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Abstract

Survival of patients undergoing hematopoietic cell transplantation (HCT) from unrelated donors 

for acute leukemia exhibits considerable variation, even after stringent genetic matching. In order 

to improve the donor selection process, we attempted to create an algorithm to quantify the 

likelihood of survival to five years after unrelated donor HCT for acute leukemia, based on the 

clinical characteristics of the donor selected. All standard clinical variables were included in the 

model, which also included average leukocyte telomere length (ATL) of the donor based on its 

association with recipient survival in severe aplastic anemia, and links to multiple malignancies. 
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We developed a multivariate classifier that assigned a Preferred or NotPreferred label to each 

prospective donor based on the survival of the recipient. In a prior analysis using a resampling 

method, recipients whose donors were labeled Preferred experienced clinically compelling better 

survival compared to donors labeled as NotPreferred by the test1. However, in a pivotal validation 

study in an independent cohort of 522 patients, the overall survival of the Preferred and 

NotPreferred donor groups was not significantly different. Although machine learning approaches 

have successfully modeled other biologic phenomena and led to accurate predictive models, our 

attempt to predict HCT outcomes after unrelated donor transplantation was not successful.
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Introduction

Allogeneic hematopoietic cell transplantation (HCT), ideally from a human leukocyte 

antigen (HLA) identical sibling, is potentially curative treatment for acute leukemia. For the 

majority of patients, an HLA identical sibling donor is not available, and alternative donor 

sources such as unrelated volunteer donors, cord blood or mismatched related donors are 

used2. HLA matching remains the most significant determinant of unrelated donor transplant 

success. While other donor selection factors such as age, sex mismatch, CMV serology, 

killer immunoglobulin receptor (KIR) status, and HLA-DP matching have been described as 

important for overall survival3, 4, 5, the prioritization and importance of these additional 

factors have proven challenging. In addition, the contributions of the planned transplant 

procedure and interactions with donor characteristics are poorly understood. Even in the 

presence of high resolution matching for 8/8 HLA alleles, a high degree of variation in 

overall survival has been observed6, 7. Various other genetic and clinical donor 

characteristics have been studied and used in clinical practice to select donors, but none has 

become the standard of care8, 9.

We report results of a clinical validation study of a novel multivariate Support Vector 

Machine (SVM) classifier intended to identify preferred unrelated donors for a given 

recipient. The classifier is a mathematical formula which accepts as input the clinical 

variables for the given patient/donor pair and assigns a label “Preferred” or “NotPreferred” 

to the pair. The concept is based on the idea that advanced modeling capabilities utilizing 

progress in machine learning technology may better integrate the complex information and 

prioritization contained in known clinical and molecular factors determining transplant 

outcomes than has been possible to date. The utility of this principle has been demonstrated 

by multiple diagnostic assays used clinically for a variety of indications, including 

transplantation10, 11, 12, 13. A novelty of our approach is that it uses mostly clinical 

covariates, as opposed to exclusively genomic data.

We hypothesized that machine learning would be able to develop an algorithm to correctly 

classify patients according to their five year survival status based on known patient, disease, 

transplant and donor characteristics, and that this algorithm would be validated on an 
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independent cohort of patients. The goal of this work is to help a physician, using all 

available information, select the best unrelated donor for their patient to maximize the 

patient’s likelihood of survival.

The model used patient, disease and transplant characteristics that might plausibly affect 

survival, as judged by the clinical experts on the team. In addition, it included the length of 

the donor telomeres, the protective caps at chromosome ends. The telomere length was 

represented by the T/S Ratio (the ratio of telomere sequence and single copy gene 

abundances, see Materials and Methods). Donor telomere length was shown to be 

significantly associated with longer survival in severe aplastic anemia patients who 

underwent allogeneic unrelated donor HCT14. Given the similarities of the treatments, as 

well as its association with multiple other malignancies15, 16, 17, 18, we hypothesized that 

telomere length may also contribute to the classification accuracy of the donor selection 

algorithm.

Preliminary work had created an earlier version of the SVM classifier algorithm and it was 

shown to be predictive of survival using a resampling method for internal validation1. In that 

study, the recipients who received transplants from donors identified by the algorithm as 

Preferred had a statistically significant 14% absolute increase in survival at five years 

compared with the standard of care (represented by all patients), estimated using cross-

validation. This model was subsequently tested in an independent set and showed a trend in 

the expected direction, but the result was not statistically significant. On the grounds of this 

prior work, the present study developed a new classifier algorithm using a large set of 

patients for training, followed by a validation study in an independent cohort.

Materials and Methods

This research was conducted using donor blood samples and donor and recipient clinical 

data provided by the Center for International Blood & Marrow Transplant Research 

(CIBMTR). The study involved 1255 patients who had received unrelated donor HCT for 

acute myelogenous or acute lymphoblastic leukemia between 2000 and 2010 with data 

reported to the CIBMTR and donor samples available through the CIBMTR Repository. The 

cohort was randomly partitioned into a training set (T, n = 733) and validation set (V, n = 

522). All patients were 8/8 HLA-A, B, C and DRB1 high resolution matched with their 

donors, and all recipients underwent myeloablative conditioning and received T replete 

grafts (no ex vivo T-cell depletion or CD34 selection). The characteristics of the recipient/

donor pairs are shown in Table 1. The telomere length assay is described in Supplementary 

Materials and Methods.

Model creation

The principal method described in this paper converts the problem of donor selection to a 

machine learning binary classification problem, where the two categories were “overall 

survival more than five years” and “death before five years”. This approach requires exact 

knowledge as to whether a patient survived to five years following transplantation. For that 

reason, subjects who were censored prior to five years were removed from the training phase 

of the algorithm, resulting in 660 samples used in training.
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Using machine learning techniques, a preliminary analysis removed from consideration the 

stem cell source (bone marrow or peripheral blood), donor ABO blood type, donor and 

recipient cytomegalovirus serostatus, and HLA-DPB1 match. Subsequently, a structured 

model was created by considering all patients in the training set along with their matrix of 

included variables (Table 2) and their primary outcomes. The resulting multivariate training 

set contained 660 samples (287 who survived and 373 who did not). The SVM classifier was 

trained by a machine learning algorithm to accurately predict which patients survived over 

five years, using the knowledge of these attributes and the outcomes. The result of the 

training is a classifier which assigns to each new, previously unseen (patient, donor) pair a 

binary label of “long-surviving” or “short-surviving”. In the rest of the manuscript, the 

donors whose recipients were long-surviving are also referred to as “Preferred”, with the 

understanding that such label applies to a donor in relation to a given patient, not in 

isolation. The process is illustrated in Fig. 1.

The details of model development are given in the Supplementary Materials. A key tool used 

to select the best model is illustrated in Fig. 2, which shows relevant performance 

characteristics of a large collection of classifiers, and allowed identification of a candidate 

algorithm for validation.

Model Assessment

Once the parameters of the model were set, any given future (recipient, donor) pair could be 

classified as Preferred or NotPreferred by comparing their score, based on their individual 

variables, with the pre-specified threshold value incorporated in the model. The primary 

validation acceptance criterion was set as statistically significantly superior five-year overall 

survival of recipients corresponding to Preferred (recipient, donor) pairs compared with 

NotPreferred, at 0.05 significance.

To further characterize the performance of the best classifiers, we plotted Kaplan-Meier 

graphs of five-year survival of training set patients that received HCT from a Preferred donor 

vs. the survival of patients who received HCT from NotPreferred donors. The graphs were 

produced using cross-validation analysis. A representative graph is shown in Fig. 3.

Exploratory model

We developed another SVM model, inspired by insights from model selection graphs and 

clinical considerations. It utilized a different trade-off between proportion of Preferred 

donors and overall survival benefit, and served hypothesis-generating purpose. Because it 

was not the primary model, and no acceptance criteria were defined for it, we termed it 

“Exploratory Model”. It used the same training data and model development approach as the 

primary model. We used the names “Poor” and “NotPoor” for the two populations defined 

by this model, to better reflect the fact that this model provides for elimination of unsuitable 

donors, as opposed to the principal model, which identifies best donors. The selected 

classifier labeled about 50% of donors "Poor", defined as those who conferred less than 10% 

survival gain compared with the other donors. The 10% threshold corresponds to a single 

HLA mismatch survival difference6, which is in practice accepted as clinically meaningful 

improvement. Thus, this classifier identifies a higher proportion of donors as poor but 
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defines treatment failure as a lower chance of survival rather than actual survival (Fig. 4). 

The clinical rationale for considering this model was the fact that it provides clinically useful 

information (i.e., Poor/NotPoor designation) for about 50% of donors, in contrast to the 

primary model that identifies only about 10% of donors as Preferred (albeit with a high 

predicted survival benefit).

Model Validation

Both the principal classifier model and the exploratory model were selected and locked 

before any validation data was received. This means that entire algorithm and corresponding 

computer code - encompassing reading of input clinical and telomere data, pre-processing, 

normalizing and producing Preferred/NotPreferred, and Poor/NotPoor donor labels - was 

recorded, documented and never subsequently changed. Per the pre-specified analytic plan, 

results are shown as KM graphs comparing survival of recipients identified as receiving 

Preferred vs. NotPreferred and Poor vs. NotPoor donors. We also report hazard ratios and 

corresponding log-rank test p-values. The survival difference is reported at five years after 

HCT.

Results

We applied the primary classification model to the validation set and obtained a Preferred or 

NotPreferred label for each (patient, donor) pair. The principal validation result, Fig. 5, 

shows Kaplan-Meier estimates of survival for the two groups. As seen, the curves trend in 

the opposite direction of expected, since the Preferred donors were associated with shorter 

survival, although this was not statistically significant.

We next wanted to check if observed differences in clinical covariates between training and 

validation sets contributed to or caused this result. As shown in Table 1, disease, disease 

status, donor sex, weight and height were significantly or near-significantly different 

between the two sets (we ignored the differences between year of transplant because a 

clinical assay has to be robust with respect to them). To assess the impact of these 

differences, we sampled 450 (patient, donor) pairs out of the validation set such that the 

resulting set has non-significant difference compared with the training (with the exception of 

donor weight, which proved practically impossible to match). Subsequently we applied the 

primary classification model to the 450-set and obtained virtually identical result (HR = 

1.12, 95% CI, 0.70–1.82) as in the full set. Our algorithmic approach, involving 

classification of (patient, donor) pairs into two survival categories based on five-year 

survival, required removal of training set patients who were censored prior to the cutoff 

time. This could potentially introduce a non-random bias in the results since the validation 

set did not have such observations removed. To assess the impact of this discrepancy, we 

analyzed results in a subset of the validation set whereby the patients censored prior to five 

years were removed, as was done in the training set. We found that the result (HR = 1.08, 

95% CI, 0.70–1.67) was very similar as in the full set.

Next, we applied the exploratory model (Poor/Not Poor) to the validation set and obtained 

the result shown in Fig. 6. In this case the curves trend in the correct direction, however the 

five-year survival benefit is relatively small and not statistically significant.
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Disease-specific analysis

We applied the primary classification model to Acute Myeloid Leukemia (AML) and ALL 

sub-populations separately (Figs. 7A and 7B) as well as to other patient subpopulations to 

try to understand why validation failed in the independent cohort. Surprisingly, the graphs 

show clearly and dramatically diverging trends for the two diseases: statistical significance 

in the correct direction for ALL patients, and statistical significance in the reverse direction 

for the AML patients.

Even though the disease-specific analyses were not part of the pre-defined validation plan, 

we were wondering if the ALL finding could form the basis of a future, ALL-specific 

clinical assay. To that end, it was important to understand the robustness of this result. To 

provide evidence in that regard, we examined if disease-specific performance of the primary 

classification model in the training set. Therefore, we applied the primary model to AML 

and ALL patients separately, in the training (cross-validation) mode. The results are shown 

in Figs. 8A and 8B and demonstrate that the discrepancy between outcomes for AML and 

ALL patients was not present in the training set, suggesting the ALL validation result was 

not robust.

Discussion

We attempted to develop a clinically relevant algorithm for identifying preferred unrelated 

donors for a given HCT recipient using all available data, including a measure of donor 

telomere length. The principal candidate classifier failed twice when applied to an 

independent validation set, according to pre-specified acceptance criteria.

We should note that the first independent validation of the model trended in the expected 

direction, but the survival benefit was not statistically significant (P = 0.09, unpublished 

data). This result suggested that the model has clinical potential and may achieve 

significance in a second validation on a larger set. However, the final results, presented in 

this article, proved otherwise.

Although the power of machine learning is its ability to aggregate complex data into 

meaningful patterns to predict future outcomes, the complexity of unrelated donor 

transplantation, combined with the lack of detailed clinical data may have proven an 

insurmountable challenge. The outcome of the model, survival to 5 years after HCT, is 

influenced by many factors that likely lose their correlation with baseline factors over time. 

It is also possible that we did not have access to the true determinants of patient outcome 

such as subtle differences in clinical care, or it may simply not be possible to create a robust 

model for long-term survival after HCT based solely on information available prior to the 

transplant.

Although the primary classifier model appeared to fit well with the training data on internal 

testing, it did not predict outcome in the independent validation set, and in one subset, even 

was associated with the opposite outcome of death before 5 years. One potential explanation 

is that the model was overfit for the testing set so that when applied to an independent data 

set, it performed worse. We also considered a hypothesis that the two cohorts were 
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materially different, even though they were contemporaneous patients allocated to the 

training and testing set randomly. However, analyses of carefully matched training/validation 

subsets found no support for this.

In subgroup analysis, it appears that the model worked better for ALL than AML in the 

validation cohort, which is surprising since the majority of patients in the training set were 

transplanted for AML. Nevertheless, it is possible that ALL and AML require different 

models although no differences were detected in the training set. Disease-specific effects 

were analyzed extensively during the test development, but we were unable to construct 

separate plausible models for the two disease types due to insufficient numbers of samples. 

For future research in this direction, it seems mandatory to consider these two conditions 

separately, although an obvious issue is sample size limitations as inclusion criteria for the 

study become stricter.

In contrast with the primary classifier, which produced highly unstable results, the 

exploratory model exhibited directionally correct predictions, although it never approached 

statistical significance. This could perhaps be due to differences in class sizes (proportions 

of Preferred/NotPoor) between the two models. Future research should take this hypothesis 

into consideration.

Other statistical approaches can be used to create predictive algorithms. We also considered 

creating the predictive algorithm by using a survival model with L2 regularization19, such as 

Cox proportional hazards or a parametric survival model. In principle, the survival models 

can be used to directly estimate five-year survival probabilities of a given recipient for 

multiple potential donors. One could then rank the donors based on this statistic. We 

considered and evaluated this approach, but the resulting rankings were essentially random 

(data not shown). This could be due to dominance of discrete (clinical) variables, or other 

reasons. These alternate approaches were not considered further.

Emerging data such as whole-genome sequencing and genotyping microarrays may make 

future attempts at donor classifier models more successful since more genetic data will be 

available for modeling. We also hypothesize that these approaches might yield additional 

clinical improvements in terms of matching donors and recipients. Recent studies found 

unexpected associations between genome variation and a variety of phenotypes15, 20. Based 

on these results, it stands to reason that there may be additional areas of the human genome 

governing the immune system response to HCT. Whole genome analysis methods such as 

sequencing and genotyping appear to be natural frameworks for pursuing this concept.

Simultaneous with this research, a telomere-length-only model of outcomes of allogeneic 

HCT was pursued by the authors of this manuscript and others. Independent validation 

showed no association between the telomere length and overall survival21. Nevertheless, in 

the machine-learning model development, telomere length was a modest contributor to 

overall accuracy, perhaps due to interactions with other covariates. Consequently, it was 

retained in the final multivariate model.

In conclusion, using a machine-learning approach, we were not able to generate a predictive 

algorithm for survival after unrelated donor transplantation using the variables available in 

Buturovic et al. Page 7

Biol Blood Marrow Transplant. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the CIBMTR database, even when supplemented with additional telomere length data 

generated specifically for this project. These results emphasize that validation studies are 

necessary to confirm provocative observations identified in risk prediction models. Planning 

for the validation study even before the training set is analyzed maximizes the chance of 

obtaining robust results that will ultimately move the field forward. Although we were 

disappointed by our final results, they do provide a definitive answer to our hypothesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Optimal unrelated donor selection has the potential to improve HCT success

• We developed a multi-variable machine learning algorithm to improve donor 

selection

• Despite promising preliminary results, the algorithm failed in pivotal study

• Translating machine learning risk predictors to clinical use is a major 

challenge

Buturovic et al. Page 11

Biol Blood Marrow Transplant. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The process used to define the set of variables and the model used for validation.
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Figure 2. 
A graph of relevant statistics for a large collection of SVM classifiers developed for the HCT 

donor selection application. Each dot represents a classifier, which labels donors as 

Preferred (or, equivalently, “POS”, for Positive) and NotPreferred (or, equivalently, “NEG”, 

for Negative). The x-axis is the proportion of donors labeled Preferred (i.e., “POS”) by the 

classifier. The y-axis is the survival benefit (difference in survival at 5 years) conferred by 

the donors, compared with survival of recipients who received HCT from NotPreferred 

donors. A clinically attractive classifier, selected for the validation, is labeled by red arrow. It 

is defined as the classifier which maximizes clinical benefit while labeling at least 10% of 

donors as Preferred.
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Figure 3. 
Survival of recipients of donors labeled Preferred and NotPreferred. The graph was 

produced using ten-fold cross- validation. HR = 0.43 (95% CI, 0.28 to 0.67), log-rank P < 

0.001.
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Figure 4. 
Survival of recipients of donors labeled Poor and NotPoor by the less stringent model, in 

ten-fold cross-validation. HR = 0.75 (95% CI, 0.61 to 0.91), log-rank P = 0.003.
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Figure 5. 
Validation KM graph for the primary classification model. HR = 1.12 (95% CI, 0.72 to 

1.72), log-rank P = 0.62.
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Figure 6. 
Exploratory model validation results at five years. HR = 1.18 (95% CI, 0.94 to 1.48), log-

rank P = 0.148.
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Figure 7A and 7B. 
Primary classification model validation results for AML and ALL patients, respectively. 

AML HR = 2.01 (95% CI, 1.22 to 3.3), log-rank P = 0.005. ALL HR = 0.42 (95% CI, 0.17 

to 1.02), log-rank P = 0.049.
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Figure 8A and 8B. 
Primary classification model training (cross-validation) results for AML and ALL patients, 

respectively. AML HR = 0.56 (95% CI, 0.28 to 1.09), log-rank P = 0.083. ALL HR = 0.37 

(95% CI, 0.21 to 0.66), log-rank P < 0.001.
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Table 1

Summary of clinical variables for training and validation sets

Variable Training N (%) Validation N (%) p-value

Number of (donor, recipient) pairs 733 522

Disease at transplant 0.07

 AML 451 (62) 347 (66)

 ALL 282 (38) 175 (34)

Recipient sex 0.99

 Male 386 (53) 275 (53)

 Female 347 (47) 247 (47)

Donor sex 0.02

 Male 475 (65) 371 (71)

 Female 258 (35) 151 (29)

Karnofsky score 0.63

 10–80 164 (22) 126 (24)

 90–100 509 (69) 359 (69)

 Unknown 60 ( 8) 37 ( 7)

Recipient age at transplant 0.38

 0–9 years 62 ( 8) 46 ( 9)

 10–19 years 109 (15) 56 (11)

 20–29 years 135 (18) 92 (18)

 30–39 years 112 (15) 83 (16)

 50–59 years 134 (18) 98 (19)

 60 years and older 28 ( 4) 18 ( 3)

 Median (range) 35 (1–67) 38 (0–68)

Donor age at donation 0.90

 10–19 years old 16 ( 2) 11 ( 2)

 20–29 years old 268 (37) 194 (37)

 30–39 years old 253 (35) 183 (35)

 40–49 years old 158 (22) 102 (20)

 50 years and older 38 ( 5) 32 ( 6)

 Median (range) 33 (19–60) 33 (18–61)

Year of transplant <0.001

 2000 29 ( 4) 25 ( 5)

 2001 23 ( 3) 27 ( 5)

 2002 33 ( 5) 35 ( 7)

 2003 45 ( 6) 40 ( 8)

 2004 78 (11) 45 ( 9)

 2005 119 (16) 61 (12)

 2006 135 (18) 72 (14)

 2007 135 (18) 71 (14)

 2008 129 (18) 54 (10)
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Variable Training N (%) Validation N (%) p-value

 2009 7 ( 1) 72 (14)

 2010 0 ( 0) 20 ( 4)

Campath given 0.86

 Yes 20 ( 3) 13 ( 2)

 No 708 (97) 504 (97)

 Unknown 5 ( 1) 5 ( 1)

ATG given 0.85

 Yes 147 (20) 107 (20)

 No 586 (80) 415 (80)

Graft type 0.16

 PBSC 423 (58) 322 (62)

 BM 310 (42) 200 (38)

Disease status 0.003

 Early 413 (56) 337 (65)

 Intermediate 320 (44) 185 (35)

Conditioning 0.43

 TBI 434 (60) 298 (58)

 No TBI 292 (40) 220 (42)

Donor race / ethnicity 0.17

 Caucasian, non-Hispanic 621 (85) 458 (88)

 African-American, non-Hispanic 7 (1) 11 (2)

 Asian, non-Hispanic 12 (2) 6 (1)

 Native American, non-Hispanic 9 ( 1) 9 (2)

 Hispanic, Caucasian 12 ( 2) 8 (2)

 Hispanic, race unknown 25 ( 3) 11 (2)

 Other or unknown 47 ( 6) 19 (4)

Recipient race / ethnicity 0.66

 Caucasian, non-Hispanic 639 (87) 464 (89)

 African-American, non-Hispanic 10 ( 1) 11 (2)

 Asian, non-Hispanic 12 ( 2) 4 (1)

 Native American, non-Hispanic 1 (<1) 2 (<1)

 Hispanic, Caucasian 43 (6) 25 (5)

 Hispanic, race unknown 4 ( 1) 1 (<1)

 Other or unknown 24 ( 3) 15 ( 3)

Donor T/S Ratio 0.49

 Unknown 2 (<1) 0 (<1)

 1.0–1.1 154 (21) 135 (26)

 1.1–1.2 98 (13) 83 (16)

 1.2–1.3 69 ( 9) 44 ( 8)

 1.3–1.4 44 ( 6) 26 ( 5)

 1.4–1.5 28 ( 4) 15 ( 3)

 1.5–2 30 ( 4) 24 ( 5)
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Variable Training N (%) Validation N (%) p-value

 >2 4 ( 1) 3 (10)

Donor height 0.07

 Unknown 88 (12) 82 (16)

 100–160 36 (5) 23 ( 4)

 160–170 147 (20) 88 (17)

 170–180 222 (30) 150 (29)

 180–190 192 (26) 153 (29)

 >190 48 (7) 20 ( 4)

Donor weight <0.001

 Unknown 2 (<1) 82 (16)

 25–50 10 (1) 2 (<1)

 50–60 59 (8) 26 ( 5)

 60–70 97 (13) 52 (10)

 70–80 140 (19) 93 (18)

 80–90 150 (20) 111 (21)

 90–100 142 (19) 0 (<1)

 >100 133 (18) 70 (13)

Recipient ABO blood type 0.82

 Unknown 8 (1) 3 ( 1)

 A Rh+ 253 (35) 174 (33)

 B Rh+ 72 (10) 46 ( 9)

 AB Rh+ 23 (3) 14 ( 3)

 O Rh+ 267 (36) 204 (39)

 A Rh− 42 (6) 28 ( 5)

 B Rh− 14 (2) 7 ( 1)

 AB Rh− 7 (1) 3 ( 1)

 O Rh− 47 ( 6) 42 (8)

GvHD prophylaxis 0.32

 Tacrolimus+MMF+others 70 (10) 68 (13)

 Tacrolimus+MTX+others ex. MMF 386 (53) 270 (52)

 Tacrolimus+others ex. MTX, 
MMF

32 ( 4) 17 ( 3)

 Tacrolimus alone 17 ( 2) 6 ( 1)

 CSA+MMF+others 15 ( 2) 12 ( 2)

 CSA+MTX+others ex. Tacrolimus, 191 (26) 132 (25)

MMF

 CSA+others ex. Tacrolimus, 
MTX,

8 ( 1) 8 ( 2)

MMF

 CSA alone 11 ( 2) 8 ( 2)

 other 3 (<1) 0 (<1)
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Table 2

List of variables used in the model.

Recipient ABO blood type

Recipient age

Disease stage

ATG (given/not given)

Campath (given/not given)

Donor height

Disease (ALL/AML)

Donor age

Donor ethnicity

Donor sex

Donor weight

Recipient ethnicity

GvHD prophylaxis

Karnofsky performance status

Recipient race

Recipient sex

TBI usage indicator

T/S_Ratio
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