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Abstract

A long-standing question is how to best use brain morphometric and genetic data to distinguish 

AD patients from cognitively normal (CN) subjects and to predict those who will progress from 

mild cognitive impairment (MCI) to AD. Here we use a neural network (NN) framework on both 

magnetic resonance imaging-derived quantitative structural brain measures and genetic data to 

address this question. We tested the effectiveness of NN models in classifying and predicting AD. 

We further performed a novel analysis of the NN model to gain insight into the most predictive 

imaging and genetics features, and to identify possible interactions between features that affect 

AD risk. Data was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort 

and included baseline structural MRI data and single nucleotide polymorphism (SNP) data for 138 

AD patients, 225 CN subjects, and 358 MCI patients. We found that NN models with both brain 

and SNP features as predictors perform significantly better than models with either alone in 

classifying AD and CN subjects, with an area under the receiver operating characteristic curve 

(AUC) of 0.992, and in predicting the progression from MCI to AD (AUC=0.835). The most 

important predictors in the NN model were the left middle temporal gyrus volume, the left 

hippocampus volume, the right entorhinal cortex volume, and the APOE ε4 risk allele. Further, we 

identified interactions between the right parahippocampal gyrus and the right lateral occipital 
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gyrus, the right banks of the superior temporal sulcus and the left posterior cingulate, and SNP 

rs10838725 and the left lateral occipital gyrus. Our work shows the ability of NN models to not 

only classify and predict AD occurrence, but also to identify important AD risk factors and 

interactions among them.
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Understanding neural network

1. Introduction

Alzheimer disease (AD) is characterized by specific brain structural changes and genetic risk 

factors (Lambert et al., 2013; Weiner et al., 2015; Weiner et al., 2013). Measurements of 

structural changes based on brain magnetic resonance imaging (MRI) scans have previously 

been used to classify AD patients versus cognitively normal (CN) subjects and to predict the 

risk of progression from mild cognitive impairment (MCI) to AD. Statistical classification 

models, such as support vector machines (Aguilar et al., 2013; Da et al., 2014; Davatzikos et 

al., 2011; Davatzikos et al., 2009; Orru et al., 2012; Wolz et al., 2011), linear discriminant 

analysis (Eskildsen et al., 2015; Wolz et al., 2011), and regression models (Desikan et al., 

2009; Liu et al., 2013; Young et al., 2013), etc., have been successfully trained for that. On 

the other hand, AD risk is also affected by genetic variants an individual carries, which can 

be measured accurately from birth (Lambert et al., 2013). Previous studies have also used 

genome-wide genetic information alone to predict AD occurrence with a logistic regression 

(LR) model (Ebbert et al., 2014; Escott-Price et al., 2015). With the growing availability of 

data that includes both brain imaging and genetic data for AD and CN subjects, researchers 

have combined the structural imaging data and genetic data for these AD classification and 

prediction tasks (Da et al., 2014; Kong et al., 2015; Zhang et al., 2014). Existing studies in 

AD classification and prediction have relied on statistical models that primarily include 

additive effects of the included structural imaging and genetic features. However, the 

estimation of AD risk may be more accurate if interactions among brain and genetic features 

are also included in these models (Delbeuck et al., 2003; Ebbert et al., 2014; Montembeault 

et al., 2016). To the best of our knowledge, no research study has systematically investigated 

these interactions while building statistical models for classifying AD subjects.

To capture the joint effects of brain and genetic features in AD risks as well as the 

interactions among them, we chose neural network (NN) as our modeling tool (Hinton and 

Salakhutdinov, 2006). NNs have led to critical breakthroughs in modern artificial 

intelligence problems such as visual recognition and speech recognition (Hinton and 

Salakhutdinov, 2006; Krizhevsky et al., 2012; LeCun et al., 2015; Silver et al., 2016). 

Critical to their success is the NN’s ability to extract complex interactions from data through 

transformation functions in the layers of nodes connected within the NNs (Gunther et al., 

2009; LeCun et al., 2015). For this reason, NNs are well suited for investigating diseases 

with multifactorial pathophysiology and etiology, like AD, especially as datasets of 

neuroimaging and genetic data grow in volume.
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While NN models have been exceptionally successful at making predictions, they are 

typically applied as "black-box" tools and not used to reveal the reasoning behind the 

decisions. As a result, although NNs have been applied to predict AD risks (Aguilar et al., 

2013; Sankari and Adeli, 2011), the important brain and genetic features and their 

interactions captured by the models remain elusive. Recent advances in methods for 

interpretation of NN models allow researchers to identify these salient and interacting 

features(Ribeiro et al., 2016; Sundararajan et al., 2017; Tsang et al., 2017; Zeiler and Fergus, 

2014). We take advantage of similar methods to not only train a NN model for AD 

classification, but also to investigate this model to identify the important predictors and 

interactions in the model.

In this study, we trained NN models using structural MRI and genetic data from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) AD patients and CN subjects. We then 

applied the trained models to MCI patients for predicting the risk of progression to AD and 

assessed the performance of the models. We then further investigated the trained NN model 

to identify important features and interactions among these features.

2. Materials and Methods

2.1. Description of ADNI subjects in the study

We used brain imaging and genetic data from the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) database (http://adni.loni.usc.edu), a large dataset established in 2004 to 

measure the progression of healthy and cognitively impaired participants with brain scans, 

biological markers, and neuropsychological assessments (Petersen et al., 2010). A goal of 

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early Alzheimer’s disease (AD).

In total, 138 AD patients, 225 CN subjects, and 358 MCI patients who had quality-

controlled quantitative brain structural data and genetic data were included. AD subjects 

were included if they maintained AD diagnosis throughout their follow-ups. Similarly, 

healthy control subjects were included if they maintained healthy control diagnosis 

throughout their follow-ups. We did not require 24 months of follow-up for the AD and 

healthy control subjects. Only MCI subjects who stayed as MCI or progressed to AD were 

considered. MCI subjects who reverted to a healthy control diagnosis were excluded. 

Among the 358 MCI patients, 166 progressed from MCI to AD during follow-up; 192 did 

not progress during at least 24 months of follow-up. Demographic information of the 

subjects used in our study is summarized in Table 1.

2.2. MRI brain imaging data and genotype data

Baseline imaging data was obtained using 1.5T or 3T MRI. Cortical reconstruction and 

volumetric segmentation was performed using FreeSurfer (Fischl, 2012; Miriam Hartig, 

2014) and obtained from the ADNI database. Subjects who had good overall segmentation 

and passed a visual quality control process were used in our analyses. Based on prior 
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knowledge of brain regions affected by AD(Weiner et al., 2015; Weiner et al., 2013), we 

included volume measurements for the following 16 regions as potential predictors in our 

models: hippocampus, entorhinal cortex, parahippocampal gyrus, superior temporal gyrus, 

middle temporal gyrus, inferior temporal gyrus, amygdala, precuneus, inferior lateral 

ventricle, fusiform, posterior cingulate, superior parietal lobe, inferior parietal lobe, caudate, 

banks of superior temporal sulcus, lateral occipital gyrus.

ADNI subjects were genotyped on three different platforms (i.e., Illumina Human 610-

Quad, Illumina Human Omni Express and Illumina Omni 2.5M). We merged the genotype 

data from the three platforms. Quality control ensured that 1) all subjects were of European 

ancestry and had genotyping rate greater than 0.95; 2) all SNPs had missing rate less than 

0.05 and passed Hardy-Weinberg exact test (i.e., p-value >= 1E-6). We further extracted the 

genotype of APOE ε4 risk allele and 19 SNPs reported to be significantly associated with 

AD in a previous genome-wide association study (Lambert et al., 2013). Missing genotypes 

of AD-associated SNPs were imputed with IMPUTE2 using 1000 genome as reference 

panel (Howie et al., 2011; Howie et al., 2009).

2.3. Neural network and logistic regression models

We trained NN and LR models to classify AD versus healthy control subjects given brain 

and SNP features as predictors. After training the models, we applied them to MCI subjects 

to predict each MCI subject's risk of progression to AD.

A LR model assumes that each predictor contributes additively to the subject’s log odds of 

AD, (see Equation 1).

log p
1 − p = β0 + ∑i = 0

m βixi (1)

Here p is the probability that a subject has disease; β0 is a bias term; βi is the weight of input 

feature xi, reflecting the strength and directionality of xi in affecting p, and m is the number 

of input features.

A NN is a network whose nodes (or “artificial neurons”) encode information with their 

activation level (a real-valued number). We will refrain from referring to these nodes as 

artificial neurons to avoid confusion with biological neurons. In a NN, nodes are organized 

in multiple layers: an input layer, one or more hidden layers and an output layer. Nodes in 

the input layer represent the brain and SNP features as predictors, nodes in the second and 

third layers allow interactions among the predictors in the first layer, and the output layer 

contains a single node that represents the disease risk (Figure 1).

More specifically, in a NN with L layers, let hi
l denote the activation level of a node j in the l-

th hidden layer, and ml denote the number of hidden units in this layer. We overload this 

notation to use hi
0 to represent the input features xi. Each hidden unit activation is computed 

as the weighted sum of the nodes’ activations from the layer below followed by a non-linear 

transformation function f(x) (see Equation 2).
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h j
l = f b j

l + ∑
i = 1

ml − 1
hi

l − 1wij
l , l = 1, …, L − 1 (2)

Here wij
l  is the weight of the connection from hi

l − 1, the i -th node in layer l-1, to h j
l , the (j -th 

node in layer l. b j
l  is a bias term that regulates the overall activation level for node j. The 

non-linear function f in our model is the rectified linear function (ReLU): f(x) = max(0, x).

In the output layer, the NN predicts the log odds of AD using a weighted sum of the hidden 

layer features, (see Equation 3)

log p
1 − p = bL + ∑

i = 1

mL − 1
hi

L − 1wi
L (3)

where bL and wi
L are the corresponding bias and weights for the output layer. The weights 

and biases for all layers are learned from the training data (LeCun et al., 2015).

Contrasting Equation 3 with Equation 1, we see that the last layer of a NN is identical to a 

LR model except that the "features" are replaced with hidden activations at layer L-1, which 

are highly nonlinear functions of the input.

2.3.1. Shortcut connections—We additionally employ shortcut connections that 

connect all nodes in the input layer directly to the output layer (He et al., 2015; Ripley, 

1996). This connectivity structure can be considered as a hybrid between LR and NN, which 

allows our network to not waste resources modeling additive effects in the input features and 

reserve the NN for complex interactions only. To prevent over-fitting we used L1 

regularization on the weights and early stopping for both NN and LR models (Tibshirani, 

1996). We trained both NN and LR models using MatConvNet package (Vedaldi and Lenc, 

2015) with identical training protocols, which allowed fair comparison of the two models.

2.4. Procedures for model training and testing

2.4.1. Predictors in the models—We included brain and genetic features described in 

section 2.2 as predictors in the models. We adjusted for age, gender, education and first three 

principal components derived from the genetic data by including them as predictors. All 

predictors were normalized to have a mean of zero and a variance of 1 across subjects.

2.4.2. Random sampling and model training—We used a random selection of 80% of 

the AD and healthy control subjects for training models, and 20% of the remaining subjects 

for internal validation (i.e., for selecting the number of training iterations of NN and LR 

models). This random selection of samples was repeated 100 times for each model in order 

to take into account variations in the data. After training the models, we applied them to the 

MCI subjects to test their ability to predict progression to AD.
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2.4.3. Hyper-parameters in the NN and LR models—The hyper-parameters explored 

include learning rate (ranging from 1E-3 to 1E-1) and weight decay (ranging from 1E-5 to 

1). We also explored the number of hidden nodes in the two hidden layers for NN model 

(ranging from 2, 4, 8, up to 64 nodes in each layer). In total, we assessed 100 NN models 

with different hyper-parameter combinations, where the hyper-parameters were randomly 

selected from the afore-mentioned ranges. For each NN model with a specific hyper-

parameter combination, we trained a corresponding LR model with the same learning rate 

and weight decay parameter values. Therefore, we trained 100 NN models, along with their 

corresponding LR models, where each model was trained and validated using 100 sets of 

randomly selected AD and healthy control subjects.

2.4.4. Model evaluation—Accuracy of models was evaluated using receiver operating 

characteristic curve (ROC). Since a model with a specific hyper parameter combination was 

trained and validated using data of 100 subsets of random AD and healthy control subjects, 

100 “sub-models” (i.e., each sub-model has its own estimations of the weight parameters) 

were obtained for that model. Thus, we used median area under the ROC curve (AUC) of 

these 100 sub-models to represent a model's accuracy when applying it to the internal 

validation data and the testing data.

2.5. Identifying important brain and SNP features

After training the NN models where both brain and SNP features were used as predictors, 

we assessed the NN model with the highest accuracy in the testing data and identified brain 

and SNP features that were important in the model. Within a trained NN model, the 

importance of a feature is estimated with partial derivatives method (Gevrey et al., 2003): for 

each predictor xi, we took the derivative of the predicted log likelihood ratio of a subject s 
having AD with respect to xi and then averaged the derivative over all subjects: the 

importance score of xi = Es(
∂ log(ps/(1 − ps))

∂xi
), where ps is the predicted AD risk of subject s. 

The importance score is computed over all 100 rounds of the best-performance model, and 

the magnitude of the median score is used to represent the importance of predictor xi.

The same definition of importance predictors could be applied to the LR models. For LR 

models whose log likelihood ratio is given by Equation (1), the importance score of xi 

evaluates to βi. In other words, the importance of a feature is given by the corresponding 

regression coefficient. This is consistent with how LR has been used to assess predictor 

importance. We also note that since the predictors were normalized to have mean of zero and 

variance of 1, the importance score of the predictors we report is not dependent on scale and 

is comparable to each other.

2.6. Identifying interactions among features

We identified pairwise interactions among brain and SNP features by investigating the best-

performing NN and LR models on the test set. Within a trained model, the pair-wise 

interaction between features xi and xj is defined as Iij = Es(
∂2 log(ps/(1 − ps))

∂xi∂x j
), where ps is the 

predicted probability that subject s has AD. Note that for LR, the interaction above has a 
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closed-form solution, which is Iij = 0 for all xi and xj. This serves as a sanity check that LR 

does not model pair-wise interactions among its predictors.

For NNs, Iij does not admit a closed-form solution and must be computed numerically, 

which may introduce estimation errors. Leveraging the fact that the theoretical interaction 

scores for LR models are always 0, we apply the same numerical procedure to estimate the 

interaction scores for both NN and LR models, and quantify the significance of an 

interaction in NN by testing how significantly its score differs from the corresponding score 

in a LR model. In particular, we calculated pair-wise interactions in the 100 NN sub-models 

of the best-performing NN model. We also calculated pair-wise interactions in the LR model 

that had the same hyper-parameters as the best-performing NN model. For a given pair of 

features, we compared their interaction in the 100 NN sub-models and in the 100 LR sub-

models using Wilcoxon test, then reported the interaction strength as −log(p-value).

3. Results

3.1. Models’ performance in classifying AD and in predicting progression from MCI to AD

Models that included both brain morphometric and genetic data performed significantly 

better than those that included either alone. Our analyses showed that when both brain and 

SNP features were included as predictors, the 100 sub-models of the best-performing NN 

model had a median AUC of 0.835 in predicting MCI progression. When only SNP features 

or brain features were used as predictors, the best-performing NN model had a median AUC 

of 0.689 and 0.820, respectively. Performance of the 100 NN sub-models with both brain 

and SNP features as predictors were significantly higher than that of the 100 NN sub-models 

with only SNP features or only brain features as predictors (t-test p-value <2E-16 for both 

comparisons).

Further, the best-performing NN model had a moderately, significantly higher AUC than the 

best-performing LR model where both brain and SNP features were included as predictors 

(the 100 sub-models of the best-performing LR model had a median AUC of 0.824 in 

predicting MCI progression; t-test p-value <2E-16), indicating that NN captured interactions 

among brain and SNP features which improved the model's performance. Figure 2 shows the 

AUC of the 100 sub-models of the best-performing NN and LR models where only SNP 

features or only brain features were used as predictors and where both features were used as 

predictors. We also note that random sampling of the training and validation data affected 

the models' performance: the 100 sub-models of the best NN model had an AUC between 

0.811 and 0.846 in predicting MCI progression.

Both NN and LR models had high accuracy in classifying AD and CN subjects. According 

to the internal validation data, the best-performing NN model with both brain and SNP 

predictors had a median AUC of 0.948 while the best-performing LR model with both brain 

and SNP predictors had a median AUC of 0.945.

3.2. Important brain and SNP features used by NN model

Examination of the NN model with the highest AUC in the testing data revealed brain and 

SNP features that were important in the model. The volume of the left middle temporal 
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gyrus, the left hippocampus, the right entorhinal cortex, the left inferior lateral ventricle and 

the right inferior parietal lobe were the five most important brain features in the model (i.e., 

these features had the largest absolute weights). As for genetic features, the APOE ε4 risk 

allele dosage, a major AD genetic risk factor (Lambert et al., 2013; Saunders et al., 1993), 

had the highest weight in the NN model. Other genetic features did not have weight as large 

as the aforementioned features. Table 2 lists the weight of the 5 most important brain and 

genetic features in the best-performing NN model. Supplementary Table 1 lists the weight of 

all the brain and genetic features in the best-performing NN model.

3.3. Interactions among brain and genetic features captured by NN model

Our analyses of interactions within the best-performing NN model revealed that both brain 

and genetic features were involved in strong interactions. For example, the strongest 

interaction captured by NN model was between the right parahippocampal gyrus and the 

right lateral occipital gyrus. The second strongest interaction was between the right banks of 

the superior temporal sulcus and the left posterior cingulate. The interaction between the 

SNP rs10838725 and the left lateral occipital gyrus was the third strongest interaction. 

Figure 3 shows the pairwise interaction among all the brain and genetic features used in the 

NN model. More details of the interaction strengths are listed in Supplementary Table 2.

4. Discussion

In this study, we systematically employed NN models for classifying AD patients and CN 

subjects and then investigated the ability of the trained NN models to identify important 

predictors and interactions in the models.

We found that including both brain and genetic features as model predictors increased the 

models' performance compared with only including either brain or SNP features in the 

models. Genetic features were important for predicting MCI progression: a random 

prediction usually yields an AUC around 0.5, while using genetic features as predictors 

increased the median AUC of the best-performing NN models to 0.689. In comparison, the 

best-performing NN models with brain features alone as predictors had better performance 

in predicting MCI progression, with a median AUC of 0.820. Including both brain and SNP 

features as predictors in the models further increased the models’ prediction accuracy by a 

moderate amount: median AUC of the best-performing NN models reached 0.835. Although 

the combined brain and SNP features achieves a higher AUC, it is worth noting that while 

the SNP features are available at birth, the brain features may not reflect the 

neurodegenerative changes associated with AD risks for subjects at a younger age (Jack et 

al., 2015; Jack et al., 2014).

Analyses of the trained NN models indicated that measurements of the middle temporal 

gyrus, the hippocampus and the entorhinal cortex were the most important brain features for 

predicting AD risks. The hippocampus plays an important role in memory formation and is 

well known to be affected by AD (Scheltens et al., 1992; Weiner et al., 2015; Weiner et al., 

2013). Further, a previous study reported that these three structures were among the ones 

with the largest effect size on MCI progression (Risacher et al., 2009). As for genetic 

features, APOE ε4 risk allele dosage had the highest weight in the NN model. While GWAS 
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had identified other genetic loci significantly associated with AD risks (Lambert et al., 

2013), the weights of those features were lower than those of the aforementioned brain 

features in the model.

While the NN model performed significantly better than the LR model (p-value <2e-16), the 

performance increase is modest. The median AUC of the best-performing LR model was 

0.824, while median AUC of the best-performing NN model was 0.835. Over all, the 

interaction effects were subtle compared to the additive effects. However, this modest 

performance increase, which is likely a result of the NN modeling interactions among 

predictors, provides evidence that there do exist interactions among the brain and genetic 

features. Beyond building the NN models for classification and prediction, there is important 

knowledge about disease pathophysiology to be gained in studying the interactions within 

them. Existing NN models of AD risk have all been treated as a black-box and not further 

investigated. For the first time in the field of imaging genetics, we use very recently 

developed NN analysis techniques to investigate the NN models and identify the important 

interactions among the brain and genetic features in affecting AD risk.

Our novel analysis of the trained NN model revealed three strong interactions of AD risk 

factors, each of which are biologically plausible, provide insight into the pathophysiology of 

AD, and warrant further study. First, the NN identified a strong interaction between the right 

parahippocampal gyrus and the right lateral occipital gyrus. A relevant finding was reported 

by Sommer et al. (Sommer et al., 2005), who observed correlated activity in the occipital 

and the parahippocampal cortex during encoding and the resulting memory trace. We would 

therefore expect AD patients to have aberrant connectivity between these two regions, either 

structurally or functionally as measured by diffusion weighted MRI or functional MRI. 

Second, the NN identified an interaction between the right banks of the superior temporal 

sulcus and the left posterior cingulate. The posterior cingulate cortex is a central part of the 

default mode network in the brain and is known to have prominent projections to the 

superior temporal sulcus (Leech and Sharp, 2014). Third, the NN found an interaction 

between the SNP rs10838725 and the left lateral occipital gyrus. Recent evidence suggests 

that the functional gene of this SNP with respect to AD is the SPI1 gene, which plays a role 

in myeloid cell function (Huang et al., 2017). Neuroinflammation in AD, which is mediated 

by myeloid cells, is known to occur in the occipital cortex (Kreisl et al., 2013). The 

mechanism of interactions among such brain and genetic features require further study.

Our study has some limitations. First, there are different ways to define MCI progression 

versus non-progression. Longer follow-up time may allow us to observe more MCI patients 

progressing to AD. The models’ accuracy in predicting MCI progression may change when 

different definitions of progression are used and when observations from longer follow-up 

are used. Second, as more GWAS are carried out, our understanding of the SNPs and genes 

associated with AD will get updated. Therefore, the importance score of the predictors and 

the predictor interactions should be interpreted with that in mind and would need further 

validation. Third, since NN models have more parameters than LR models, more data points 

are needed to train the NN models (Geman et al., 1992). It is possible that with a larger 

sample size, NN may have a more significant advantage compared to LR models. Also, our 

findings on the important predictors and interactions among predictors may get refined and 
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updated as the sample size increases. Fourth, the NN models with different structures may 

have different performance. In our analyses, we used a structure with two hidden layers and 

a direct connection between the input layer and the output layer. As a comparison, in the 

previous studies using NN models for classifying AD, only two hidden layers were used, 

and no direct connection was built between the input layer and the output layer (Aguilar et 

al., 2013; Sankari and Adeli, 2011). Finally, interpreting NN models remains an open 

research topic. Our definition of important predictors and interactions was based on 

derivatives of the log likelihood of disease risk, while alternative definitions (Gevrey et al., 

2003; Olden et al., 2004; Tsang et al., 2017; Zeiler and Fergus, 2014) may reveal other 

insights into the model.

To summarize, we trained NN models for classifying AD and CN subjects, yielding models 

with good performance on the task of classifying and predicting AD. Our novel analyses of 

the trained NN models led to findings of important brain and genetic features and 

interactions among them that affect AD risk, which can guide future research on AD 

etiology. Our approach of training and investigating NN models can be particularly valuable 

for understanding etiology of diseases that have multiple, interacting risk factors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Neural networks perform well in classifying AD and predicting MCI progression.

Combining brain and genetic data is optimal for classification and prediction of AD.

Analyzing neural networks reveals important features and feature interactions.
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Figure 1. 
Structure of neural network model with two hidden layers. Neurons in the input layer holds 

the brain and SNP features, neurons in the second and third layers allowed interactions 

among the features in the first layer, and the output layer contains a single neuron that 

represents the disease risk. Adjacent layers are fully connected. All neurons in the input 

layer are connected directly to the output layer.
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Figure 2. 
Accuracy (measured as area under the receiver operating characteristic curves, or AUC) of 

the best-performing neural network and logistic regression models in predicting progression 

from mild cognitive impairment to Alzheimer’s disease. Three types of models are 

compared: 1) models with only SNP feature predictors; 2) models with only brain feature 

predictors; 3) models with both SNP and brain feature predictors.
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Figure 3. 
Strength of pairwise interactions among all the brain and genetic features used in the neural 

network model. The gene labels of the SNPs are based on the labels reported by Lambert et 

al. (Lambert et al., 2013).
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Table 1

Demographic characteristics of Alzheimer’s disease, mild cognitive impairment, and healthy control subjects.

Diagnostic Number Female|Male Age (median[min-max])

Cognitively Normal 225 113|112 74[56–90]

Alzheimer's Disease 138 60|78 75[56–91]

Mild Cognitive Impairment 358 148|210 73[55–88]
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Table 2

Weight of important features for classifying AD patients and CN subjects in the neural network model. The 

gene labels of the SNPs are based on the labels reported by Lambert et al. (Lambert et al., 2013).

Brain features Weight Genetic features Weight

Left Middle Temporal Gyrus 0.60 APOE ε4 dosage 0.86

Left Hippocampus 0.56 rs10948363 (CD2AP) 0.29

Right Entorhinal Cortex 0.52 rs7274581 (CASS4) 0.29

Left Inferior Lateral Ventricle 0.48 rs17125944 (FERMT2) 0.24

Right Inferior Parietal Lobule 0.40 rs4147929 (ABCA7) 0.22
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