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Abstract

Probabilistic reinforcement learning declines in healthy cognitive aging. While some findings 

suggest impairments are especially conspicuous in learning from rewards, resembling deficits in 

Parkinson’s disease, others also show impairments in learning from punishments. To reconcile 

these findings, we tested 252 adults from three age groups on a probabilistic reinforcement 

learning task, analyzed trial-by-trial performance with a Q-reinforcement learning model, and 

correlated both fitted model parameters and behavior to polymorphisms in dopamine-related 

genes. Analyses revealed that learning from both positive and negative feedback declines with age, 

but through different mechanisms: When learning from negative feedback, older adults were 

slower due to noisy decision-making; when learning from positive feedback, they tended to settle 

for a non-optimal solution due to an imbalance in learning from positive and negative prediction 

errors. The imbalance was associated with polymorphisms in the DARPP-32 gene and appeared to 

arise from mechanisms different from those previously attributed to Parkinson’s disease. 

Moreover, this imbalance predicted previous findings on aging using the Probabilistic Selection 

Task, which were misattributed to Parkinsonian mechanisms.
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1. Introduction

Cognitive abilities such as reasoning, perceptual speed, and memory decline in healthy 

cognitive aging (Lindenberger and Baltes, 1997; Murray et al., 2015; Salthouse, 1996), 

impairing the way people use information from previous experiences to make everyday 

decisions. Learning from probabilistic feedback, in particular, slows with age (Eppinger and 

Kray, 2011; Samanez-Larkin et al., 2014) and predicts real life debt and asset accumulation 

(Knutson et al., 2011). Yet, the mechanisms driving this age-related change remain poorly 

understood.

Probabilistic reinforcement learning occurs when unreliable “feedback” (positive, negative, 

or absent altogether), received in response to actions, informs future decision-making, and 

learning from such feedback requires approximating the value of stimulus-response 

relationships in face of environmental uncertainty. These value updates are hypothesized to 

be largely based on phasic bursts and dips in striatal dopamine levels, corresponding to 

unexpected positive and negative outcomes (“prediction errors”), respectively (see Schultz, 

2002, for extensive review).

One possible implication of this mechanism is that chronically low striatal dopamine, as 

seen in Parkinson’s disease (PD) (Lotharius and Brundin, 2002), could impair reward 

learning and facilitate punishment learning. This has been confirmed by several behavioral 

studies (Bodi et al., 2009; Frank et al., 2004; Rutledge et al., 2009). For instance, both 

unmedicated and never-medicated PD patients are impaired in learning from probabilistic 

rewards and better at learning from probabilistic punishments compared to healthy controls, 

presumably because of sustained declines in baseline striatal dopamine (Bodi et al., 2009). 

The opposite pattern emerges when these patients are put on medication that increases 

baseline levels of striatal dopamine (Bodi et al., 2009; Frank et al., 2004).

Since healthy aging is associated with striatal dopaminergic denervation and decline 

(Backman et al., 2006; Bohnen et al., 2009; Gunning-Dixon et al., 1998; van Dyck et al., 

2002; Volkow et al., 1996), some have suggested that PD might be a good model of 

accelerated age-related changes in reinforcement learning (Collier et al., 2011). Indeed, 

several studies have presented data consistent with this view (Frank and Kong, 2008; 

Kovalchik et al., 2005; Marschner et al., 2005; Mell et al., 2005; Simon et al., 2010; Wood et 

al., 2005). For example, Frank and Kong (2008) and Simon and colleagues (2005) used the 

Probabilistic Selection Task to report an age-related “negative learning bias”, indicating an 

inclination to learn more from punishment than reward. Such effects seem to suggest that 

age leads to harm-avoidant tendencies where attention during learning is given primarily to 

punishment, a finding that resembles results from PD patients using the same task (Frank et 

al., 2004).
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Nevertheless, other findings challenge this view, demonstrating significant impairments in 

both reward and punishment learning due to aging (Eppinger and Kray, 2011; Lighthall et 

al., 2013; Samanez-Larkin et al., 2014). One explanation for the inconsistencies is that 

different methodologies have been used to evaluate reinforcement learning (Frank and Kong, 

2008; Marschner et al., 2005; Mell et al., 2005; Simon et al., 2010), with some experiments 

not sufficiently differentiating learning from positive and negative reinforcement (Frank and 

Kong, 2008; Kovalchik et al., 2005; Marschner et al., 2005; Mell et al., 2005; Simon et al., 

2010; Wood et al., 2005) and others possibly using insufficient numbers of trials (Eppinger 

and Kray, 2011; Samanez-Larkin et al., 2014). Alternatively, PD may not be a good model 

for the effects of aging on probabilistic reinforcement learning. Many studies were, at least 

partly, motivated by the neurobiological evidence for age-related declines in the dopamine 

system, but may not have sufficiently considered the relative effects of other broad, and 

equally well documented, age-related cognitive changes that influence reinforcement 

learning, including deficits in memory, attention and motivation (Lindenberger and Baltes, 

1997; Murray et al., 2015; Salthouse, 1996) in addition to the complexity of the dopamine 

system itself (Karrer et al., 2017). Such changes could have confounded results, affecting the 

translatability of PD findings to reinforcement learning in aging.

To clarify the mechanisms contributing to these inconsistencies, we tested 252 adults from 

three different age groups on a well-established task (referred to here as the “Quarters” task) 

that distinguishes between learning from positive and negative reinforcement (Bodi et al., 

2009; Mattfeld et al., 2011; Moustafa et al., 2015a; Moustafa et al., 2015b; Myers et al., 

2013; Tomer et al., 2014). We analyzed both average performance and distributions of scores 

across individuals to identify different learning patterns. Then, we used a Q-reinforcement 

learning model to fit four interpretable learning parameters to the individual data of each 

participant and thus identify age-related cognitive changes that could explain our behavioral 

results. The same parameters were then used in a simulation of the Probabilistic Selection 

Task to explain the “negative learning bias” found in previous work (Frank et al., 2004; 

Rutledge et al., 2009), adding additional validity to the model we used. Finally, to clarify the 

potential effects of dopamine on our results, we tested the relationship between the model 

parameters and participants’ polymorphisms in four dopamine-related genes. Using this 

approach, we show that age affects positive and negative reinforcement learning through at 

least two different mechanisms, and these mechanisms might explain previous 

inconsistencies in the literature.

2. Materials and Methods

2.1 Participants

Ninety-eight younger (M = 20.0, SD = 1.5, range: 18–25 years), 94 middle-age (M = 62.5, 

SD = 4.6, range: 53–69 years), and 60 older (M = 77.1, SD = 5.3, range: 70–89 years) adults 

were recruited between January 2012 and May 2015 and compensated $15 per hour for their 

participation. Younger adults were recruited via fliers posted on Rutgers University—

Newark and St. Olaf College campuses. Middle-aged and older age adults were recruited 

through advertisements posted at the City Hall and Jewish Community Center in Nutley, NJ 

and at churches and senior centers in Newark and the greater Newark area.
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All participants gave written informed consent and underwent screening, consisting of the 

Dvorine colorblindness test, BDI-II Questionnaire, and a Health Screening form. 

Participants who failed the color discrimination test or had neurological disorders diagnosed 

by a physician such as Parkinson’s Disease (PD), Huntington’s Disease, and depression, or 

who indicated suicidal thoughts or wishes were not enrolled in the study. In addition to the 

computer task, a battery of neuropsychological assessments was also administered, which 

included the Mini Mental State Examination (MMSE), Frontal Assessment Battery (FAB), 

WAIS IV Digit Span, and Logical Memory I & II. Both the demographic and 

neuropsychological assessment data for our participants can be found in Table S1.

2.2 Experimental Task (“Quarters”)

On each trial, participants were presented with one of four abstract images, described as 

cards that can predict the weather (Fig. 1). Through trial and error, their goal was to 

correctly identify whether the image predicted Rain or Sun. After each response, participants 

either received or did not receive feedback, depending on the trial’s condition and accuracy 

of the response, before the next trial began. Trials belonged to one of two types of 

conditions: “positive feedback,” in which correct responses yield positive feedback and 

incorrect responses no feedback, and “negative feedback,” in which correct responses yield 

no feedback and incorrect responses negative feedback. Hence, the value of receiving no 

feedback was ambiguous until participants formed stimulus-response relationships.

Feedback was reliable on 90% of trials. For example, in the positive feedback condition, for 

a particular stimulus, one response was rewarded on 90% of trials and yielded no feedback 

on the other 10%, whereas the other response was rewarded on 10% of trials and yielded no 

feedback on the other 90%. The task was run for 160 trials, comprised of 4 blocks of 40 

trials. Within each block, stimulus presentation order was randomized, but always consisted 

of exactly 10 trials for each stimulus, out of which exactly 9 trials were reliable, making the 

distribution of trial type (i.e. positive feedback or negative feedback condition) uniform 

across blocks. Within each feedback condition, the optimal response for one stimulus was 

“Rain” and the other “Sun”, and these probabilistic stimulus-response contingencies were 

held constant for the duration of the 160 trials. Participants were not made aware of any of 

this structuring of trials, and they were allowed to complete the task at a pace they were 

comfortable with.

2.3 Procedure

The task was programmed using the SuperCard 4.6 programming language and run in full 

screen mode on a 13” MacBook computer. Participants were seated in an isolated testing 

room at a comfortable viewing distance from the screen. Before beginning the task, they 

received thorough instruction and were advised of the probabilistic nature of the task, that 

even after learning the appropriate stimulus-response associations, responses would not 

always yield the expected outcome. Participants were then given 4 sample trials using 2 

stimuli (different from the 4 stimuli used in the task), demonstrating the possible outcomes 

in the task and introducing a running total of points on the bottom right hand of the screen, 

which was initialized to 0 for the actual task (Fig. 1). Responses were given by pressing one 

of two keys on the laptop computer, clearly marked as “SUN” and “RAIN;” all other keys 
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were covered with a cardboard mask. After a response was given, the answer choice was 

circled in blue on the screen and feedback (if any) was given. If the response yielded 

negative feedback, a red frowning face appeared and red text was displayed to indicate a 

deduction of 25 points from the running total. If the response yielded positive feedback, a 

green smiling face appeared and green text was displayed to indicate an addition of 25 

points to the running total. If the response yielded no feedback, nothing additional was 

displayed. All feedback, including “no feedback”, remained for 2 seconds before the next 

stimulus was presented.

2.4 Behavioral Data Analysis

For statistical analyses, “optimal” answers for each image were defined as the response that 

predominantly yielded the feedback with the higher value for that image (i.e. choices that led 

to reward on 90% of trials in the positive feedback condition and those that led to no 

feedback on 90% of trials for the negative feedback condition). Mean optimal accuracy 

scores were calculated for each participant in each of the 4 blocks of each feedback 

condition. Those scores were then subject to a repeated measures Analysis of Variance 

(ANOVA) with Age as a between-subjects factor and Block and Feedback as within-subject 

factors. Details of these analysis and follow up analyses are described in Results. All 

statistical analysis was performed using the SPSS 20 software.

2.5 Model-Based Data Analysis

Behavioral results were analyzed using a Q-learning reinforcement model, which has been 

established as a sound model of behavior in similar tasks used to study reinforcement 

learning in humans (Frank et al., 2007; Moustafa et al., 2015b; Myers et al., 2013). The 

model assumes that participants represent and maintain an expected value for each response 

(r) given a stimulus (s) and that they update these expected values after getting feedback on 

each trial. These expected outcome values, denoted by Q[r,s], were initialized to 0 for the 

first trial (of the 160). For each new trial, t+1, after a response was made to a stimulus and 

feedback was given, the value was updated using the following Q-learning rule:

Q[r, s]t + 1 = Q[r, s]t + α · (R − Q[r, s]t) (2)

where t denotes the trial number, R the reinforcement value based on feedback given at that 

trial, and α the learning rate. The learning rate was dependent on the prediction error term: 

R − Q[r, s]: if the prediction error was positive, a “positive prediction error learning rate” (α
+) was used, and if it was negative, a “negative prediction error learning rate” was used (α−). 

The feedback value, R, was set to +1 for reward and −1 for punishment. For no-feedback, R 
was set to R0, a free parameter for each participant. On each trial, the probability of 

choosing one of the categories, e.g. Pr(Rain), for a given stimulus, s, was calculated based 

on the expectancy values for each of the two possible responses to that stimulus using a 

softmax function:

Sojitra et al. Page 5

Neurobiol Aging. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pr(Rain) = eQ[Rain, s]/β

eQ[Rain, s]/β + eQ[Sun, s]/β (3)

Here, β is the “noise” parameter of the decision, quantifying the tendency to choose the 

response with the higher expected value (the higher the β, the lower the tendency). Thus, this 

noise value reflects to what degree information gained about the expected values can be 

utilized in producing appropriate responses. It is also sometimes interpreted as capturing an 

exploration mechanism (Frank et al., 2007; Moustafa et al., 2015a).

Model based analyses were conducted by fitting four free parameters to each participant’s 

trial-to-trial stimulus-response sequence: positive prediction error learning rate, negative 

prediction error learning rate, noise in the decision process, and the reinforcement value 

attributed to no feedback (R0). The last parameter represents the individual tendency to view 

the absence of feedback as rewarding or not (in contrast to positive and negative feedback, 

which, as mentioned above, supplied fixed positive and negative reinforcement values, 

respectively). Fitting was conducted using a maximum likelihood approach: for a given 

participant and a given set of these four parameter values, the log likelihood of each 

response for each trial was computed while updating the expected values. The sum of these 

log likelihoods over all trials represented the log likelihood estimate of this set of 

parameters:

LLE = ∑
t = 1

160
log(Pr(r, t)) (4)

We used grid search to fit the parameters, with α+, α−, β each ranging between [0, 1] in 

steps of 0.05, and R0 ranging between [−1, 1] in steps of 0.1 (following Myers et al., 2013). 

For each participant, the set of parameters yielding the maximum log likelihood across all 

160 trials was chosen as the representative reinforcement learning profile of that participant 

(similar results were achieved using finer grid searches and when using gradient-based 

methods such as the Neldar-Mead algorithm implemented in Matlab’s fminsearch function). 

After finding the parameter profile for each participant, we analyzed the difference in the 

average and the distribution of those parameter values for each age group, as detailed in the 

Results section. All model-based analyses were carried out with MATLAB 2015a software.

2.6 Analysis of Probabilistic Selection Task

The Probabilistic Selection Task was modeled following the exact procedure administered to 

real participants, (Frank and Kong, 2008; Frank et al., 2004; Frank et al., 2007; Simon et al., 

2010) but using the individual learning parameters we fit to the behavioral data collected 

from our experiment. On each trial, the same Q-reinforcement model described above was 

presented with two “stimuli” and tasked with choosing the one yielding the higher amount of 

reward (or lower amount of punishment). The model chose based on the stimuli’s expected 

outcome values Q[r,s] (initialized to 0 as before) using the softmax function (Equation 3). 
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One of three possible pairs were used on each trial: For the AB pair, picking A yielded 

reward 80% of the time and punishment 20% of the time (whereas picking B yielded reward 

and punishment with the complementary frequency). Similarly, for the CD pair, reward-

punishment frequencies for C were 70–30, and for the EF pair, the frequencies for E were 

60–40. The appropriate Q[r,s] value was updated after the model’s response using Equation 

2, with rewards yielding feedback value of 1 and punishments a value of −1, consistent with 

the way we applied the Q-reinforcement learning model to our task. No neutral trials exist in 

the Probabilistic Selection Task. Training continued in blocks of 60 trials (20 trials per 

stimulus pair) and was terminated when performance exceeded a designated threshold for 

each of the pair types (65% accuracy for the AB pair, 60% for the CD pair, and 50% for the 

EF pair; see Frank and Kong, 2008 and Kovalchik et al., 2005), or after 6 blocks. We then 

extracted several performance measures corresponding to the ones regularly reported in this 

task. For training performance, “win-stay” is computed as the probability of choosing the 

same response that yielded a reward in the previous trial; “lose-shift” is computed as the 

probability of shifting responses after it yielded punishment in the previous trial. Both 

measures were calculated only for the first block (see Kovalchik et al., 2005; Simon et al, 

2010). Learning bias was computed in accordance with the “test” phase in the human 

experiments, by examining the probability of the model’s softmax choices when responding 

to novel pairs based on the Q values it reached at the end of training (with no further 

learning or feedback). ‘Choose A’ is defined as the average probability of choosing ‘A’ in 

pairs AC, AD, AE, AF. ‘Avoid B’ is defined as the average probability of not choosing ‘B’ 

in pairs BC, BD, BE, BF. The learning bias is computed as ‘Avoid B’ subtracted from 

‘Choose A’. The simulated experiment was carried out for each of our participants using 

their individual learning profile (positive and negative prediction error learning rates, and 

decision noise; R0 is not used in this task) previously fit to our Quarters task. These 

simulations were repeated 10 times and performance measures were averaged over the 10 

runs.

2.7 Analysis of Genetic Polymorphism

We genotyped DNA from 212 of 252 participants (almost all remaining samples were 

discarded because of contamination during hurricane flooding, and a couple due to 

mislabeling or participants opting out). Each participant contributed 2 milliliters of saliva 

after completing the testing battery (approximately 2 hours), as to minimize sample 

contamination from prior meals. The saliva collection itself was done using the Oragene 

Discover (OGR-500) kit (i.e. test tubes), purchased from DNA genoTek. The advertised 

median DNA yield is 110 micrograms and stability spans years at room temperature. We 

took extra precaution and refrigerated these samples below room temperature, and 

genotyped the samples within 6 months from extraction. Genotyping occurred at the 

Environmental and Occupational Health Sciences Institute at Rutgers University—New 

Brunswick, where samples were screened via routine PCR or southern blots for 

polymorphisms in four genes that are implicated in regulating dopamine at the neural and 

molecular levels: DARPP-32, COMT, DRD2 and DAT1. Following previous reports, we 

concentrated on SNPs in genes previously shown to modulate reinforcement learning (Frank 

and Fossella, 2011; Frank et al., 2009): rs907094 for DARPP-32, rs6277 for DRD2, rs4680 

for COMT, and VNTR for DAT1. SNPs of a few individuals could not be determined, and 
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several others included rare alleles or variations and were excluded from further analysis. 

The final sample included participants with either AA, AG or GG alleles in the DARPP-32, 

COMT and DRD2 SNPs (212 participants for DARPP-32, 211 participants for each of the 

other two genes), and either 10/10 tandem repeat, 9/9 tandem repeat, or 9/10 for DAT1 SNP 

(189 participants). For each gene, we grouped participants based on the frequency of one of 

the alleles (e.g., for DAT1, homozygous 9/9 was 0, heterozygous 9/10 was 0.5, and 

homozygous 10/10 was 1) so as to detect gene dose effects. These frequencies were 

correlated to behavioral and model-related parameters as discussed in Results. See 

Supplementary Information for additional notes concerning group differences in allelic 

frequencies.

3. Results

3.1 Basic Learning

Participants learned to classify four stimuli into one of two categories through probabilistic 

feedback (Fig. 2a). Two stimuli yielded rewards for correct answers, and no feedback for 

incorrect ones (“positive feedback condition”); the remaining two yielded no feedback for 

correct answers, and punishments for incorrect ones (“negative feedback condition”). No-

feedback was therefore ambiguous until stimulus-feedback associations were learned.

Mean accuracy scores for all individuals were submitted to a 3 (Age: Younger, Middle-aged, 

Older) × 2 (Feedback: Positive, Negative) × 4 (Block: 1–4) analysis of variance (ANOVA), 

with Age as a between subjects factor and Feedback and Block as within-subjects factors. 

The analysis revealed main effects of Age [F(2,249)=26.675, p<0.0005], Block 

[F(3,747)=133.489, p<0.0005], and Feedback [F(1,249) = 25.303, p<0.0005], as well as 

interactions of Block × Feedback [F(3,747)=3.305, p<0.020] and, at a trend level, Feedback 

× Block × Age [F(6,747)=1.915, p=0.076]. No other interactions were significant.

Examining each of the two feedback conditions separately (Fig. 2b), the main effects of Age 

and Block were again significant (negative feedback: [F(2,249)=39.269, p<0.0005] and 

[F(1,249)=183.1, p<0.005], respectively; positive feedback: [F(2,249)=8.482, p<0.0005] and 

[F(3,747)=37.597, p<0.0005], respectively). Bonferroni-corrected pairwise comparisons 

showed that in both conditions younger adults outperformed the middle-aged (p<0.0005, 

p=0.038 for negative and positive feedback conditions, respectively) and older adults (both 

p’s<0.0006). With negative feedback, middle-aged adults also outperformed the older adults 

(p=0.005). The Age × Block interaction approached significance only for positive feedback 

[F(6,747)=2.027, p=0.060], indicating that the three age groups may have learned at 

different rates.

To follow up on the (marginal) Age × Block interaction for positive feedback, we analyzed 

this condition separately for each age group. A one-way ANOVA showed a significant effect 

of Block in the younger, middle-aged, and older adults ([F(3, 291)=28.434, p<0.0005], [F(3, 

279)=11.550, p<0.0005], [F(3, 177)=5.409, p<0.001], respectively). Bonferroni-corrected 

pairwise comparisons between blocks showed that while learning for the younger adults 

continued from Block 1 to Block 3 (all p’s<0.05), middle-aged adults only differed 
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significantly between Block 1 and each of the rest (all p’s<0.001) and for older adults, only 

between Blocks 1 and 3 (p<0.034).

In sum, we found a strong main effect of age on reinforcement learning deficits for both 

positive and negative feedback conditions, with some weaker indication that learning in the 

positive feedback condition continuing into later blocks only for younger adults.

3.2 Cognitive Strategies

While average performance can be useful for studying group differences, it may overlook 

meaningful individual learning differences. One way to address this issue is to examine the 

distribution of accuracy scores. Fig. 2c plots the distributions of block 4 stimuli accuracy 

scores organized by Feedback and Age. For negative feedback (upper row), accuracy scores 

generally ranged between 50% (chance) and 100%, with the distribution of participants 

skewed towards the latter. This was not the case for positive feedback (Fig. 2c, lower row), 

where the majority of participants performed either near 0% or 100%. That is, some 

participants learned to avoid feedback for at least one of the positive feedback condition 

stimuli, indicating a non-optimal behavior of settling for no feedback. This striking 

difference in distributions suggests a key distinction in the way age may affect performance 

in the positive and negative feedback conditions: for negative feedback, age seems to slow 

down learning, whereas for positive feedback, age increases the likelihood of compromising 

on a non-optimal solution, opting for no feedback.

To mathematically confirm our observation for positive feedback, we attempted to 

disentangle to what degree a solution was learned in this condition (irrespective of whether it 

was optimal, i.e. learning the rewarded response, or non-optimal, i.e. learning the no-

feedback response), from the type of solution that was learned (i.e. optimal or not optimal).

To express the degree of learning, we computed the absolute value of the deviation from 

chance performance (defined as a 0.5 score), a measure that ignores whether a participant 

learned the optimal or non-optimal solution. These scores were subject to a 2-way ANOVA 

with Block and Age as the within and between-subject factors (Fig. 2d, left). The analysis 

revealed main effects of Block [F(1,249)=130.924, p<0.0005] and Age [F(2, 249)=18.131, 

p<0.0005], but no interaction [p=0.11]. Bonferroni-corrected pairwise comparisons showed 

that the older group learned to a lesser degree than each of the other two age groups (both 

p’s<0.005), but there was no difference between the middle-aged and younger adults. That 

is, performance differences between the younger and middle-aged adults were unlikely to be 

explained by the degree of learning a solution (regardless of the type of solution).

To analyze the type of solution that was learned irrespective of learning degree, we took a 

subset of the data, discarding slow- or non-learned stimuli. We defined “convergence” to a 

solution as scores that, for at least the last three blocks, remained equal or below 0.1, or 

equal or above 0.9, for the non-optimal and optimal solutions, respectively. This amounted 

to 84.2%, 78.2% and 54.2% of stimuli in the younger, middle and older groups. We then 

compared the frequencies of optimal versus non-optimal learned solution using a chi-square 

test of independence with Age (Younger, Middle-age, Older) and Solution (Optimal/Non-

optimal) as factors (Fig. 2d, right). The analysis revealed a significant effect (χ(2)=6.231, 
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p<0.05). Follow-up chi-square tests, partitioning the data to older vs. middle-age, and 

younger vs. older & middle-age combined, showed that younger adults tended to converge 

to the optimal solution more than the other age groups (χ(1)=5.933 p<0.02), but there was 

no difference between the middle-age and older groups (χ(1)=0.262, p=0.6087).

To summarize, older adults learned from positive feedback to a lesser degree than the 

remaining groups, whereas middle-age adults learned from positive feedback to 

approximately the same degree as younger participants. However, younger age adults were 

more likely to converge to the optimal solution than middle age adults, resulting in a higher 

group performance.

3.3 Reinforcement Learning Model Analysis

To identify mechanisms responsible for the differences in learning between the age groups, 

we fit four parameters to each participant’s trial-to-trial sequence according to a Q-

Reinforcement learning model (see Materials and Methods): the rate of learning from 

positive prediction errors (α+), the rate of learning from negative prediction errors (α−), the 

valence assigned to no-feedback (R0), and decision noise (β), reflecting the likelihood of 

choosing a response that doesn’t correspond to its expected value. Average values of these 

parameters for the three age groups are plotted in Fig. 3a, left1.

Four separate one-way ANOVAs of each parameter, Bonferroni-corrected for multiple 

comparisons, showed a significant difference between the groups only for the average 

decision noise [F(2, 247)=11.82, p<0.0001]. Pairwise comparisons indicated the effect 

stemmed from older adults having higher values than both the middle-aged and younger 

adults (p=0.012; p<0.0001, respectively). No other difference in parameter values reached 

significance, though α+ showed a trend (p<0.09).

We then determined how well decision noise accounts for each of the age-sensitive 

performance measures (Fig. 3b, upper row). We found that decision noise was strongly 

correlated with average scores for block 4 in the negative feedback condition (r(248) = 

−0.62, p<0.0001), as well as with the deviance from chance for block 4 in the positive 

feedback condition (r(248) = −0.76, p<0.0001; see also Fig. S1). For both measures, 

performance deteriorated as noise increased. However, noise did not distinguish optimal and 

non-optimal learning: considering only participants who reached convergence (defined 

earlier and in Fig. 2d) on at least one of the positive feedback stimuli, there was no 

difference in noise levels between participants who converged to the optimal solution on 

both stimuli (‘optimal performers’) and those who converged to the non-optimal solution on 

at least one of the stimuli (‘non-optimal performers’) (p=0.246).

To determine whether the difference in learning optimal and non-optimal solutions can be 

revealed by more in-depth model analyses, we studied the joint distribution between the 

other three model parameters (α+, α−, R0). A 3D scatter plot of these parameter values for 

all participants illustrates several clear characteristics that distinguish non-optimal 

1Two participants out of the 252 yielded a best-fit decision noise of 0 and degenerate values for all other parameters. They were 
therefore excluded from all further analyses.
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performers from the rest (Fig. 3c, left): first, almost all non-optimal- performers had at least 

one learning rate parameter (either α+, α−, or both) with a value near 0. Second, participants 

who had a low α+ tended to have a high R0 value (i.e., they evaluated no feedback as very 

positive). Third, participants that had R0 values below 0 (that is, they tended to see no 

feedback as negative) were almost never non-optimal performers.

To assess whether these patterns can characterize the three age groups, we plotted the 

projection of the 3D individual parameter values for each age group, on 2 planes: the α+ − α
−, plane (Fig. 3c, right, upper row), and the α− − R0 plane (Fig. 3c, right, lower row). 

Comparing the graphs, the degree of scatter on the α+ − α− plane tended to decrease with 

age, suggesting that a near-0 value on either axis is not only indicative of non-optimal 

performance, but also differentiates the groups. On the other hand, the tendency to treat no-

feedback as highly positive did not help distinguish the age groups further.

These qualitative observations suggest that older age may be associated with a tendency 

towards one of two different learning strategies: (1) a ‘reward-seeking’ strategy, where 

learning from negative prediction errors is highly diminished, or (2) a ‘harm-avoidant’ 

strategy where learning from positive prediction errors is diminished. Younger adults, on the 

other hand, seem to be more balanced, on average, in their positive-negative learning rates. 

To formalize this hypothesis, we introduce a new index, the ‘Learning Rate Imbalance’ 

(LRI), calculated by computing the difference between the learning rates divided by their 

sum (termed here ‘Learning Rate Disparity’; LRD) and then taking the absolute value:

LRI = abs(LRD) = (α+ − α−)
(α+ + α−)

(1)

This index ranges from 0, when the learning rates are identical, to 1, when one of the 

learning rates is infinitely larger than the other, thus capturing the relevant proximity to the 

axes in Fig. 3c.

A one-way ANOVA confirmed our qualitative observations, showing a highly significant 

difference in LRI between the age groups F(2, 247)=10.71, p<0.0001; Fig. 3a, right). 

Bonferroni-corrected pairwise comparisons showed that the younger adults had lower LRI 

than both the middle-aged and older adults (p = 0.007 and p<0.0001, respectively), but there 

was no difference between middle-aged and older adults (p=0.2158).

Next, we examined how well LRI accounts for the performance measures by repeating the 

same analysis previously conducted for decision noise (Fig. 3b, lower row). The results were 

nearly a mirror-image of the previous effects: LRI did not correlate with the deviance from 

chance on block 4 in the positive feedback condition (p=0.232), and while it did correlate 

with the average scores on block 4 of the negative feedback condition (r(248) = −0.38, 

p<0.0001), it explained far less of the variance compared to decision noise (R2=0.14 vs. 

R2=0.38). Most important, unlike decision noise, LRI significantly distinguished between 

optimal and non-optimal performers in the positive feedback condition (t(167)=6.19, 

p<0.0001).
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In summary, decision noise captured differences in overall speed of learning any solution for 

both negative and positive feedback; LRI, in contrast, distinguished individuals who 

converged to the optimal solution on the positive feedback condition from those who did not, 

but was less predictive of how quickly this convergence occurred. Since both measures 

differed between age groups, these results point to the existence of two orthogonal factors 

through which age affects learning from probabilistic feedback.

3.4 Model Reproduces Reported Age-Related Differences in the Probabilistic Selection 
Task

Using the fitted parameters, our model can explain previous findings based on the 

Probabilistic Selection Task —specifically, the widely cited “negative learning bias” used to 

support the analogy between striatal and behavioral changes in PD and those of healthy 

cognitive aging (Frank and Kong, 2008; Simon et al., 2010). In this task, participants are 

first trained to distinguish between stimuli differing in the probability of yielding reward 

versus punishment. Three different pairs are used, each with unique reward-punishment 

probabilities (e.g. 80%–20%, 70%–30%, etc.). Participants are then tested without feedback 

on novel pairings including high conflict stimuli (e.g., those that previously yielded reward 

on 80% vs. 70% of trials, or on 20% vs. 30% of trials). Results show that compared to 

younger, older adults fair worse with novel pairings of stimuli that were previously mostly 

rewarded, but similar or even better than younger adults on novel pairings of stimuli that 

were previously mostly punished.

We simulated the exact procedure of the Probabilistic Selection Task (Frank and Kong, 

2008; Frank et al., 2004; Frank et al., 2007; Simon et al., 2010), with each of our individual 

participants represented by the parameters fit to the data collected using our Quarters task 

(see Material & Methods for details). We found that the relative age-dependent “negative 

learning bias” is closely replicated in both trend and magnitude without any need for 

additional model tuning (Fig. 4a; for visual clarity, middle-aged group, whose values were in 

between the young and old in all measures, is not displayed. See Fig. S2 for full results). 

However, rather than supporting the view of aging leading to harm-avoidant tendencies, the 

bias was highly correlated to LRI, meaning that an imbalance favoring learning from either 
positive or negative prediction errors can yield a negative bias (Fig. 4b, left).

Importantly, when plotting the learning bias against the Learning Rate Disparity (Equation 1 

without taking the absolute value), we found an inverted-U shape function in which most of 

our aged participants were on the high α+ end rather than the high α− end (Fig. 4b, right; see 

also Fig. 3c). This suggests that: (1) counterintuitively, it is possible to get a “negative bias” 

in the Probabilistic Selection Task with learning that strongly favors updates from positive 

prediction errors over negative prediction errors, and (2) in contrast to previous hypotheses, 

older adults lean towards reward-seeking rather than the harm-avoidant learning pattern 

attributed to PD patients.

Thus, our results imply that the similarity of effects found in older individuals and PD 

patients using the Probabilistic Selection Task may mask the fact that the mechanisms 

contributing to these effects are almost opposite, one heavily influenced by positive 

prediction errors and the other by negative prediction errors.
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3.5 Genotype Analysis

Finally, we determined whether polymorphisms in four dopamine-related genes previously 

implicated in reinforcement learning (Frank et al., 2007), DARPP-32, COMT, DRD2 and 

DAT1, predict our behavioral and modeling results. Each individual was characterized by the 

frequency of a specific allele for each gene (see Materials & Methods), and these 

frequencies were correlated across participants to each of the nine behavioral performance 

measures and model parameters previously investigated. Significance values for each of the 

correlations are displayed in Table 1 Taking a highly conservative approach and using 

Bonferroni-correction for the 36 multiple comparisons, we found that DARPP-32 modulated 

both the overall reward accuracy and the choice of learned solution, as well as the LRI (all 

p’s<0.02 after Bonferroni correction). The more frequent the ‘A’ allele was, the higher were 

the reward accuracy and probability of choosing the optimal solution, and the lower was the 

LRI (Fig. 5). COMT was also correlated to LRI at a trend level (p<0.06). No other parameter 

was associated with any genotype.

4. Discussion

Previous studies of reinforcement learning in healthy aging reported conflicting findings. 

Some found impairments to be specific to reward learning, possibly resulting from striatal 

deficits similar to PD patients, while others reported deficits in punishment learning as well. 

By combining behavioral, genetic and modeling methods, our work confirms that age 

impairs both reward and punishment learning, but these effects stem from two very different 

mechanisms.

4.1 Age Affects Two Distinct Cognitive Processes During Reinforcement Learning

First, we discovered that a strong predictor of age-related reinforcement learning deficits, 

regardless of feedback condition, is noise in the decision-making process. Decision noise 

decreases the likelihood of responding to stimuli in accordance with accumulated 

information about the stimulus-response relationships. The higher the noise, the larger the 

required margins between values of conflicting choices to consistently make optimal 

decisions. Since accumulating larger margins requires accumulating more reinforcement, 

this amounts to slower learning. Unlike reinforcement learning rates, decision-noise is often 

understood as representing the effects of global phenomena, such as cortical changes that 

affect memory and inhibitory control, or a tendency towards exploratory behavior (Frank et 

al., 2009; Moustafa et al., 2015a). Indeed, previous studies using electrophysiological and 

imaging during reinforcement learning showed that age-dependent performance is 

modulated by both striatal and non-striatal areas (Marschner et al., 2005) and existing 

evidence shows substantial alterations to frontal regions during aging (Coffey et al., 1992; 

Raz et al., 1993; Samanez-Larkin et al., 2012). Nevertheless, because the noise parameter 

captures information about how likely a subject is to act out of line with the expected Q-

value, an alternative interpretation of this parameter is that it simply represents a poor model 

fit to the studied behavior rather than decision noise. Whether this is the case or whether the 

noise parameter actually has particular neural correlates needs to be studied in future 

experimental work combined with a comparison between several possible models.
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Second, we showed that impairments in learning from positive feedback are not a simple 

reflection of rewards having a smaller impact on evaluations of actions; rather, impairments 

are best predicted by considering the relative influences of positive and negative learning 

rates. One possible mechanism may be that similar positive and negative learning rates yield 

a non-biased accumulation of evidence regarding the reinforcement value of a stimulus, 

whereas more distinct learning rates lead to early value evaluations being over-dominated by 

either positive or negative feedback, pushing decisions into non-optimal solutions which are 

then difficult to reverse. In the case of the Probabilistic Selection Task, our simulations 

showed that either of the overly positive or negative learning rate imbalances could recover 

the so-called “negative learning bias” in reinforcement learning studies. The fact that most of 

the age-related imbalance in our data was due to higher positive compared to negative 

learning rates echoes recent findings showing older age does not affect the rate of learning 

from good news, but reduces the rate of learning from bad news (Sharot and Garret, 2016). 

Moreover, because the imbalance measure was also highly correlated to DARPP-32 allelic 

frequency, it likely reflects dopamine system changes in the striatum during aging. Indeed, 

previous work has already confirmed that learning in our task recruits different subregions of 

the striatum depending on the feedback type (Mattfeld et al., 2011), and is sensitive to 

dopamine signaling (Tomer et al., 2014). Notably, the disparity between the learning rates 

predicted performance according to an “inverted-U” function, consistent with a long-held 

view of the effects of dopamine on cognitive performance (Cools and D’Esposito, 2011; see 

also Fig. S3).

4.2 DARPP-32 and Reinforcement Learning

While we did not reproduce reported correlations between behavior and COMT, DRD2 and 

DAT1 polymorphisms, those effects are not always replicated and might be task-specific or 

limited to specific cognitive processes (Frank and Fossella, 2011). The DARPP-32 gene, in 

contrast, may be more directly involved in reinforcement learning, with multiple pieces of 

evidence suggesting it is specifically involved in reward-learning (Calabresi et al., 2000; 

Frank et al., 2009; Stipanovich et al., 2008). DARPP-32 is known to modulate synaptic 

plasticity of striatal cells and is regulated by D1 dopamine receptors. Since the D1 signaling 

pathway is often conceived as reflecting positive prediction errors, it is commonly assumed 

that DARPP-32 affects reward learning through this pathway (Cavanagh et al., 2014). 

Nevertheless, the exact process is anything but clear. There is neurobiological evidence that 

D2-receptors, often associated with negative prediction error (Kravitz, et al., 2012), 

modulate DARPP-32 as well, countering the effects of D1 receptors (Svenningsson et al., 

2004). In addition, somewhat paradoxically, it was found that increased frequency of ‘A’ 

alleles in the rs907094 SNP is associated with a positive learning bias but a smaller reward 

learning rate in a model similar to ours (Frank et al. 2007). The authors explained this 

finding as resulting from the possible benefits gained by slow accumulation of information. 

However, unlike our results, these findings were based on merging ‘AG’ heterozygotes with 

‘GG’ homozygotes (thus not showing a dosage effect) and the model parameters were not fit 

to trial-by-trial data. In fact, when trial-by-trial fitting was attempted, no association of 

learning rate to DARPP-32 was evident (Frank et al. 2007) (cf. Table 1). Our results suggest 

an alternative mechanism: given that the ‘A’ allele expression in DARPP-32 was strongly 

associated with the LRI, it is possible that DARPP-32 plays a homeostatic role that 
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maintains a balance between positive and negative learning updates. In other words, it may 

be that both the D1-pathway and the D2-pathway modulate DARPP-32 expression in 

opposite ways, and this modulation, in turn, increases or decreases plasticity of the same 

circuits, thus enforcing stability. By this account, DARPP-32 ‘A’ alleles improve reward 

learning by contributing to balanced learning from positive and negative prediction errors 

rather than by directly influencing the magnitude of updates following positive prediction 

errors alone.

5. Conclusions

In this study, we have shown that age has at least two distinct effects on the ability to learn 

from probabilistic feedback, both potentially different than the ones observed in Parkinson’s 

disease. In addition, we showed through simulations that the well-known Probabilistic 

Selection Task actually distinguishes between balanced and non-balanced learning rates 

rather than reward and punishment learning. Our model-derived LRI index, which was 

highly successful in explaining behavioral results in both our Quarters task and the 

Probabilistic Selection Task, may prove to be a better characterization of striatal learning 

than either reward or punishment-related parameters separately.

Beyond its relevance to aging research, our work has implications for studies of human 

reinforcement learning in general. Even after collecting data from large samples of 

participants, the standard ANOVAs on our behavioral data only showed weak interactions 

between age and feedback condition. However, after using a reinforcement learning model 

to formalize the learning process, we revealed specific mechanisms that distinguish behavior 

under different types of reinforcement. A possible reason for why the standard ANOVAs 

were not able to fully capture age-dependent differences between positive and negative 

feedback conditions could be the different distributions of performance scores for the 

feedback conditions (a bimodal distribution for positive feedback compared to a unimodal 

skewed distribution for negative feedback), highlighting the limitations of over-reliance on 

average performance measures in characterizing learning. One implication of the bimodal 

distribution is that, in principle, some participants are unlikely to ever learn the optimal 

solution, even if they are given an indefinite opportunity to train. This contrasts what is 

expected from a unimodal learning profile, where further learning should eventually lead to 

perfect performance as the distribution’s variance is reduced to a minimum. The current 

work shows that models can, in fact, capture these differences, emphasizing the importance 

of such approaches in analyzing human behavioral data.

That said, the model-based analyses presented here are just a first step in the direction of 

computational formalization of theories in aging and reinforcement learning. Future work 

may incorporate additional statistical techniques for parameter estimation, including 

hierarchical Bayesian methods and others, which may reveal further insights into the 

behavioral data and the underlying mechanisms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Deficits in feedback learning characterizing healthy aging sometimes resemble those 

found in Parkinson’s disease (PD). Since both healthy aging and PD are characterized by 

striatal dopamine depletion, some have suggested similar mechanisms are in play; yet 

other studies question this view. Employing behavioral, computational and genetic 

methods in a large cohort of 252 healthy subjects from three different age groups, we 

show that age-related feedback learning impairments stem from two distinct mechanisms, 

one related to decision noise and the other to dopamine-dependent imbalance in learning 

from positive and negative feedback, and neither is similar to the typical PD impairments. 

We replicate past results using our model and demonstrate the importance of analyzing 

performance score distributions rather than just averages.
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Fig. 1. 
Stimuli and Feedback Conditions.
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Fig. 2. 
Behavioral Task and Results for the 252 paricipants. (a) Experimental task. Participants 

learned to classify 4 stimuli to one of two arbitrary categories (Rain or Sun) by trial and 

error using probabilistic feedback. Two stimuli yielded positive feedback (smiling face and 

positive points) on 90% of the trials and no feedback on 10% of the trials. The other two 

stimuli yielded negative feedback (frowning face and negative points) on 90% of the trials 

and no feedback on 10% of the trials. Two example trials are presented. (b) Learning curves 

for the positive and negative feedback conditions. Error bars illustrate standard errors of the 

means (see Supplementary Information for additional analyses). (c) Distributions of scores 
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on Block 4 for the different age groups. y-axis represents the percent of individual response-

sequences within an age group and the x-axis marks each decile of performance score. The 

scores for stimulus A and stimulus B of each feedback condition were computed and 

counted separately to avoid the score of one interfering with the other (for example, when 

one stimulus receives a perfect score and the other zero, they average to a misleading 

“random chance” score of 0.5). (d) Left, deviance from chance performance, indicating the 

degree of learning a solution irrespective of the type of solution. Right, percent of optimal 

solutions given convergence to any solution. Convergence to a solution was defined as at 

least three consecutive blocks with accuracy reaching higher than 0.9, or lower than 0.1, for 

the optimal and non-optimal solutions, respectively). *** p<0.0001.
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Fig. 3. 
Analysis of fitted parameters (for 250 participants). (a) Left, average values of the four 

parameters fit to the model, by age group. Right, average Learning Rate Imbalance measure, 

by age group. * - p < 0.02; ** - p < 0.008; *** - p < 0.0001; † - trend; n.s - not significant. 

Error bars illustrate standard errors of the means. (b) Correlations of behavioral performance 

meaasures with Decision Noise (top row) and Learning Rate Imbalance (bottom row) across 

all participants. Small amount of gaussian noise (SD = 0.01) was added to the scatter plots’ 

datapoints to improve visualisation. *** - p < 0.0001; n.s - not significant. (c) Left, 3D 

Scatter of three individually-fit parameters: α+, α− and R0, for all participants in the study. 
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Each dot represents one participant. Projection of each dot on the X–Y plane is marked by a 

small grey dot to allow easier understanding of the 3D scatter. Right, 2D projections of the 

3D scatter plot, on two different planes, separately for each age group. Red: Participants that 

learned a non-optimal solution for at least one of the positive-feedback stimuli (‘Non-

optimal performers’). Blue: rest of participants. Small amount of gaussian noise (SD=0.01) 

was added to the datapoints to improve visualisation.
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Fig. 4. 
Simulation of the Probabilistic Selection Task using our learned parameters and model (for 

250 participants). (a) Simulation results of the Probabilistic Selection Task (upper row) 

compared to human results (lower row, reprinted from [20] with permission). Error bars 

illustrate standard errors of the means. Only the younger and older simulated groups are 

displayed for easier comparison (see Fig. S2 for full plots). Left, average difference during 

training on block 1 between the probability of re-selecting the response that was rewarded 

on the preceding trial, compared to the probability of shifting the response from the one 

punished on the preceding trial. Younger adults showed higher difference than older adults 

(Age × Preference: [F(2,247)=13.199, p<0.0001]; pairwise comparisons for younger vs. 

older: p<0.0001). Middle, Learning Bias changes. Average performance at test on novel 

pairings of stimuli that were previously mostly rewarded (‘Choose A’) compared to novel 

pairings of stimuli that were previously mostly punished (‘Avoid B’). Younger adults had a 

higher difference between the two than older adults (Age X Preference: [F(2,247)=14.257, 

p<0.0001]; pairwise comparisons for younger vs. older: p<0.04). Right, learning biases 

(defined as the difference between ‘Choose A’ and ‘Avoid B’) for all participants, ordered 

by bias values. Whereas younger adults had many more individuals with a positive learning 

bias than negative learning bias, the numbers were more evenly distributed in the older 

group. (b) Left, learning bias as a function of the Learning Rate Imbalance, showing a strong 

negative correlation (r(248)=0.61, p<0.0001). Right, learning bias as a function of the 

learning rate disparity, showing an inverted U-shape. Low learning bias is achieved either 

with very low disparity values (in line with ‘harm avoidant’ learning pattern previously 

hypothesized to characterize PD patients) or with very high disparity values (in line with 

‘reward-seeking’ learning pattern, which most older adults in our study actually belonged to; 

see Fig. 3c).
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Fig. 5. 
Effects of DARPP-32 polymorphisms on reward learning and Learning Rate Imbalance 

(LRI) for 212 participants whose genetic data was available. Error bars illustrate standard 

errors of the means.
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