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ABSTRACT
Expressed by cancer stem cells of various epithelial cell origins, CD133 is an attractive therapeutic target
for cancers. Autologous chimeric antigen receptor-modified T-cell directed CD133 (CART-133) was first
tested in this trial. The anti-tumor specificity and the postulated toxicities of CART-133 were first assessed.
Then, we conducted a phase I clinical study in which patients with advanced and CD133-positive tumors
received CART-133 cell-infusion. We enrolled 23 patients (14 with hepatocellular carcinoma [HCC], 7 with
pancreatic carcinomas, and 2 with colorectal carcinomas). The 8 initially enrolled patients with HCC were
treated by a CART-133 cell dose escalation scheme (0.05–2 £ 106/kg). The higher CAR-copy numbers and
its reverse relationship with the count of CD133C cells in peripheral blood led to the determination of an
acceptable cell dose is 0.5–2 £ 106/kg and reinfusion cycle in 23 patients. The primary toxicity is a
decrease in hemoglobin/platelet (� grade 3) that is self-recovered within 1 week. Of 23 patients, three
achieved partial remission, and 14 achieved stable disease. The 3-month disease control rate was 65.2%,
and the median progression-free survival was 5 months. Repeated cell infusions seemed to provide a
longer period of disease stability, especially in patients who achieved tumor reduction after the first cell-
infusion. 21 out of 23 patients had not developed detectable de novo lesions during this term. Analysis of
biopsied tissues by immunohistochemistry showed CD133C cells were eliminated after CART-133
infusions. This trial showed the feasibility, controllable toxicities, and effective activity of CART-133 transfer
for treating patients with CD133-postive and late-stage metastasis malignancies.
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Introduction

In recent years, chimeric antigen receptor-specific T (CAR-T)
cells have emerged as a tool for the clinical treatment of cancers.
T cells modified by CAR have a potent cellular effector mecha-
nism, called HLA-independent recognition, to recognize and kill
tumor cells expressing the corresponding antigen.1 Especially in
B cell acute lymphoblastic leukemia (B-ALL), the target CD19-
modified CAR-T cell therapy achieved a 74% to 90% complete
remission rate.2–6 CAR-T cells targeting CD19 or CD20 have also
shown encouraging antitumor activity in relapsed or refractory
B-cell lymphomas.6,7 In solid tumors, epidermal growth factor
receptor (EGFR), human epidermal growth factor receptor 2, dis-
ialoganglioside 2, and mesothelin and interleukin-13 Ra2 are cur-
rent targets of CAR-T cells. Although the strategy for the use of
CAR-T cells has been shown to be safe and effective in the treat-
ment of B-ALL it has not yet been shown same effective for solid
tumors as for hematologic malignancies.8–11

Hepatocellular carcinoma (HCC) is a leading cause of cancer-
related morbidity and mortality. Despite evaluation of many
chemotherapy and targeted therapy agents, the only proven
treatments for advanced disease are sorafenib, regorafenib, and

lenvatinib, and overall survival benefits are modest.12,13 Addi-
tionally, liver metastases may escape immune surveillance due
to the immunosuppressive nature of the intrahepatic space,11,14

and once the tumor metastasizes to the liver, a poor prognosis is
suggested. China also has a relatively high incidence of liver can-
cer. Clinical trials being conducted in China are evaluating MG7
and EpCAM antigen-targeted CAR-T cells in liver cancer.15

CD133 is a pentaspan transmembrane glycoprotein that is
overexpressed in various solid tumors. CD133 was found here to
be highly expressed in 50% of case of HCC, pancreatic cancer, gas-
tric cancer, and intrahepatic cholangiocarcinomas.16,17 Especially
for HCC, high CD133 expression in HCC cells corresponds with
higher stage tumors, and indicating a poor prognosis for most
patients.18,19 Moreover, CD133 is a marker of cancer stem cells
(CSCs) and endothelial progenitor cells (EPCs) that had been veri-
fied to participate in tumor metastasis and recurrence.20,21 These
characteristics make CD133 a reasonable target for immunother-
apy for patients with advanced CD133-postive tumors.

In this study, we have developed a CD133-specific CAR-modi-
fied T cell, termed CART-133. This CAR T eliminates CD133-
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expressing tumors in vitro and in a xenograft tumor model. Then,
we are conducting a clinical trial to assess the antimalignancy effi-
cacy, feasibility, and toxicity of CART-133 cells in patients with
advanced HCC or other malignancies with liver metastases, and
no serious adverse events were observed.

Methods

Patients

This study was an open-label and single-arm phase I trial (Clini-
calTrials.gov identifier: NCT02541370) that was approved by the
Institutional Review Board at the Chinese PLA General Hospital.
Adult patients (aged 18–70 years) were eligible for inclusion if
they had a diagnosis of progressive disease (PD) of CD133-posi-
tive HCC or solid malignant tumor with multiple metastases
based on Response Evaluation Criteria in Solid Tumors version
1.1 (RECIST 1.1) after receiving at least two previous systemic
therapies. Primary exclusion criteria were severe organ dysfunc-
tion, a history of or active systemic autoimmune/immunodefi-
ciency disease, and a treatment history of immunosuppressive
agents or glucocorticoids within amonth of the study. All patients
provided written informed consent before enrolling in the study.

Generation and transduction of CART-133 cells

(1) Generation of lentiviral.
CAR.133 containing anti-CD133 scFv derived from
HW350341.1, human CD137 and CD3z signaling domains

(Fig. 1A). The CAR construct was verified by DNA sequencing.
A pseudotyped, clinical-grade lentiviral vector supernatant was
produced by standard transient transfection as McGinley et al.
described. According to the manufacturer’s instructions, Lipo-
fectamine 3000 transfection reagent (Invitrogen, USA), pWPT-
anti-CD133 CAR plasmid, ps-PAX2 packaging plasmid, and
pMD2.G envelope plasmid were transfected into 293 T cells.
The lentiviral supernatants were collected and stored at ¡80�C.
(2) Generation of CART-133 Cells.
CART-133 cells were generated as previously described.7,22–

24 Briefly, PBMCs from the 80-100 ml fresh blood were directly
suspended in the GT-T551 medium (Takara, Japan) with the
anti-CD3 mAb (500 ng/mL) and IL-2 (interleukin-2) (300 U/
mL) (Peprotech, USA). Lentivirus-mediated CAR transduction
was performed on day 3 of cell culture in six-well plates pre-
coated with a recombinant fibronectin fragment. After trans-
duction, the cells were expanded ex vivo in the presence of IL-2
added three times weekly until the specified cell dose achieved.

Study description and clinical response criteria

All patients had imaging with computed tomography (CT),
magnetic resonance imaging (MRI), and/or positron emission
tomography to assess overall disease burden before CART-133
cell infusion. Peripheral blood (PB) samples were obtained
before CART-133 cell infusion and at predetermined time
points after infusion to evaluate the activity of CART-133 cells
and toxicity. In the initial phase of the study, patients1 to 8

Figure 1. Treatment plan and treatment protocol. (A) Schematic representation of the CAR-133-CD137z chimeric T-cell receptor cDNA plasmid, not to scale. (B) Consort
flow diagram of the clinical trial. (C) One standard cycle of CART-133 treatment procedure. CART-133 treatment for non-HCC patients included a chemotherapy pre-regi-
men (red dashed line).
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were enrolled in doses escalation scheme (Fig. 1B). HCC
patients were not given conditioning treatment before cell infu-
sion due to liver dysfunction and non-HCC patients were con-
ditioned with cyclophosphamide (30 mg/kg) and nab-
paclitaxel (150 mg/m2) conditioning treatment. Protocol
details are shown in the study flow chart (Fig. 1C). Patients
were eligible to receive an additional cell treatment cycle if they
could tolerate the toxicity and had a clinical benefit. The second
treatment cycle was performed at least 4 weeks after the first
infusion. All patients were recruited to receive CART-133 cell
therapy and to undergo follow-up between June 15, 2015, and
June 30, 2017.

Clinical response was evaluated by using contrast-
enhanced computed tomography (CT) or/and magnetic res-
onance imaging (MRI) and performed 1 month after the
cell infusion. The clinical responses were defined according
to Response Evaluation Criteria in RECIST 1.1 and
immune-related response criteria.25 Adverse events were
documented and graded based on the Common Terminol-
ogy Criteria for Adverse Events version 4.0 (CTCAE 4.0).
Cytokines release syndrome (CRS) graded and managed
based on a previous report from Lee et al.26 Dose-limiting
toxicity (DLT) was defined as any grade 3 or above toxicity
was considered possibly or likely related to CART-133 cells.
The following toxicities were excluded from DLT: tumor
lysis syndrome and liver dysfunction resolved to below
grade 2 within 2 weeks of onset; infusion-related toxicities
(within 24 hours); grade 3 diarrhea, nausea, and anorexia-
that that would be resolved to grade 2 within 2 weeks;
grade 3 CRS that would be resolved within 1 week; tran-
sient increase of grade 3 liver enzymes (<72 hours); and
grade 3 fever lasting 1 week or less.

Flow cytometry analysis and cell sorting

Evaluation of CAR expression was performed by staining
with a goat anti-mouse Fab antibody (Jackson ImmunoRe-
search, USA). In addition, the following anti-human
antibodies were also used in this study: CD133 (phycoery-
thrin, PE), CD3 (chlorophyll protein complex PerCP), CD4
(fluorescein isothiocyanate, FITC), CD8-PE, CD45RO (allo-
phycocyanin, APC), CD56-APC, CD62 L-PE, and CCR7-
PE-Cy7 were purchased from Becton Dickinson.
Isotype-matched control mAbs were applied in all the pro-
cedures. FACS data were analyzed by a FACS Calibur flow
cytometer (BD Biosciences) and FlowJo software (Version
10.0.7, FlowJo, Ashland, OR).

Quantitative real-time PCR

Real-time quantitative polymerase chain reaction (Q-PCR) was
used to assess the level of the CAR fusion genes according to a
previously described protocol.7 A 153-bp (base pair) fragment
containing portions of the CD8 a chain and adjacent CD137
chain was amplified using forward primer 50-
GGTCCTTCTCCTGTCACTGGTT-30 and reverse primer 50-
TCTTCTTCTTCTGG AAATCGGCAG-30to detect the CAR
gene; amplification of b-actin was used as an internal control
and for normalization of DNA quantities. Q-PCR was

performed using SYBR Green Master Mix (Toyobo, Japan) and
run on an ABI prism 7500 sequence detection system (Applied
Biosystems). A 7-point standard curve that consisted of 100 to
108 copies/mL plasmid DNA containing the CAR gene was
prepared.

The expression of the CD133 gene in PBMC from
patients was detected by Q-PCR. Total RNA was isolated
from peripheral blood using Trizol reagent (Takara, Japan)
and reverse transcribed into cDNA using the cDNA Synthe-
sis Kit (Takara, Japan) according to the manufacturer’s pro-
tocol. The following primers (forward and reverse primers)
were used: CD133 (50-GGCAACAGCGATCAAGGAG-30
and 50-GATGGATGCACCAAGCACAG-30) and glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) (50-
GTGGAGTCCACTGGCGTCTT-30, and 50-GTGCAG-
GAGGCATTGCTGAT-30). The relative fold change in
expression was calculated by normalizing against GAPDH
to adjust for loading variation.

Cytokine measurements

Serum IL-2, IL-6, IL-8, IL-10, IFN-g, TNF-a levels were batch
analyzed using a BD Biosciences microbead sandwich immu-
noassay according to the manufacturer’s instructions. Briefly,
analyte concentration was determined using a standard curve
prepared with each assay.

Statistical analysis

The results are shown as the mean § standard error of the
mean (SEM) of triplicate determinants (wells). Data were
plotted using GraphPad Prism version 6.0. Two-way analy-
sis of variance (ANOVA) was used to determine the
significance of the differences between the means in all
experiments. The survival curve and progression-free sur-
vival (PFS) were determined by the Kaplan-Meier method.
P value < 0.05 was considered to be statistically significant.
Detailed descriptions of statistical analyses are provided in
Supplement Methods.

Results

CART-133 exhibits enhanced antitumor activity against
CD133C cell line

CART-133 cells used for in vitro experiments and animal mod-
els were generated from three healthy donors. Mean transfec-
tion efficiencies of 34.22% § 4.00% and 32.95% § 4.76% were
verified in the final CART-133 and mock T-cell populations,
respectively (Supplement Fig. 1). Six kinds of tumor-cell lines
(SW1990, HT29, DLD1, SW480, Hep3B, and LOVO) were
divided into three groups (high, medium, and negative expres-
sion of CD133). CART-133 cells showed remarkable lysis abil-
ity and produced higher cytokines than to mock and NT (non-
transduced T) cells against CD133high/mediumC cells but not
CD133¡ cells after co-culture for 8 hours (Supplement Fig. 2).
The subcutaneous xenotransplanted tumor model of CD133C

cells was established in BALB/c nude mice. As shown in Sup-
plement Fig. 3, tumor growth was significantly inhibited and
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the high level of CAR-gene copy in tumor tissue was detected in
the CART-133 cell group compared to other groups. (p < 0.05)

Patient characteristics

Twenty-three patients were enrolled in this study. The clinical and
disease-specific characteristics of patients are listed in Table 1.
Their median age was 56 years (range, 36–66 years). Fourteen
patients had received a diagnosis of advanced HCC, 7 patents had
advanced pancreatic cancer, and the other 2 patients had advanced
colorectal cancer. CD133 positivity was confirmed by immuno-
histo- chemistry, as shown in Supplement Table 1. All patients
had refractory/recurrent metastatic advanced disease and had
experienced treatment failure with two or more conventional regi-
mens. Twenty-two patients had stage IV carcinoma. Twelve
patients had their primary lesion removed by surgery and

presented with metastasis primarily in the lymph node, liver, and
a wide range of anatomic sites. In HCC patients, 12 had sorafenib
resistance, 10 had bulky disease burdens (lesion diameter >

10 cm), and 9 had portal vein tumor thrombus.

Generation and characterization of CART-133 cells

CART-133 cells were successfully generated from each patient.
A mean of 95.254 §7.286% of the infused cells were CD3C cells
principally composed of CD8C subset (62.906§18.834%). The
transduction efficiency ranged from 11.23% to 56.47%.
Approximately 26.425% §14.395% of the total cell population
was Tcm (central memory cells) (CD3C/CD45ROC/CD62 LC/
CCR7C; range: 6.34%–63.48%). The detailed data of infused
cells for each patient are summarized in Supplement Table S2
and Fig. 4.

Figure 2. CART-133 cell dose escalation. (A) Dose group and CART-133 infusion cell dose pattern in all patients. (B) Hemoglobin (Hgb), reticulocyte, CD133C cells and
CAR-gene copy numbers in PB were detected before and at serial time points after CART-133 cell infusion in each patient from every cohort. (C) Tumor biomarkers in
serum from each patient were detected before and at serial time points after CART-133 cell infusion. The blue dashed line on the plots is the normal range of each tumor
biomarker. Red represents the increase, and green represents the decrease. N D cell infusion cycle; nD case number.
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CART-133 cell dose escalation scheme

The 8 initially enrolled patients were involved in dose-escala-
tion scheme. Patients 1 to 3 in cohort 1 received CART-133
cells for a cell dose range of 0.05-0.15 £ 106/kg (Fig. 2).
Although no obvious adverse reactions occurred after CART-
133 cell infusion for up to 1 month, all patients had no obvious
decrease in CD133 cells and an increase in CAR-gene copy
numbers in PB; the results of cytokines and tumor markers also
had no distinct fluctuations (Fig. 2). Therefore, the dose of
cohort 1 was closed because it was noneffective, and then the
treatment dose of CART-133 cells was then amended in subse-
quent cohorts. Three patients in cohort 1 and patient 4 were eli-
gible to receive doses of CART-133 cells in cohort 2
(0.5-1.0 £ 106/kg). After cell infusion, all patients experienced
mild (� Grade 2) hematologic toxicities and self-recovered
within 1 week. In addition, increased CAR-gene copy number
and reduced CD133C cells in PB occurred in all four patients
after cell infusion; two kinds of tumor markers were decreased
in patients 3 and 4 (Fig. 2). Based on cohort 2’s effective clinical
immune response and tolerated/recovery toxicities, the CART-
133 cell dose was increased to 1.0-2.0 £ 106/kg for patients 5 to

8 in cohort 3. Similar toxicities and effective activity were all
observed in cohort 3 (Fig. 2). No DLT was observed in cohorts
2 and 3. These results determined the acceptable CART-133
cell dose was 0.5 to 2 £ 106/kg, which was subsequently used in
the additional 15 patients. All further analyses started from the
completed effective dose (excluding cohort-1) in this study.

Administration and safety of CART-133 cells

In this trial, 3 patients received two cell cycles, and 9 patients
received three to four cycles (Table 2 and Fig. 2A). Patients
received a mean of 1.43 £ 106/kg CAR-positive T-cells (range,
0.5-2.0 £ 106/kg) in total during the infusion. All toxicities
except infusion-associated toxicities are listed in Table 2 and
Supplement Table S3. Nearly all the patients experienced
reduction of hemoglobin, lymphocytes, and thrombocytes.
Hematologic toxicities generally occurred 3 to 5 days after cell-
infusion and self-recovered within 1 week. All the non-HCC
patients experienced grade 2–4 lymphopenia whereas all HCC
patients had less than grade 2. In particular, grade 3 adverse
event (AE) that lasted 3 weeks with hyperbilirubinemia (direct

Figure 3. Safety of CART-133 cells. Cytokines from the serum of each patient’s PB, which was collected before and at serial time points after cell infusion, was measured
by fluorescence-activated cell sorting. The color shades represent different fold-changes with the baseline.
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bilirubin) was observed in three patients (4, 9, 22), who had an
obstructed of the biliary tract accompanied by a high bilirubin
background before cell infusion. Concentrations of plasma
cytokines were determined after infusion by multiplex analysis
at serial time points before and after CART-133 cell infusion
(Fig. 3). There was a significant increase in the level of tumor
necrosis factor-alpha (TNF-a), interleukin (IL)-6, and IL-8 at 1
and 2 weeks after cell infusion.

Overall clinical responses

As shown in Tables 2 and 3, the duration of responses in all
patients currently ranges from 9 to 63 weeks. Three patients
achieved PR, and 14 patients had SD for 9 weeks to 15.7 months
(Fig. 4A), and 3 patients have a continued response at the time
of this writing. HCC patients’ median PFS was 7 months,
and the median PFS was 5 months in all patients (range, 2.0-
15.2 months) (Fig. 4B). The 3-month disease control rate (DCR)
was 65.2%, and the 6-month DCR was 30.4%. Tumor remission
was observed in nine patients, and 21 patients had not developed
detectable de novo metastatic lesions during the trial. In patients
who achieved SD or PR after the first infusion, repeated cell
infusion seems to have provided a longer period of disease sta-
bility (Fig. 4C).

Special presentations: (i) Patients 6 and 12 were the only
2 patients who had a lower tumor burden (lesion diameter

<5 cm) among HCC patients. Patient 6 obtained the lon-
gest stable disease period (15.2 months), and patient 12
attained a 13.7-month ongoing SD by having three CART-
133 monotherapies. (ii) Patient 14 had stable disease for
6 months, and then his tumor rapidly progressed with a
50% increase of the primary lesion after the third cell infu-
sion. We were surprised to observe that the liver biopsy
pre- and post-treatment presented a dramatic clearance of
CD133C tumor cells and a rapid proliferation of CD133-
negative tumor cells (Fig. 5B). (iii) Patient 15 was diagnosed
as having progressed stage IV pancreatic cancer accompa-
nied by multiple metastases before cell treatment. His
tumor was significantly reduced by approximately 40% after
the first cell infusion, and he maintained this status for
4 months. A grade 2 CRS was first occurred after 1 week of
the third cell infusion. The above data are shown in the
Fig. 5C.

Bioactivity and persistent of CART-133 cells in vivo

(i) The reverse relationship between CART cells and
CD133C cells in PB was confirmed. The copy numbers
of CAR-gene in PB reached their peak (646.1§257.1/mg
gDNA) between 7 and 21 days in almost all patients.
Meanwhile, during this period, CART-133 cells resulted
in a significant decrease of the CD133C cells and CD133

Figure 4. Response of CART-133 cells. (A) Maximum reduction in target lesion size after CART-133 cell infusion. PD: progressive disease, SD: stable disease, PR: partial
remission. (B) Progression-free survival and overall survival by the Kaplan-Meier method. (C) Patients were divided into 3 groups based on response from the first cell infu-
sion. PR C SD (lesion-regression), SD (lesion-progression), PD (progressive disease). Statistical analysis of PFS differences between the 3 groups.
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Table 3. CART-133 efficacy in all patients.

HCC patients (nD 14) non-HCC patients (n D 9) All patients (n D 23)

Objective response� 1 (7%) 2 (22%) 3 (13%)
Complete response 0 0 0
Partial response 1 (7%) 2 (22%) 3 (13%)
Stable disease 9 (64%) 5 (56%) 14 (61%)
Progressive disease 4 (28%) 2 (22%) 6 (26%)
Disease control�

Disease control with stable disease for � 3 months 9 (64%) 6 (67%) 15 (65%)
Overall surviva
6 months 6 (43%) 2 (22%) 8 (35%)
Progression-free survival�

KM median 7 (0.5 to 4.3) 5 (0.2 to 1.9) 5 (0.4 to 3.0)

Unless otherwise indicated, data are n (%); months (95% CI). KM D Kaplan-Meier estimate. RECISTD Response Evaluation Criteria In Solid Tumors. �Determined by inves-
tigator assessment using RECIST version 1.1.

Figure 5. Special presentations. (A) Immunohistochemical examination (diaminobenzidine with hematoxylin counterstaining) of a punch biopsy of liver lesion from
patient 12 before and 41 weeks after the first CART-133 cell infusion. (B) Immunohistochemical examination of patient 14 before and 30 weeks after the first CART-133
cell infusion showed that tumor cells were CD133- after cell infusion. Notably, scattered CD3C and CD8C cells infiltrated the tumor after infusion, and CD34C cells signif-
icantly decreased. (C) Left: Representative tumor response images for patient 15 before and after CART-133 cell infusion, contrast-enhanced MRI scans show pancreas and
liver lesions reduced significantly 4 weeks after the first CART-133 cell infusion and remained reduced after the second cell infusion. Right: CD133C cells in PB, CAR-gene
copy numbers in PB and cytokines in serum were detected before and at serial time points after CART-133 cell infusion in patient 15.
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gene expression in PB (Fig. 6A and Supplement Fig. 5).
CAR-gene copies decreased after approximately 4 weeks
(Fig. 6B), but lower-level signals (364.4§117.8/mg
gDNA) could be detected after more than 2 months in 7
patients. For repeated cell infusion, a peak of CAR-gene
copies in PB was also observed in each cell cycle (Sup-
plement Fig. 6).

(ii) T lymphocyte cell infiltration and CD133C cell elimina-
tion in tumor lesions. Immunohistochemical staining of
biopsies from two patients at 2 weeks after the third cell
infusion demonstrated an increasing augmentation of
CD3C and CD8C T cells scattered within tumor paren-
chyma; on the contrary, CD133C cells were not detected
in tumor tissue (Fig. 5A and B).

(iii) Antitumor ability of CART-133 cells is positively corre-
lated with the cytokine secretion ability. During the
4 weeks after cell infusion, the median of increased fold
change in IFN-g, TNF-a, and IL-6 in patients who
achieved more than 8 months of PFS was significantly
higher than in the other patients (Fig. 6C).

Discussion

In this trial, our results exhibited the feasibility, safety, and effi-
cacy of CART-133 in patients with advanced relapsed/refrac-
tory and metastatic tumor. Especially for HCC patients,
previous studies in advanced HCC of first-line sorafenib have
shown response rates of 2%–3%,13,27 and if patients whose

Figure 6. Biological evidence of CART-133 cells. (A) Quantitative real-time PCR was performed on genomic DNA harvested from each patient’s PB mononuclear cells col-
lected before and at serial time points after CART-133 cell infusion, using primers specific for the transgene. CD133C cells count change from baseline in the blood after
the infusion of CART-133 cells in 21 patients. CART-133 cell infusion in cohort 1 with � is shown. (B) CAR-gene copy numbers analysis from 22 patients (except patient 11,
who refused to offer blood for detection) before and during the 1 month after cell infusion; the number of CART-133 cell infusion cycle was 41. (C) Patients were divided
into 4 groups based on time of duration of PFS.
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conditions failed to first-line treatment and sorafenib, the
median overall survival (OS) is no more than 4 months.13 It
was encouraging that HCC patients receiving CART-133 treat-
ment have demonstrated median PFS of 7 months in our study;
patients whose disease even failed to respond to first-line treate-
ment and sorafenib might achieve relatively lengthy stable dis-
ease after CART-133 repeat infusion.

“On-target, off-tumor” effects are the most common side
effects in the clinical application of CAR-T cells and result in
an autoimmune response against normal tissues that express
the targeted antigen in solid tumor therapies. CD133 was ini-
tially localized to CD34C hematopoietic stem cells, and CD133
was also confirmed on the surface of CD34C progenitor cells in
adult bone marrow, umbilical cord blood, and PB.28 Hemato-
poietic system toxicities were observed in almost all patients in
this study, including the reduction of hemoglobin, lympho-
cytes, and thrombocytes after cell infusion for 2 to 5 days. The
first reported that grade 2 to 3 bilirubinemia occurred in 3
patients with underlying illness backgrounds of either bile duct
stenosis or high levels of bilirubin in this study. Bilirubinemia
toxicity may in part be attributable to CD133, which was con-
firmed to be a marker of endothelial cells in the lesions. CART-
133 cells targeted on CD133 antigen expressed on the bile duct
endothelium in vivo after cell infusion, inducing an immune
response that resulted in the release of inflammatory factors,
increased bile duct blockage, and in turn, increased direct bili-
rubin secretion and caused severe toxicity. On the other hand,
in this study, five HCC patients had lung metastasis, 7 pancre-
atic cancer patients and 2 colorectal carcinoma patients with
lymph node metastasis in this study, and no obvious inflamma-
tory response was observed in the liver, lung, pancreatic, colo-
rectal, and multiple lymph nodes of these patients. So, this
serious “on-target, off-tumor” effect of CART-133 seems to
have occurred only in patients with bile duct stenosis. Given
that the serious toxicity was different from that in other reports,
CART-133 cell therapy must be approached with great caution
in patients with a background of bile duct stenosis.

Persistence was the most common problem in the treatment
of solid tumors by CART. We showed that CART-133 cells
may persist for a long period in vivo by repeat infusion, and
persistence of CAR-gene may achieve effective disease clear-
ance and protection from recurrence. Some studies have
reported that the second anti-CD19 CAR-T cell infusion did
not achieve amplified peak as it had in the first infusion in vivo.
One mechanism is that CD19 is still present but cannot be
detected and recognized by CART-19 cells as its cell surface
fragment containing cognate epitope is absent due to deleteri-
ous mutation and alternative splicing.29 The other probable
mechanism, a cellular immune response specific for murine
scFv epitopes, of anti-CD19 CAR formed, resulting in the fail-
ure of the second infusion.30,31 In this study, the peak of ampli-
fication of the CAR-gene can be detected after CART-133
repeat infusion, and the CD133C cells in patients’ PB was sus-
tained at low levels. These results suggest that the homologous
CD133 epitopes of the cell surface may not be prone to muta-
tions, and patients have low probability to produce a humoral
immune response to the CAR with murine scFv after receiving
repeated CART-133 infusion; repeated infusions can extend
the presence of CART-133 in vivo. In the previous study, CRS

and tumor lysis symptoms correlated with the tumor burden at
the time of the infusion of the CAR-directed T cells.32,33 On the
other hand, patients 6 and 12 were the only patients who had a
lower-load tumor among HCC patients; they both achieved
longer stable disease than other HCC patients, which suggested
the superiority of CART-133 cell treatment for HCC patients
with lower tumor burden, as was endorsed by previous
reports.3,7 These findings suggested that the CART cells were
used in patients earlier in the course of their disease or immedi-
ately after surgery help eliminate the minimal residual disease
and reduce the chance for recurrence. It is noteworthy that the
1-month DCR of non-HCC patients with a pre-treated regimen
is 100%. Many mechanisms have been proposed to underline
the enhanced in vivo antitumor activity of transferred T cells
through prior conditioning chemotherapy. Lymphocytes and
interstitial cell clearance can contribute to the expansion of
CART cells in vivo and infiltrate the solid tumor.6,34,35 There-
fore, lymphocyte clearance and reduced tumor load condition-
ing regimens are necessary under the premise that patients can
tolerate a conditioning chemotherapy regimen to enhance the
CART-133 antitumor effect in vivo.

Many studies have shown that the high level of CD133 pre-
dicts a poor prognosis in human HCC patients, is associated
with lower survival rate, and also positively correlates with a
high level of microvessel density and CD34C cells infiltration
in the tumor bed.18,19 On the other hand, CD133 is currently
the most mature surface marker on EPCs, and EPCs have been
shown to have important correlations with tumor recurrence
and distal metastasis.36,37 We found that patients seem can
achieved long-term stability without new metastasis presented.
It suggested that CART-133 cells seem to effectively affect the
occurrence of new metastasis by reducing the angiogenesis in
the tumor and the number of EPC in vivo. These results need
to be further confirmation in future clinical trials with large
samples.

Tumor antigen heterogeneity is an important factor limiting
CART’s efficacy in solid tumors. In this study, puncture speci-
mens of two patients showed that CD133C tumor cells were
cleared after cell infusion, which confirmed that CART-133 can
home to the tumor lesions and specifically kill CD133C cells in
vivo; on the other hand, tumor recurrences maintained by cells
expressed nontargeted antigen after CART-133 cells eliminate
target expression cells. Further improvement of the cure rate of
solid tumor by CART treatment and the avoidance of the rapid
growth of antigen-negative cells after antigen-positive cell
clearance is very important. In addition, T cell exhaustion is
reportedly a significant barrier that limits the antitumor
responses of engineered T cells in the setting of chronic antigen
exposure.38 Refueling the exhausted CART cells via the PD-1/
PD-L1 pathway using anti-PD-1 therapy is considered an
important approach with potential benefits in solid tumors.39,40

One case report involved a PD-1 blocking antibody was admin-
istered to a patient with refractory diffuse large B-cell lym-
phoma after CART-19 cells infusion. Following PD-1 blockade,
the patient had a clinically significant antitumor response, and
a reexpansion of CART 19 cells.41 However, massive T cells
infiltrated the tumor tissue after CART-133 cell treatment
(Fig. 5A and B); the status suggested that combined anti-PD-1
therapy may augment the efficacy of CART-133 cells in
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advanced solid tumors after CART cell infusion. In our other
case report, one patient achieved a longer period of disease
remission through treatment with CART-EGFR combined
with CART-133 and anti-PD-1.23 We are evaluating the combi-
nation treatment of PD-1 antibody checkpoint blockade and
CAR-redirected T-cell therapy in our other ongoing clinical
trial.

In conclusion, adoptive immunotherapy with anti-CD133
CAR-modified T cells is a feasible and possibly effective treat-
ment. Patients can achieve longer stable survival time or even
partial remission of disease after CART-133 cell therapy. HCC
patients with lower tumor burden or who maintain an early
stage of tumor may have a favorable clinical response even with
repeated CART-133 monotherapy. Finally, patients with biliary
obstruction should be cautious during CART-133 treatment.
These data will facilitate subsequent clinical trials to further
augment the expansion, function, and persistence of CART-
133 cells in the future.
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