Skip to main content
. 2018 Jun 8;4(6):eaao5323. doi: 10.1126/sciadv.aao5323

Fig. 2. Mechanism of droplet collection on a cylindrical wire.

Fig. 2

(A) Schematic of simplified experimental setup and droplet trajectories. (B) Schematic of the acceleration phase undergone by droplets. The electric field, the initial and terminal velocities, as well as the forces acting on a droplet are shown. (C) Added velocity as a function of V2. A linear fit of the data (R2 = 0.94) gives a slope of 0.006 m/s per kV2. The gray area is where the voltage is not high enough to induce corona discharge. The error bars reflect the SD over four measurements. (D) Schematic of the cross section of the collection phase near the cylinder. Streamlines, field lines, and trajectories of the droplets are shown. (E) Nondimensional collection area as a function of V2 for four different wind speeds. The gray area is where there is no corona discharge.