclassification for specific locations is affected by the number of and positioning of patch 

edges within a given categorical raster surface. Points highlighted in red correspond to 

locations in which probability of misclassification was greater than 0.
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Figure 4. 
Circular buffer sizes associated with nonsignficant bias in effect estimates due to point 

displacement across multiple spatial smoothness levels of ancillary continuous raster data 

sets. Overall, use of urban buffer sizes between 1 - 5 km, and rural buffers between 1 - 10 

km resulted in unbiased effect estimates across surfaces with moderate to high spatial 

autocorrelation (ρ ≥ 0.5). Under surfaces of low spatial autocorrelation, no neighborhood 

combinations yielded unbiased effect size estimates.
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Figure 5. 
Malaria Atlas Project parasite prevalence data used in subsequent analyses. Data provided in 

this raster file pertained to parasite prevalence throughout the study area, with cell values 

corresponding to probabilities between zero and one. Prevalence ranged from 0 (white) to 

0.60 (green), with the color scheme of orange to yellow representing prevalence values 

ranging approximately between 0.20 to 0.40.
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Figure 6. 
Circular buffer sizes associated with nonsignficant bias in effect estimates due to point 

displacement across multiple misclassification levels for ancillary categorical raster data 

sets. When misclassification rates are less than 20%, use of urban buffer sizes between 1 and 

5 km, and rural buffer sizes at or exceeding 5 km resulted in unbiased effect estimates; 

however when rate of misclassification is greater than 20%, investigators should either 

refrain from conducting analyses in which data from such surfaces is integrated with DHS 

data, or should consider more coarse spatial processes when defining covariates of interest.
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Figure 7. 
LP DAAC Land Cover data used in subsequent analyses. (A) The original raster file was 

reclassified to include seven categories of land cover types ranging in values from 0 to 6: 

water, forest, woody savanna, savanna, cropland, urban, and other. (B) Cropland cover 

(green) accounted for roughly 50% of all land cover in Uganda with this dataset.
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Table 3

Overview of general guidelines for neighborhood definitions for studies linking DHS GPS data to ancillary 

raster data.

Raster Type
Considerations

Recommendations
Surface Characteristics Covariate Spatial Scale

Continuous

ρ ≤ 0.05 Point-level Not recommended

ρ > 0.05 Unbiased

ρ ≤ 0.05 Neighborhood-level: Not recommended†

ρ > 0.05 Urban: 2 km, Rural: 5 km Urban: 1-5 km, Rural: 1-10 km

Categorical

Misclassification Rate ≥ 20% Point-level Not recommended

Misclassification Rate < 20% Not recommended

Misclassification Rate ≥ 20% Neighborhood-level: Not recommended†

Misclassification Rate < 20% Urban: 2 km, Rural: 5 km Urban: 1-5 km, Rural: 5-10 km

†
require smoother surface and/or change in scale
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