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Abstract

Level of education is often regarded as a proxy for cognitive reserve in older adults. This implies 

that brain degeneration has a smaller effect on cognitive decline in those with more education but 

this has not been directly tested in previous research. We examined how education, quantitative 

MRI based measurement of brain degeneration, and their interaction affect cognitive decline in 

diverse older adults spanning the spectrum from normal cognition to dementia. Gray matter 

atrophy was strongly related to cognitive decline. While education was not related to cognitive 

decline, brain atrophy had a stronger effect on cognitive decline in those with more education. 

Importantly, high education was associated with slower decline in individuals with lesser atrophy 

but with faster decline in those with greater atrophy. This moderation effect was observed in 

Hispanics (who had high heterogeneity of education) but not in African Americans or Caucasians. 

These results suggest that education is an indicator of cognitive reserve in individuals with low 

levels of brain degeneration but the protective effect of higher education is rapidly depleted as 

brain degeneration progresses.
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1. Introduction

Education has been shown to have robust effects on a broad range of health outcomes, and 

specifically, has been identified in many studies in different countries and populations as 

having a protective effect with respect to development of dementia. That is, dementia 

incidence rates are lower in more educated individuals (EClipSE Collaborative Members et 

al., 2010; Prince et al., 2012; Xu et al., 2016) and average age of dementia onset is delayed 

(Amieva et al., 2014; Xu et al., 2016). Education also has been widely regarded as a factor 

that promotes cognitive reserve (Foubert-Samier et al., 2012; Stern, 2006) and often is 

considered a direct proxy for cognitive reserve (Valenzuela & Sachdev, 2006a, 2006b). 

Cognitive reserve is a construct that refers to intra-individual characteristics that buffer 

against or confer resilience to effects of brain injury associated with diseases of aging. Much 

of the literature on education and cognitive reserve does not directly address whether 

education modifies effects of brain injury on cognitive trajectories. Rather, this modification 

is inferred as an explanation for complex interrelations of education, clinical diagnosis, and 

cognitive trajectories. In this study, we directly evaluated the hypothesis that education 

modifies the effect of brain degeneration on decline of cognitive function in older adults.

A major, widely repeated finding in the literature on education and cognitive reserve is that 

higher education is associated with more rapid decline after a clinical diagnosis of 

Alzheimer's disease or dementia. This was described in seminal work by Stern et al. (1999) 

and subsequently has been replicated in a larger sample from the same population 

(Scarmeas, Albert, Manly, & Stern, 2006) and in different populations using different 

methods (Amieva et al., 2014; Ye et al., 2013). The explanation for this finding is that 

education promotes resilience to brain changes associated with the developing dementia and 

consequently delays the onset of clinical symptoms. In effect, the reserve effect of education 

protects against early decline, but reserve is more depleted in highly educated individuals 

once clinical symptoms are manifest.

There also is a body of literature that doesn't support the hypothesis that education promotes 

cognitive reserve. Specifically, there are publications from different populations using 

different methods that do not show an association of education with late life cognitive 

decline (Early et al., 2013; Gross et al., 2015; Masel & Peek, 2009; Mungas, Early, 

Glymour, Zeki Al Hazzouri, & Haan, 2017). These studies show robust effects of education 

on baseline levels of cognitive function, but not on decline over time. This is problematic for 

reserve models that posit a protective effect against age associated brain pathology.

Recent studies have examined rates of cognitive decline both before and after clinical 

symptom onset. A multi-site clinical study in Korea showed that higher education was 

associated with faster cognitive decline in late stage amnestic mild cognitive impairment 

(MCI), but with slower decline in early stage MCI (Ye et al., 2013). Amieva et al. (2014), in 

a large, population based study from France, reported that higher education was associated 
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with slower decline preceding an incident diagnosis of AD and with a substantial delay of 

the diagnosis of AD, but rate of decline was faster in those with higher education after an 

AD diagnosis. Yu et al. (2012) applied random change point modeling to combined results 

from two large US longitudinal cohort studies and reported that higher education delayed the 

onset of cognitive decline in incident MCI and AD cases but also was associated with faster 

decline after the onset of decline. This study, like Ye et al. (2013), would suggest that 

depletion of the reserve effect occurs prior to the diagnosis of dementia. These studies 

collectively provide an evidence base to show differential effects of education before and 

after onset of cognitive decline and clinical symptoms. This raises a question of whether the 

lack of education effects on cognitive decline in studies of the full spectrum of cognitive 

function is a result of averaging of two different trajectories, one positively and one 

negatively associated with education.

The literature showing differential education effects before and after diagnosis is largely 

based on incident or prevalent dementia cases while much of the literature showing no 

association of education with cognitive decline is based on samples spanning the spectrum 

of cognitive function from normal to demented. The studies showing differential rates of 

cognitive decline before and after symptom onset do not directly address whether education 

modifies the effects of brain degeneration on cognitive decline. The current study examined 

the joint and interactive effects of education and progressive brain atrophy on cognitive 

decline in a demographically and cognitively diverse cohort that spanned a spectrum of late 

life cognitive function from normal cognition to dementia. Previous work with this cohort 

has shown that education is not associated with rate of cognitive decline (Early et al., 2013; 

Gross et al., 2015), but also has shown that progressive brain atrophy measured by 

longitudinal magnetic resonance imaging (MRI) is strongly associated with cognitive 

decline (Fletcher et al., 2018) . We tested the hypothesis that education would modify the 

association of brain atrophy with cognitive decline such that higher education would be 

associated with slower decline resulting from milder levels of atrophy but faster decline 

related to more rapid atrophy.

2. Materials and Methods

2.1. Participants

Participants were from the UC Davis Diversity Cohort, a longitudinal study that includes 

substantial numbers of Hispanic, African American, and non-Hispanic White older adults. 

This cohort is heterogenous in race/ethnicity and educational attainment and spans a 

spectrum of cognitive function from normal to mildly impaired to demented. Cohort 

composition and recruitment methods are described in Hinton et al. (2010). Participants 

were 460 persons who had received at least two cognitive evaluations and at least one MRI 

brain scan; 295 had two or more scans. There were 212 Caucasians, 111 Hispanics, and 121 

African Americans and 16 other races/ethnicities; 64 Hispanics were tested in Spanish, and 

all others were tested in English. A community screening program designed to identify and 

recruit individuals with cognitive functioning representative of the community dwelling 

population in a six-county catchment area in the central Sacramento/San Joaquin valley and 

east San Francisco Bay area of Northern California identified 313 individuals (97 
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Caucasians, 98 Hispanics, 107 African Americans, 11 Other). The remaining 147 (115 

Caucasians, 13 Hispanics, 14 African Americans, 5 Other) were initially seen for clinical 

evaluation at a university memory/dementia clinic and referred for research.

Participants in this study were evaluated and followed within the research program of the 

University of California at Davis Alzheimer’s Disease Center. Enrollment began in 2001 and 

a rolling enrollment design was used to build the cohort with substantial enrollment 

continuing through 2010. All participants in this study had at least two evaluations but due to 

rolling enrollment there was variability in the number of evaluations completed by each 

participant. Inclusion criteria for the longitudinal cohort included age 60 or older at their 

first examination and ability to speak English or Spanish. Exclusion criteria included 

unstable major medical illness, major primary psychiatric disorder, and substance abuse or 

dependence in the last five years. All participants signed informed consent, and all human 

subject involvement was overseen by institutional review boards at University of California 

at Davis, the Veterans Administration Northern California Health Care System and San 

Joaquin General Hospital in Stockton, California.

Sample characteristics are presented in Table 1.

2.2. Cognitive Assessment

The cognitive outcomes in this study were composite measures of episodic memory, 

semantic memory, executive function, and spatial ability derived from the Spanish and 

English Neuropsychological Assessment Scales (SENAS). The SENAS has undergone 

extensive development as a battery of cognitive tests relevant to cognitive aging that allow 

for valid comparisons across race/ethnic groups (Mungas, Reed, Haan, & Gonzalez, 2005; 

Mungas, Reed, Crane, Haan, & González, 2004; Mungas, Reed, Marshall, & González, 

2000; Mungas, Reed, Tomaszewski Farias, & DeCarli, 2005; Mungas, Widaman, Reed, & 

Tomaszewski Farias, 2011). Item response theory and confirmatory factor analysis methods 

were used to evaluate reliability across a broad range of ability relevant to older adults and 

incorporate items that effectively measure over this ability continuum. This development 

process yielded composite measures that are psychometrically matched across domains in 

terms of level of reliability across the ability continuum. Importantly, these composite scores 

do not have floor and ceiling effect and are normally distributed. The episodic memory 

composite score is derived from a multi-trial word-list-learning test (Mungas et al., 2004). 

The semantic memory composite is derived from highly correlated verbal (object-naming) 

and nonverbal (picture association) tasks. The executive function composite is constructed 

from component tasks of category fluency, phonemic (letter) fluency, and working memory 

(digit-span backward, visual-span backward, list sorting). Spatial ability was measured using 

the SENAS Spatial Localization scale which assesses ability to perceive and reproduce two-

dimensional spatial relationships that are increasingly complex. These measures were 

administered at all evaluations. Language of test administration was determined by an 

algorithm that combined information regarding each participant’s language preference in 

several specific contexts (e.g., conversing at home, listening to radio or television, 

conversing outside the home, preferred language for reading). Administration procedures, 
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measure development and psychometric characteristics of the SENAS battery are described 

in more detail elsewhere (Mungas et al., 2004).

2.3. MRI Measures

2.3.1. MRI Sequence Acquisition—All brain imaging was performed at the University 

of California Davis (UCD) Imaging Research Center on a 1.5T GE Signa Horizon LX 

system, obtaining 3D T1-weighted spoiled gradient recalled echo acquisition (T1 SPGR: TR 

9.1 ms, flip angle 15°, field of view 24 and slice thickness 1.5mm). MRI baseline 

measurements were derived as part of our in-house processing pipeline described previously 

(Fletcher, Carmichael, Pasternak, Maier-Hein, & DeCarli, 2014; Lee et al., 2012). Briefly, 

structural MRI images were processed to remove the skull using an atlas-based method and 

consensus-voting algorithm (Aljabar, Heckemann, Hammers, Hajnal, & Rueckert, 2009; 

Aljabar, Heckemann, Hammers, Hajnal, & Rueckert, 2007). Human analysts provided 

quality control and minimal cleanup as needed. The stripped brain images were nonlinearly 

deformed to a minimal deformation template (MDT) synthetic image (Kochunov et al., 

2001) using cubic B-spline registrations (Rueckert, Aljabar, Heckemann, Hajnal, & 

Hammers, 2006). Parameters from this transformation were later used to automatically 

delineate regions of interest (ROIs) in each subject native space by reverse transforming the 

regions from the MDT image. Lobar ROIs in MDT space were drawn by an experienced 

neurologist, as described previously (Lee et al., 2010).

2.3.2. Gray Matter Volume Change—For participants having at least two longitudinal 

structural MRI scan acquisitions, we computed longitudinal structural change between the 

most widely separated time points. We used a tensor-based morphometry (TBM) method 

designed to enhance sensitivity and specificity for biological change by incorporating 

estimates of likely tissue boundaries (Fletcher, 2014; Fletcher et al., 2013). TBM generates 

deformation fields by registering brain scans at differing time points and using these to 

estimate local volume changes between the scans (Ashburner & Friston, 2000). This 

processing was done via an in-house processing pipeline that has been previously described 

(Fletcher et al., 2016). Briefly, we linearly aligned images at time 1 and time 2 to a “halfway 

space” to avoid interpolation biases when only one image is transformed. Each brain scan 

was then corrected for field intensity inhomogeneities using an atlas-based technique and 

finally tissue-segmented using an algorithm sensitive to edge presence. The log-transformed 

determinant of the 3x3 Jacobian matrix of the TBM deformation at each voxel (i.e. log-

Jacobian) quantifies local brain change.

To perform voxel-wise longitudinal change analysis across subjects in a common space, we 

transformed subject native-space log-Jacobian images onto MDT template space as 

described above for baseline volumes. Statistical analysis of longitudinal change in native 

space was performed using ROIs transformed to native space also as described above, then 

calculating the mean log-Jacobian for each subject in segmented GM on each native ROI.

Gray matter (GM) volume change was computed over a cortical GM ROI, delineated in 

native space as described above, that included prefrontal regions, the parietal lobe posterior 

to the post-central gyrus, the temporal lobe, and the occipital lobe. Log-Jacobians from these 
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ROIs from both hemispheres were averaged to constitute a global cortical gray matter 

change measure. Longitudinal change over these regions was computed as the mean log-

Jacobian over the ROI intersected with the segmented GM. Cortical gray matter change 

defined in this manner had the strongest effect on cognitive decline in a previous study based 

on this cohort (Fletcher et al., 2018). We calculated cortical gray matter volume for the 

baseline scan by summing segmented GM volumes in the same ROIs used for measuring 

cortical gray matter change. This sum was then regressed on total intracranial volume and 

the residual was used as a measure of gray matter volume adjusted for intracranial volume.

2.4. APOE Genotyping

Apolipoprotein E (APOE) genotyping was carried out using the LightCycler ApoE mutation 

detection kit (Roche Diagnostics, Indianapolis, IN).

2.5. Data Analysis

2.5.1. Measures and Data Processing—SENAS measures of episodic memory, 

semantic memory, executive function, and spatial ability were the primary dependent 

variables. MRI gray matter volume change (average of PreFrontal, Temporal, Parietal minus 

post-central gyrus, and Occipital ROIs) and education were the primary independent 

variables. Cognitive variables and gray matter change were reasonably normally distributed. 

We applied the Blom inverse normal rank order transformation to these variables to 

normalize the variables and establish a common scale (mean=0, sd=1). Education was 

centered at 12 years. Age (centered at 70 years) was a continuous covariate. Gender, 

ethnicity, language of test administration and APOE ε4 status were categorical covariates 

coded using indicator variables. Ethnicity was coded using three indicator variables: African 

American (1 = yes, 0 = no), Hispanic (1 = yes, 0 = no), and Other minority (1=yes, 0=no); 

non-Hispanic white was represented by 0’s for all three indicator variables. Gender (male=1, 

female=0), language of test administration (Spanish=1, English=0) and APOE (≥1 ε4 alleles 

= 1, 0 ε4 = 0) were represented by single indicator variables. We also created indicator 

variables to identify individuals who were lost to follow-up (continuously enrolled = 0, lost 

= 1) and individuals who died (continuously enrolled = 0, deceased = 1) and included these 

variables as covariates. This coding establishes a continuously enrolled White female, 70 

years of age, with 12 years of education, tested in English, and APOE ε4 negative as a 

reference.

2.5.2. Longitudinal Modeling of Cognitive Trajectories—Mixed effects, parallel 

process longitudinal analyses were performed using MPlus version 7.4 multilevel modeling 

(Muthén & Muthén, 1998–2012). In the Within part of the model, each of the four cognitive 

outcomes was regressed on time in study. This generated person-specific intercept and linear 

slope random effects for each outcome. These random effects then served as dependent 

variables in the Between part of the model. All parameters in the model, including Within 

and Between components, were estimated simultaneously.

Model building proceeded in steps. Step 1 developed a base model to estimate intercept and 

slope random effects for all four outcomes. It included a within-subjects term to account for 

practice effects and a term to model a practice effect by Spanish test administration 
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interaction that has has been identified in previous studies with this sample (Brewster et al., 

2014; Early et al., 2013; Melrose et al., 2015). The initial model included correlated 

intercept and slope random effects for each of the four outcomes, but we then evaluated 

whether second order latent variables (one with intercepts as indicators, one with slopes) 

explained the correlations among the random effects. Previous studies with this cohort have 

shown that cognitive trajectories are best described by individual intercepts but a global 

slope variable that represents a weighted combination of slopes of the four cognitive 

outcomes (Fletcher et al., 2018; Gavett et al., In Press).

In Step 2, we added covariates including APOE genotype, age, gender, race/ethnicity, 

language, and indicators for loss to follow-up and deceased status as fixed effect 

independent variables to explain cognition baseline and change. Effects of being lost to 

follow-up or deceased were included to adjust for potential bias in the rate of cognitive 

change associated with these forms of drop out. We examined interaction effects involving 

ethnicity and other covariates and retained significant interaction effects in subsequent 

models. In Step 3 we added global gray matter change as an independent variable to explain 

cognitive decline, continuous education (centered at 12 years), and an effect to represent the 

interaction of brain change with continuous education. Clinical diagnosis was not used as a 

grouping variable or covariate in these primary analyses.

Complete data was not available on all variables. The largest component of missing data was 

for longitudinal MRI scans, where 165 of the 460 participants did not have longitudinal 

scans. The full sample of 460 was used for the primary data analyses and the missing data 

analysis option of Mplus was used. This approach effectively used all available data to 

estimate cognitive trajectories and effects of baseline brain variables and covariates on those 

trajectories. It maximized precision of estimation of cognitive intercept and slope parameters 

and statistical power for detecting education and covariate effects. Power for detecting brain 

change effects is lower because of the reduced sample size for the brain change variables. 

Mplus uses full information maximum likelihood estimation, which provides unbiased 

parameter estimates in the context of missing at random (Newman, 2003). Missing at 

random is satisfied when missingness can be explained by observed variables in the model, 

and is a reasonable assumption in this study since we included comprehensive measures of 

cognitive status and change, demographic variables, and genetic risk that could be associated 

with present versus absent longitudinal scans. As a sensitivity analysis, we performed a 

secondary analysis to evaluate whether results were different when we excluded those 

participants who did not have longitudinal scans.

We performed a secondary analysis to evaluate the effects of education, gray matter change, 

and their interaction within the three main racial/ethnic groups (African Americans, 

Hispanics, Caucasians). We used a multiple group analysis to simultaneously estimate 

Model 3 in the three groups, and effects involving education and gray matter change were 

freely estimated.

An additional secondary analysis examined non-linear effects of education by replacing the 

continuous measure of years of education with discrete, ordered categories. For example, 

this might identify a threshold effect where education below a certain level has an impact on 
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cognitive change but differences in education above that threshold have no effect. Years of 

education was recoded into three indicator variables: less than 12 years, 12 years, and 13–15 

years; 16+ years was the reference and was coded as 0 on all three indicator variables. The 

education main effect in Model 3 was replaced with these 3 indicator variables, and the 

education by gray matter change interaction was replaced by interaction terms for each 

indicator variable by gray matter change. A multiple group analysis using categorical 

education was not performed due to small N's in some of the cells of the group-by-education 

group cross tabulation.

Finally, we examined joint and interactive effects of education and clinical diagnosis on rate 

of gray matter change and on baseline gray matter volume. Clinical diagnosis was a 

categorical variable with the Normal group as the reference group. Gray matter change was 

the dependent variable in a regression analysis that included years of education, clinical 

diagnosis (MCI versus Normal and Dementia versus Normal), and the education-by-clinical 

diagnosis interaction as independent variables.

3. Results

3.1. Sample Characteristics

Sample characteristics are presented in Table 1. About 59% were females. Gender differed 

across diagnosis groups (χ2[2]=11.356, p=0.003); Normals and Demented cases were more 

likely to be female but MCI cases were evenly divided among males and females. About 

26% were African Americans, 24% were Hispanics, 46% were Caucasians, and 3% were 

Other ethnicities. Ethnicity differed by diagnosis (χ2[6]=41.050, p=0.001) with Whites more 

likely to have a diagnosis of MCI. Approximately two thirds of the sample was recruited 

from the community (68%). Recruitment source differed by diagnosis (χ2[2]=70.848, 

p=0.001), with MCI cases more likely to be clinic referrals. Average age was about 75 years 

and this differed across groups (F[2,451]=9.110, p=0.001) with Dementia older than MCI 

who were older than Normals. Average education was 12.9 and differed across diagnosis 

groups (F[2,451]=6.256, p=0.002), with highest education in MCI, lowest in Dementia, and 

Normals in between. APOE ε4 differed by diagnosis (χ2[2]=23.231, p=0.001) with highest 

ε4 prevalence in Demented cases (61%) and lowest in Normals (30%). Gray matter volume 

change, baseline gray matter volume, and baseline cognitive test scores all differed across 

diagnostic groups (p's < 0.001), with a consistent pattern of Normal > MCI > Dementia.

There were 65 single domain amnestic MCI cases, 54 multiple domain amnestic MCI, 27 

single domain non-amnestic MCI, and 20 multiple domain non-amnestic MCI. Etiologic 

diagnosis for dementia was Alzheimer's disease for 45, vascular disease for 2, Lewy body 

disease for 3, frontotemporal degeneration for 1, and Alzheimer's disease mixed with 

another etiology for 5.

3.2. Model for Cognitive Intercepts and Slopes

A model that included individual intercepts for the four cognitive outcomes and a second 

order factor to summarize cognitive slopes provided optimal model fit according to three 

commonly used indices that have different balances between absolute model fit and model 
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parsimony (the Akaike Information Criterion (Akaike, 1987), the Bayesian Information 

Criterion (Schwarz, 1978), and the Sample Size Adjusted Bayesian Information Criterion 

(Sclove, 1987)). Correlations in the unconditional Step 1 model with separate intercepts and 

slopes ranged from 0.53 to 0.80 for intercepts. In contrast, correlations among slope random 

effects ranged from 0.87 to 0.96. These results show that intercepts, while correlated, are 

dissociable, but that slopes are very highly correlated and reflect a unidimensional decline 

process. Subsequent results examine determinants of cognitive decline measured by this 

global slope factor. While effects of independent variables and covariates on cognitive 

intercepts were estimated, we report results pertaining to global cognitive change.

3.3. Education, Brain Change, and Covariate Effects on Cognitive Decline

None of the covariate by ethnicity interaction effects on global slope were significant (p's > 

0.15), and so, these interactions were not included in subsequent models. The reference 

person in the sample (female, white, 12 years of education, 70 years of age, English 

speaking, no APOE ε4, continuously followed) declined about 6% of a standard deviation 

annually. frican Americans declined at a slower rate on average (about 0.01 SD per year). 

Older age, APOE ε4, clinical recruitment, and deceased status all were associated with 

faster decline.

Table 2 shows effects on cognitive decline of global gray matter change, education, and their 

interaction. The education main effect on cognitive change was quite small and was not 

significant. Global Gray Matter Change had a large effect; a 1.0 SD increase in rate of 

atrophy was associated with a 0.056 SD annual decline. Over 5 years, an individual with 

gray matter atrophy 1.0 SD faster than average would decline 0.28 SD more than an 

individual with average gray matter change. The education by gray matter change interaction 

was significant. Brain change had a stronger effect on cognitive change in individuals with 

higher education. Results were essentially the same when individuals who did not have 

longitudinal MRI scans were excluded from the analysis.

Figure 1 shows the brain atrophy by education interaction. It presents the expected annual 

rate of cognitive decline as a function of brain atrophy rate for two different levels of 

education, 8 and 16 years. Less than high school education and college education are clear 

landmarks for level of educational attainment, and these values were chosen to demonstrate 

how education level affects cognitive trajectories. There are two notable aspects of Figure 1. 

First, cognitive decline is more strongly related to brain atrophy rate (steeper slope) at the 

higher education level. But importantly, rate of cognitive decline is slower for the high 

education individual when rate of brain atrophy is low, but cognitive decline is faster when 

brain atrophy rate is high.

Figure 2 shows how the complex interaction of education and brain atrophy rate influences 

cognitive trajectories. This graph presents predicted trajectories for individuals with 16 and 8 

years of education and with atrophy rates that were average for Normals in this sample, 

average for MCI, and average for demented cases in this sample. These results are shown for 

one cognitive outcome, verbal episodic memory, but would be similar for the other outcomes 

due to the high correlations of change in the four cognitive measures. A high education 

person with average brain change for Normals would exhibit a slight improvement over 5 
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years of follow-up; a high education individual with a brain atrophy rate typical for MCI 

would decline about 0.15 SD in 5 years, and a high education case with brain atrophy typical 

for dementia in this sample would decline more than 0.5 SD in 5 years. A low education 

Normal person would be expected to decline slowly, but more than a high Education 

Normal. Rate of expected decline for low and high education MCI would be about the same, 

but rate of decline for a low education dementia case would be less than for high education. 

The typical high education demented person would score about 0.2 SD higher at baseline, 

but would be at about the same level of performance as the typical low education demented 

case after 5 years.

3.4. Education and Brain Change Effects on Cognitive Decline Within Racial/Ethnic Groups

A multiple group analysis evaluated the effects of education, gray matter change, and their 

interaction within racial/ethnic groups. Gray matter change was associated with cognitive 

change in all three groups (Table 3), and education had no main effect in any group. The 

education by gray matter change effect was significant only in Hispanics, and this result for 

Hispanics mirrored what was found in the full sample.

3.5. Secondary Analyses

3.5.1. Exclusion of cases with missing longitudinal scans—Results were 

unchanged when we restricted the analysis to those individuals who had longitudinal MRI 

scans.

3.5.2. Non-linear Effects of Education—None of the main effects for capturing 

categorical education effects on cognitive change were significant, indicating that the three 

lower levels of education (<12 years, 12 years, 13–15 years) did not differ from 16+ years 

(p's = 0.12, 0.68, 0.65). The interaction of gray matter change with less than 12 years of 

education was significantly related to global cognitive decline (estimate (se) = −0.048 

(0.017), p = 0.006) but the other two interaction effects were not signficant (0.68, 0.9). As 

expected the gray matter change main effect was significant (estimate (se) = 0.07 (0.012), p 

= 0). These results show that the effect of gray matter change on cognitive change was 

smaller in the lowest education group compared to the highest, but this effect did not differ 

across the three higher education groups.

3.5.3. Gray Matter Change by Education and Clinical Diagnosis—Rate of gray 

matter change differed by clinical diagnosis (average standardized gray matter change in 

Normals = 0.145, MCI = −0.28, Dementia = −0.626, Dementia and MCI were significantly 

different from Normal (p's < 0.001)). Education was not related to gray matter change 

(estimate=−0.004, s.e.=0.012, p=0.724), nor was there a significant interaction of education 

with clinical diagnosis (p’s > 0.75). The simple correlation of education with gray matter 

change was −0.096. For baseline gray matter volume, there were similar group differences 

(mean standardized Normal = 0.347, MCI = −0.112, Dementia = −0.642, Dementia and MCI 

were different from Normal (p’s< 0.001). There was a trend for higher education to be 

associated with lower gray matter volume (estimate=−0.024, s.e.=0.014, p=0.088) 

independent of clinical diagnosis, and this effect did not differ across diagnosis groups (p’s 

> 0.53). The simple correlation of education with baseline gray matter was −0.059.
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4. Discussion

4.1 Summary of Results

This study examined whether education modifies the impact of brain degeneration on 

cognitive decline in a demographically diverse sample that spanned the spectrum of 

cognitive function from normal cognition to dementia. We found that education modified the 

brain atrophy effect, and actually increased the impact of rate of gray matter atrophy by 9% 

per year of education. That is, gray matter atrophy had a stronger impact on cognitive 

decline in participants with higher education. This effect is complex because education was 

associated with slower cognitive decline in those with low rates of atrophy, but this 

advantage was reversed by the education-related heightened sensitivity to atrophy as the 

atrophy rate became higher, eventually resulting in faster cognitive decline in high education 

individuals with moderate to high rates of atrophy. These results mirror previously reported 

findings that high education individuals decline slower prior to a diagnosis of MCI or 

dementia, but decline faster after clinical disease is diagnosed (Amieva et al., 2014; 

Scarmeas et al., 2006; Stern et al., 1999), and raise two important questions. First, what is 

the magnitude and real world significance of the education impact on late life cognitive 

trajectories? Second, since education is a complex, multifactorial variable that affects health 

and cognitive function in many different ways, what are the mechanisms by which education 

influences cognitive trajectories?

4.2. Impact of Education Effects

Figure 2 can help to address the impact of education on late life cognitive trajectories. It 

shows predicted cognitive trajectories for individuals with average rates of brain atrophy in 

Normal, MCI, and Dementia groups. The expected trajectory for a typical high education 

Normal starts above average and does not decline, while the expected trajectory for a typical 

low education Normal starts lower and declines slightly. Even when absolute differences in 

rates of decline in the high education and low education trajectories are relatively small, a 

lower start point combined with faster decline, in the context of disease processes that 

progress over decades, could result in substantially earlier clinical expression of dementia in 

low education individuals. This is consistent with the conclusions of Amieva et al. (2014). 

They argued that cognitive decline in both low and high education groups starts at the time 

of onset of AD disease pathology, but progression to dementia occurred in about 7 years in 

low education individuals in their study in contrast to about 16 years on average in those 

with high education. Dementia free survival for 9 additional years represents a major impact 

at personal, familial, and societal levels. Even though high education individuals might 

decline more rapidly as brain degeneration progresses and eventually become more impaired 

on average, the disability free life span is substantially extended. Consequently, increasing 

population levels of education could have major public health benefits (de la Fuente-

Fernandez, 2006).

4.3. Mechanisms of Education Effects

Results of this study raise important questions about mechanistic pathways by which 

education might influence cognition. Education could impact late life cognitive health 

through promoting brain maintenance, a relatively new concept that refers to structural and 
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functional brain integrity associated with successful cognitive aging (Nyberg, Lovden, 

Riklund, Lindenberger, & Backman, 2012). Several studies have shown a link between 

education and brain health. Rolstad et al. (2010) reported that CSF total tau level in stable 

MCI cases differed by education level and suggested that education might modify the level 

of AD pathology. Foubert-Samier et al. (2012) showed an association of education with 

temporoparietal and orbitofrontal volumes and with white matter tracts connected to these 

gray matter regions. Liu et al. (2012) reported regional differences in cortical thickness 

associated with education. Negative results also have been reported. EClipSE Collaborative 

Members et al. (2010) did not find an association between education and specific 

neuropathologies despite showing that education protected against incident dementia.

In our study, education was not associated with brain atrophy rate, and in a secondary 

analysis, did not modify atrophy rate differences among clinical diagnosis groups. This 

suggests that accelerated cognitive decline in highly educated individuals with dementia is 

not simply because brain atrophy rate is greater when the landmark of a clinical diagnosis of 

dementia is reached, and points to mechanisms outside of brain structural integrity as 

principal mediators of the education effect on the rate of cognitive decline. Specifically, 

cognitive and brain compensatory processes that are influenced by education merit 

consideration as important parts of the pathways that link education, brain degeneration, and 

cognitive decline.

Education might develop skills and knowledge that confer lifelong advantages for problem 

solving and the ability to adapt to environmental demands and minimize effects of brain 

degeneration. Brain function might also be an important mediator by providing the neural 

substrate of these cognitively protective processes. Specifically, cognitive reserve has been 

proposed to have two brain mechanisms – neural reserve and neural compensation 

(Steffener, Reuben, Rakitin, & Stern, 2011) – each of which may be affected by education. 

First, education has been related to greater gray matter volume in cortical regions, including 

the anterior cingulate gyrus and insula, along with greater gray matter metabolism and 

functional connectivity of the anterior cingulate with other brain regions (Arenaza-Urquijo 

et al., 2013). Thus education may contribute to neural reserve via increased efficiency and 

capacity of existing neural resources (Steffener et al., 2011). Second, education has been 

related to better brain network recruitment and efficiency (Steffener et al., 2011), suggesting 

that it may contribute to neural compensation via increased recruitment of resources from 

non-target brain regions.

In sum, education may contribute to cognitive reserve through increased capacity for 

processing cognitive tasks and more efficient recruitment of neural resources (Springer, 

McIntosh, Winocur, & Grady, 2005). This efficiency and redundancy in brain function may 

explain how individuals with high cognitive reserve can maintain intact cognitive abilities in 

the context of neuropathology that would otherwise cause cognitive impairment. However, 

once pathology begins to interfere with the brain’s enhanced efficiency and functional 

connectivity, decline may be more rapid than it is in those without elevated levels of these 

two functional attributes. In effect, highly developed, complex functional networks that 

promote resilience are also possibly more sensitive to effects of developing brain injury. A 

study correlating cognitive reserve composite scores (in which one component was 
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education) with fMRI activations (Bosch et al., 2010) found patterns consistent with the 

effects of education reported here. In normal controls, high cognitive reserve was associated 

with more efficient use (i.e. less activation) for cognitive networks along with more modest 

deactivation of the default mode network (DMN). Conversely patients with mild cognitive 

impairment showed an inverse relation of cognitive reserve with network activation. 

Cognitive networks were more activated in high cognitive reserve (indicating less 

efficiency), while the DMN activations had a more negative correlation with cognitive 

reserve than among normals.

Future studies are needed to more comprehensively delineate paths by which education 

might modify late life cognitive trajectories. Longitudinal studies that carefully measure 

cognitive change and include measures of important mediators including biomarkers of brain 

diseases and imaging measures of brain structure and function are especially needed. 

However, broad diversity of education levels is critical in these studies, and a limitation of 

the literature to date is that studies with biomarkers and imaging are often of relatively 

homogenous, high education populations while studies with greater diversity of education do 

not have comprehensive biomarker and imaging data. The cohort described in this study is 

very heterogenous in educational background, has well characterized longitudinal cognitive 

trajectories, and has comprehensive MRI based imaging, and so, future studies with this 

cohort might help to address some of these questions.

The importance of having a broad range of education in studies of education effects on 

cognitive trajectories is highlighted by results of the analyses that compared education 

effects across racial/ethnic groups. Education modified the effects of brain atrophy on 

cognitive decline in the combined sample in this study and in Hispanics, but not in African 

Americans or Caucasians. This is not just a sample size issue because this was observed in 

the Hispanic sub group but not the larger Caucasian group. Education levels were relatively 

high in African Americans (mean = 13.3, SD = 3.3) and Caucasians (mean = 14.8, SD = 

3.3). Mean education was substantially lower and variance was substantially higher in 

Hispanics (mean = 8.6, SD = 5.3). Variance also was relatively high in the combined sample 

( SD =4.6). The secondary analysis that replaced continuous education with categorical 

education showed that the education by gray matter change interaction was present for the 

lowest versus the highest education groups but not for the intermediate groups. This provides 

evidence that range of education differences is an important factor underlying this 

interaction and that this is not unique to Hispanics. This finding also highlights the 

importance of having a broad range of education in studies of education effects on cognitive 

trajectories.

4.4. Education, Cognitive Reserve, Brain Reserve, and Brain Maintenance

This study has theoretical implications for understanding how education relates to the 

constructs of brain maintenance, brain reserve, and cognitive reserve. Cognitive reserve is 

best conceptualized as a multifactorial combination of compensatory processes 

encompassing brain function and cognitive processes that protect against cognitive decline 

associated with brain diseases of aging (Barulli & Stern, 2013). An expectation that 

cognitive reserve should dynamically change as brain pathology and compensatory 
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processes change is inherent in this conceptualization. Our results showed that brain 

maintenance (which can be operationalized as a relative lack of decrease of gray matter 

volume) was strongly associated with less cognitive decline. Education was associated with 

greater resilience of cognition to early and mild brain degeneration but less cognitive 

resilience to higher rates of brain degeneration. Cognitive reserve refers to resilience to 

cognitive decline resulting from brain injury, so our results suggest that education was 

associated with greater cognitive reserve at higher levels of brain maintenance but with less 

reserve as brain integrity declined. This suggests that education is not a simple proxy for 

cognitive reserve because its effect on cognitive decline changes in degree and direction as 

structural brain integrity declines.

Measurement of cognitive reserve coupled with measurement of brain integrity can provide 

important information for understanding prognosis for future cognitive decline but this 

presupposes concurrent measurement of both cognitive reserve and brain integrity. 

Education is a static variable that cannot reflect dynamic changes, but there are other 

approaches to measuring dynamic reserve. First, dynamic proxies for cognitive reserve 

might have value. For example, recent studies have operationalized cognitive reserve as a 

composite of measures of vocabulary and reading ability, which can change over time, and 

education, and have shown that this measure moderates the effects of biomarkers of 

Alzheimer’s disease (AD) on incident dementia in pre-symptomatic individuals at high risk 

for AD (Pettigrew et al., 2013; Soldan, Pettigrew, & Albert, 2018). It is noteworthy that 

education had relatively weak effects on risk for dementia in comparison with the dynamic 

components, vocabulary and reading (Pettigrew et al., 2013). A second approach is to 

indirectly measure cognitive reserve as the difference between observed cognitive function 

and that expected on the basis of brain structure and demographic variables (Barulli & Stern, 

2013; Reed et al., 2011). A third approach is to directly measure cognitive and brain 

function processes underlying reserve. As these mechanisms become better understood, 

measurement of these processes will yield dynamic measures of reserve. This approach is 

dependent on research advances to understand reserve, but has a clear advantage of direct 

measurement of processes that are shown to buffer against declining brain integrity.

This study also raises questions about how education is related to brain reserve. Brain 

reserve refers to “differences in brain size and other quantitative aspects of the brain that 

explain differential susceptibility to functional impairment in the presence of pathology or 

other neurological insult” (Barulli & Stern, 2013). We examined baseline gray matter 

volume as a simple proxy for brain reserve. Our results did not show a clear association of 

education to gray matter volume, and indeed there was a trend for higher education to be 

associated with lower volume. This is a specific but limited measure of brain reserve and 

there clearly is a need for future studies to examine the association between education and 

brain structure in a more comprehensive manner. Nevertheless, our results do not support the 

hypothesis that education contributes to greater brain reserve through greater amounts of 

grey matter volume.

Cognitive decline and dementia are major public health problems. Studies to clarify 

mechanisms that protect against late life cognitive decline are important for identifying 

interventions to promote late life cognitive health. This study shows that educational 
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experience can modify the effects of brain degeneration on cognitive decline, and points to 

future studies that might identify more granular mechanisms that could enhance cognitive 

reserve and late life cognitive health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Brain atrophy had a stronger effect on cognitive decline in older adults with 

higher education

• Higher education was associated with slower cognitive decline in individuals 

with low rates of brain atrophy

• Cognitive decline was more sensitive to brain atrophy in those with higher 

education, and was faster in high education individuals with moderate to high 

atrophy rates

• Education is a useful proxy for cognitive reserve in those with low brain 

atrophy rates but does not accurately indicate cognitive reserve as brain 

atrophy increases
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Figure 1. 
Expected rate of cognitive decline by cortical gray matter atrophy rate for two specific levels 

of education (8 and 16 years). Cognitive decline is annual decline in standard deviation units 

of baseline cognitive scores. Distributions of gray matter change rates in diagnostic groups 

are superimposed at the bottom. The education by gray matter change interaction effect on 

rate of cognitive decline was stististically significant (p<0.001).
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Figure 2. 
Expected 5-year longitudinal trajectories for verbal episodic memory scores for specific 

education levels (8 and 16 years) and specific brain atrophy values (average atrophy rates in 

this sample for Normal, MCI, and Dementia groups). Estimated model parameters were used 

to demonstrate the effects of education, brain atrophy, and their interaction on longitudinal 

change in this one specific cognitive outcome. The education by gray matter change 

interaction effect on rate of cognitive decline was stististically significant (p<0.001).
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Table 1

Sample characteristics.

Dementia MCI Normal Total

Gender - Female 33 (57.9%) 82 (49.4%) 153 (66.2%) 268 (59.0%)

Gender - Male 24 (42.1%) 84 (50.6%) 78 (33.8%) 186 (41.0%)

Age_IA - Mean (SD) 77.5 (±7.0) 75.0 (±7.0) 73.4 (±6.7) 74.5 (±7.0)

Education - Mean (SD) 11.5 (±4.7) 13.8 (±4.4) 12.8 (±4.4) 13.0 (±4.5)

Recruitment Source - Clinic 28 (49.1%) 85 (51.2%) 32 (13.9%) 145 (31.9%)

Recruitment Source - Community 29 (50.9%) 81 (48.8%) 199 (86.1%) 309 (68.1%)

Race/Ethnicity - African American (N=121) 15 (26.3%) 37 (22.3%) 68 (29.4%) 120 (26.4%)

Race/Ethnicity - Hispanic (N=111) 19 (33.3%) 17 (10.2%) 72 (31.2%) 108 (23.8%)

Race/Ethnicity - Other (N=16) 0 (0.0%) 7 (4.2%) 9 (3.9%) 16 (3.5%)

Race/Ethnicity - White (N=212) 23 (40.4%) 105 (63.3%) 82 (35.5%) 210 (46.3%)

APOE ε4 - 0 22 (38.6%) 88 (53.0%) 161 (69.7%) 271 (59.7%)

APOE ε4 - 1 35 (61.4%) 78 (47.0%) 70 (30.3%) 183 (40.3%)

Global Gray Change (raw)** - Mean (SD) −1.3 (±0.7) −1.0 (±0.7) −0.6 (±0.4) −0.8 (±0.6)

Global Gray Change (standardized) - Mean (SD) −0.6 (±0.8) −0.3 (±0.9) 0.1 (±0.6) −0.1 (±0.8)

Global Gray Baseline (standardized) - Mean (SD) −0.6 (±0.9) −0.1 (±1.0) 0.3 (±1.0) 0.0 (±1.0)

Episodic Memory BL - Mean (SD) −1.0 (±0.5) −0.4 (±0.7) 0.5 (±0.8) −0.0 (±0.9)

Semantic Memory BL - Mean (SD) −0.8 (±1.0) 0.0 (±0.8) 0.2 (±0.9) 0.0 (±0.9)

Executive Function BL - Mean (SD) −0.7 (±0.9) −0.1 (±0.7) 0.4 (±0.9) 0.1 (±0.9)

Spatial BL - Mean (SD) −0.6 (±1.0) −0.1 (±0.9) 0.2 (±0.9) 0.0 (±1.0)

**
log jacobian X 100
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Table 2

Main and Interaction Effects of Education and Global Gray Matter Change on Global Cognitive Change.

variable estimate s.e. p

Global Gray Change 0.056 0.009 0.001

Education by Global Gray Change 0.005 0.001 0.001

Education (centered at 12 years) −0.001 0.001 0.495
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Table 3

Main and Interaction Effects (SEs) of Education and Global Gray Matter Change on Global Cognitive Change 

by Ethnicity.

variable African American Hispanic Caucasian

Education 0.000 (0.001) 0.000 (0.001) 0.000 (0.001)

Gray Matter Change 0.054 (0.014)+++ 0.031 (0.012)++ 0.091 (0.018)+++

Gray Matter Change by Education 0.000 (0.003) 0.003 (0.002)+ −0.002 (0.004)

+
p<0.05,

++
p<0.01,

+++
p<0.001
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