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Abstract

There is a growing consensus that social cognition and behavior emerge from interactions across
distributed regions of the “social brain”. Researchers have traditionally focused their attention on
functional response properties of these gray matter networks and neglected the vital role of white
matter connections in establishing such networks and their functions. In this article, we conduct a
comprehensive review of prior research on structural connectivity in social neuroscience and
highlight the importance of this literature in clarifying brain mechanisms of social cognition. We
pay particular attention to three key social processes: face processing, embodied cognition, and
theory of mind, and their respective underlying neural networks. To fully identify and characterize
the anatomical architecture of these networks, we further implement probabilistic tractography on
a large sample of diffusion-weighted imaging data. The combination of an in-depth literature
review and the empirical investigation gives us an unprecedented, well-defined landscape of white
matter pathways underlying major social brain networks. Finally, we discuss current problems in
the field, outline suggestions for best practice in diffusion-imaging data collection and analysis,
and offer new directions for future research.

Keywords

white matter; social cognition; face processing; mirroring; mentalizing; diffusion imaging;
tractography

1. Introduction

The history of social neuroscience shows an overwhelming emphasis on the functionality of
gray matter, with a relative disregard of white matter (WM) (Fig. 1). However, few would
deny the importance of WM for human cognition and behavior. It makes up half of the
whole cerebral volume and plays a vital role in communications between cortical areas
(Douglas Fields, 2008). Studies of human WM can provide insight into the organization of
brain systems and the functions they perform (Wandell, 2016). Several WM structures have
been well characterized for vision (e.g. optic tract, Rokem et al., 2017), sensorimotor (e.g.
corticospinal tract, Ciccarelli et al., 2008), episodic memory (e.g. fornix, Thomas et al.,
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2011), and language (e.g. arcuate fasciculus, Dick et al., 2014; Friederici, 2015). However,
current knowledge about the specific WM tracts underlying social cognition is limited.

The past few years have seen an increasing number of structural connectivity studies of
social cognition, many of them propelled by the fast development of diffusion imaging
techniques. Despite this, no dedicated review or meta-analysis exists in this field. Here we
fill this void by providing a systematic review of existing studies (n=51) of WM related to
three key social processes (face processing, embodied cognition, and theory of mind) and
their respective underlying brain networks. In addition, to better understand the WM
connectivity profile within each network, we carried out a matched empirical investigation
on a large diffusion-weighted imaging dataset (n=103), using probabilistic tractography, to
further define the tracts involved in social cognition. We then make conclusions based on the
convergence of findings across the literature review and the empirical study. Finally, we
outline current problems in the field, discuss emerging trends in methodology, and highlight
new directions for future research. We begin by providing a brief overview of techniques
used to measure WM in the human brain.

1.1 Techniques Used to Measure White Matter

There are three major tools currently used to measure WM connections in social
neuroscience: diffusion-weighted MRI (dMRI), structural MRI (sMRI), and direct electrical
stimulation (DES). In principle, dMRI is mainly used for characterizing macro- and
microstructural properties of WM tracts, as well as for delineating long-range WM pathways
between disparate brain regions. SMRI makes it possible to visualize and evaluate the
macroscopic properties of local WM at high resolution, which is ideal for anatomical
morphometry and detection of WM abnormalities and damage for clinical diagnosis. DES
provides real-time causal investigations on the functional role of various WM tracts.

1.1.1 Diffusion-Weighted MRI (dMRI)—dMRI is the most popular and powerful
technique for exploring WM anatomy and quantifying WM properties in the living human
brain. The basic principle and concept behind this technique is that dAMRI measures the
random motion or diffusion of water molecules, which is restricted by tissue microstructure.
When this microstructure is more organized, such as in WM, water diffusion is anisotropic,
in that diffusion is less hindered parallel than perpendicular to WM fibers. Thus, by
measuring the orientational dependence of water diffusion, dMRI infers the microstructure
and properties of surrounding WM tissue (Jbabdi et al., 2015).

The simplest way to quantify the degree of anisotropic diffusion is the diffusion tensor
model, which estimates the diffusion process by an ellipsoid, also known as tensor (hence
the name origin of diffusion tensor imaging, DTI) (Soares et al., 2013). Several metrics can
be derived from DTI in each voxel, including the mean diffusivity (MD), the degree of
anisotropy (i.e. fractional anisotropy, FA) and two directional diffusivity measures (i.e. axial
diffusivity, AD; radial diffusivity, RD). Variations in these metrics have been associated with
alterations in the underlying WM microstructure. While FA is often used as a summary
measure of local WM “integrity”, MD/AD/RD are useful indicators of WM maturation and
dysfunction (Alexander et al., 2007). For example, MD is an inverse measure of the
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membrane density and sensitive to cellularity, edema and necrosis; AD has been reported to
increase with brain maturation and decrease with axonal injury; RD is indicative of the
degree of (de-)myelination and axonal diameters/density (Tromp, 2016). Four analysis
strategies are typically applied to DTI metrics when researchers try to identify local WM
differences across individuals or abnormalities in clinical populations: they can be compared
locally in every voxel after registration to an anatomical atlas (voxel-based analysis), or
averaged within a priori specific regions-of-interest (ROI-based analysis), or sampled along
pathways after fiber tract reconstruction (tractography-based analysis), or analyzed based on
the skeletonization of group registered FA maps (tract-based spatial statistics, TBSS)
(Feldman et al., 2010; Soares et al., 2013; Travers et al., 2012). These strategies can also be
applied to the investigation of anatomical correlates of numerous experimental and clinical
conditions. An in-depth interpretation of DTI metrics (FA/MD/AD/RD) as well as the
exploration of the relative strengths and weaknesses of each analysis approach is beyond the
scope of this review but can be found in several review papers (Alexander et al., 2007,
Feldman et al., 2010; Jones and Cercignani, 2010; Soares et al., 2013; Tromp, 2016).

Another advantage of dMRI techniques is the ability to visualize and characterize long-range
WM pathways. To date, dMRI tractography is the only available tool to estimate the
trajectories of WM fibers /n vivo, by measuring the principal direction of water diffusivity
on a voxel-by-voxel basis and piecing together information from contiguous voxels (Jbabdi
etal., 2015). A long-range WM tract usually includes many fascicles and the computational
estimate of a fascicle by tractography algorithms is called a streamline. There are two types
of tractography algorithms: deterministic and probabilistic (Roberts et al., 2013; Rokem et
al., 2017). The former is designed to trace a single path between two regions of interest, and
thus is more suitable for identifying large WM fasciculi of the brain. Probabilistic
tractography is more useful for quantitatively analyzing the connectivity between two
regions based on the probability of a connection, taking into account that a single voxel
might connect with more than one target voxel. Once dMRI tractography is completed for a
particular WM pathway, one can inspect its macroscopic features (e.g. trajectory shape and
volume), microstructural properties (e.g. FA/MD/AD/RD) and connectivity strength (e.g.
probability or streamline count) (Soares et al., 2013). These approaches allow the researcher
to compare equivalent WM pathways across individuals, even if the precise location of the
tract varies (Feldman et al., 2010).

A fundamental limitation of dMRI is the indirect nature of its measurements. Since all
estimates are based on water diffusivity, dMRI techniques provide only computational
models of WM tissues with many theoretical assumptions about the underlying processes
and structures. This makes dMRI error-prone and highly dependent on the data quality, the
chosen diffusion model, and the analysis pipeline used (Jones et al., 2013). In addition,
dMRI tractography does not provide information about the directionality (afferent or
efferent) or functionality (inhibitory or excitatory) of a WM tract (Jones, 2010) and can be
inaccurate when describing WM microstructure in regions with crossing/branching fibers or
complex spatial arrangement (e.g. superficial WM fiber systems) (Feldman et al., 2010;
Reveley et al., 2015).
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1.1.2 Structural MRI (sMRI)—Conventional MRI techniques can also provide useful
qualitative and quantitative measurements of WM structures in the brain. Rather than
measuring water diffusion rate, SMRI collects MR signals (T1 or T2 relaxation) that vary
across tissue types, since gray matter contains more cell bodies while WM is primarily
composed of myelinated axons and glial cells. SMRI with morphometric analysis is used to
measure the shape, size, myelination, and integrity of WM structures, which is very helpful
for quantitative assessments of local WM changes in patient-control studies. One limitation
of sSMRI is that this technique only allows for voxel-level analysis, which restricts
investigations to local WM characteristics. In addition, SMRI provides no information about
microstructural properties of white matter (unless using very sophisticated modeling such as
multi-compartment models) (Jbabdi et al., 2015). A recent trend is to use more quantitative
MR sequence to directly measure WM tissue properties (e.g. magnetization transfer, T1/T2
relaxometry) (Alexander et al., 2011) and complement sMRI with dMRI to capture a
comprehensive picture of WM maturation and integrity (Erus et al., 2015).

1.1.3 Direct Electrical Stimulation (DES)—dMRI and sSMRI primarily use correlation
analyses to reveal the relationship between WM tracts and behavior. Because correlation is
not causation, structure-function relationships must be validated with techniques possessing
stronger inferential power. DES is performed on patients during awake neurosurgery; it
provides a rare and unigque opportunity to gain insight into the function of various WM tracts
(Duffau, 2015). In this technique, the neurosurgeon applies electrical stimulation to a well-
defined WM tract, thus creating a “temporary lesion” by disrupting the function of that WM
tract and consequently changes corresponding behavior. This technique provides real-time
structure-function mapping with high spatial resolution, and has the strong advantages in
scrutinizing the exact role (i.e. critical versus participatory) of a particular WM tract in
specific mental process.

Like other techniques, DES has several inherent problems. First, because the technique is
invasive (e.g. partial resection is required to access the WM beyond the cortex) and only
restricted to special clinical groups (e.g. patients with gliomas), the sample sizes in DES
studies are typically small. Second, some patients (e.g. with low-grade glioma) may have
exhibited abnormal WM profiles for a prolonged period of time, thus confounding DES
results with neuroplasticity and compensation effects. Third, the range of behavioral
assessment is often limited in DES research, due to limited time available during surgery
(Duffau, 2015).

1.2 Social Cognition and Brain Networks

An extensive literature in social neuroscience suggests that there are at least three large-scale
neural networks/circuits underlying social processes and interactions (Cross et al., 2016;
Kennedy and Adolphs, 2012; Yang et al., 2015): the “face perception network” (Duchaine
and Yovel, 2015; Gobbini and Haxby, 2007; Haxby et al., 2000), the “mirroring network”
(lacoboni, 2009a; Molenberghs et al., 2012; Rizzolatti and Craighero, 2004) and the
“mentalizing network” (Mar, 2011; Schurz et al., 2014) (see Fig. 2). We briefly describe
each network before turning to the WM review.
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1.2.1 Face Processing and Face Perception Network—Social interactions often
start with recognizing conspecific’s faces. This ability is arguably the most developed social
skill in humans. Converging empirical evidence suggests that face perception is mediated by
a widely distributed network of face-selective areas, each engaging in different aspects of
face processing (Duchaine and Yovel, 2015; Gobbini and Haxby, 2007; Haxby et al., 2000).
For example, posterior regions, such as the occipital face area (OFA), process low-level
visual features and analyze facial parts (Pitcher et al., 2011); the fusiform face area (FFA) is
involved in processing invariant facial features, such as identity and gender (Haxby et al.,
2000), whereas the posterior superior temporal sulcus (STS) is more sensitive to changeable
features, such as facial expression and lip movement (Gobbini and Haxby, 2007). Anterior
regions, such as the amygdala (AMG), subserve emotional aspects of face representations
(Mende-siedlecki et al., 2013); the anterior temporal lobe (ATL) stores conceptual
knowledge related to faces, including names and biographical information (Collins & Olson,
2014; Wang et al., 2017); the inferior frontal gyrus (IFG) processes the semantic aspects of
faces as well as gaze directions (Chan and Downing, 2011; Ishai, 2008), and the
orbitofrontal cortex (OFC) evaluates rewarding aspects of faces, like facial attractiveness and
trustworthiness (Mende-siedlecki et al., 2013; Troiani et al., 2016).

1.2.2 Embodied Cognition and Mirroring Network—Social interactions also require
individuals to rapidly and effortlessly grasp others’ intentions and emotions, and respond
accordingly and appropriately. These social reciprocity skills are often linked to the so-
called “mirroring network”, which mediates our capacity to share the meaning of actions
and emotions through the embodied simulation mechanism (Gallese, 2007). By simulating
observed action (or emotions) with one’s own motor (or affective) system, the mirroring
mechanism provides the basis for action understanding (Rizzolatti et al., 2014; Rizzolatti
and Craighero, 2004; Rizzolatti and Sinigaglia, 2010), imitation (Caspers et al., 2010;
lacoboni, 2009b), emotional recognition (Bastiaansen et al., 2009; Niedenthal et al., 2010;
van der Gaag et al., 2007; Wood et al., 2016) and empathy (Bernhardt and Singer, 2012;
Corradini and Antonietti, 2013; Gonzalez-Liencres et al., 2013; lacoboni, 2009a; Shamay-
Tsoory, 2011). In humans, the putative mirroring network is formed by a collection of areas
(Bonini, 2017; Molenberghs et al., 2012; Mukamel et al., 2010), including the inferior
frontal gyrus (IFG, which represents motor plans of actions; Rizzolatti et al., 2014), the
inferior parietal lobule (IPL, which represents abstract action goal; Hamilton & Grafton,
2006), the posterior STS (which is theorized to serve as the sensory input of the network;
Rizzolatti & Craighero, 2004), the anterior cingulate cortex (ACC, empathy for pain;
Bernhardt & Singer, 2012), the anterior insula (Al, empathy for disgust; Bernhardt & Singer,
2012) and the amygdala (AMG, empathy for fear; Bastiaansen et al., 2009).

1.2.3 Theory of Mind and Mentalizing Network—Finally, the capacity to make
accurate inferences about the mental states of other people (e.g. their thoughts, needs,
desires, and beliefs) is important for predicting the behavior of others and for facilitating
social interactions (Blakemore, 2008). This particular skill and its associated mental
processes have often been referred to as “mentalizing” or “theory of mind” (ToM). A large
number of neuroimaging and lesion studies have delineated an extensive brain network for
mentalizing abilities (Fig. 2), mainly including the dorsal and ventral medial prefrontal
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cortex (AIMPFC and vVMPFC), the temporo-parietal junction (TPJ), the posterior cingulate
cortex/precuneus (PCC/PreC), the ATL, the IFG and the AMG (Mar, 2011; Molenberghs et
al., 2016; Schurz et al., 2014). The specific function of each region has not yet been
clarified, but some (e.g. MPFC and TPJ) are consistently engaged irrespective of the mental
state contents and the task modalities (Schurz et al., 2014), whereas the involvement of other
regions seems to be more task-dependent (Carrington and Bailey, 2009; Molenberghs et al.,
2016).

2. A Systematic Literature Review on White Matter in Social Neuroscience

2.1 Study Selection

A step-wise procedure was used to identify white matter research of social cognition in the
past decade. First, we used the following search terms on Pubmed and Web of Science on
4/30/2017: (“face” OR “embodied” OR “mirroring” OR “action perception” OR “action
execution” OR “imitation” OR “empathy” OR “emotion recognition” OR “theory of mind”
OR “mentalizing”) AND (“white matter” OR “tract” OR “pathway” OR “structural
connectivity” OR “anatomical connectivity”) AND (“imaging” OR “MRI” OR “diffusion”
OR “dMRI” OR “DTI” OR “tractography” OR “structural MRI” OR “morphometry” OR
“direct electrical stimulation” OR “brain stimulation”). A total of 506 publications were
identified (Fig. 3). After removing 228 duplicates between two databases, articles were
assessed by reviewing their titles and abstracts for matching the following inclusion criteria:
(1) written in the English language; (2) reported empirical results; (3) included human
subjects; and (4) published in a peer-reviewed journal. It is important to note that this initial
screen resulted in numerous clinical studies on social disorders that revealed abnormalities
in WM structures in a patient groups compared to a healthy cohort. However, making a
simple comparison between patients with a social disorder and a healthy group is not enough
to establish specific associations between WM and social cognition, because the observed
differences could be caused by patients’ non-social symptoms (e.g. repetitive movements in
autism; Travers et al., 2012). Therefore, we excluded studies with simple patient-control
comparisons and only included papers with correlation analyses between WM and social
cognition measures. This yielded a final sample of 51 studies on 3745 subjects (see Fig. 3
and Tables 1-3 for details).

2.2 Methodological Summary

Fig. 4 summarizes a couple of key features in the literature. As can be seen, the sample size
varies across studies (ranging from 5 to 766) and depends on technique modality. In
addition, it is clear that the most common data analysis method was tractography-based and
the most common dMRI measure was FA, although many studies used overlapping measures
and methods. Fig. 4 also illustrates the frequency of two critical data acquisition parameters
used in dMRI research: the “gradient directions” and the “b-value”. The humber of
diffusion-encoding gradient directions defines the number of orientations at which diffusion
signals are sampled. As the number increases, more diffusion-weighted images are used for
the calculation of the diffusion tensor model, resulting in more accurate estimation of
microstructural indices related to the tensor. Although more directions is better, this comes
at a cost as a large number of gradient directions elongates the scan time. The b-value
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represents the degree of diffusion weighting and determines the strength and duration of the
diffusion gradients. The ability to delineate WM fasciculi oriented in different directions
improves as the b-value increases, but higher b-values (e.g. >3000) come at a cost of lower
signal-to-noise ratio (Jones et al., 2013). As we can see from Fig. 4, most dMRI studies in
the literature used 17—32 gradient directions with a b-value of 1000 s/mm2.

We found that more than half of the studies, particularly of the mirroring and mentalizing
network, are based on clinical populations. They included major psychiatric and
neurological disorders characterized by prominent social impairments, such as autism
spectrum disorder, behavioral-variant frontotemporal dementia, and prosopagnosia, as well
as those with secondary impairments in social cognition, such as schizophrenia, amyotrophic
lateral sclerosis, mild cognitive impairment, traumatic brain injury, Parkinson’s disease,
velocardiofacial syndrome, and multiple sclerosis. In terms of social cognitive
measurements, the whole literature has employed several behavioral paradigms to probe
each social function (see Table 1-3). For example, face processing skills were measured by
celebrity face recognition tasks, face matching tasks (e.g. Benton tests, Philadelphia battery),
and face memory tasks (e.g. Cambridge tests); empathy was assessed by the “empathy
quotient” and “interpersonal reactivity index”; mentalizing abilities were evaluated by “false
belief” stories, cartoon animations, comic strip vignettes, and the “reading the mind in the
eyes” task. Such a wide variety of seemingly disparate disorders as well as diverse
behavioral paradigms provides an excellent opportunity for exploring the relationship
between WM tracts and social functions.

2.3 Major Findings

2.3.1 Face Perception Network—Two WM tracts are repeatedly reported in the face
perception literature: the inferior longitudinal fasciculus (ILF) and the inferior fronto-
occipital fasciculus (IFOF) (see Table 1). They are the main associative bundles that project
through occipito-temporal cortex, connecting the occipital lobe to the temporal, and frontal
lobes, respectively (Rokem et al., 2017). The ILF is a monosynaptic pathway connecting
ventral extrastriate regions, and in some cases portions of the inferior parietal lobe, to the
anterior temporal lobe, the hippocampus, and the amygdala (Catani et al., 2003). The IFOF
begins in the ventral occipital cortex, continues medially through the temporal cortex dorsal
to the uncinate fasciculus, and terminates in the inferior frontal, medial prefrontal, and
orbitofrontal cortex (Catani and Thiebaut de Schotten, 2008). dMRI tractography combined
with functional face localizer confirmed that the ILF connects multiple pairs of face
perception network nodes including the OFA-FFA, OFA-ATL, FFA-ATL, FFA-AMG and
STS-AMG (Gschwind et al., 2012; lidaka et al., 2012; Pyles et al., 2013), while the IFOF
connects the OFA-IFG (Valdés-Sosa et al., 2011). Converging evidence, described below,
indicates that these two tracts are critically important for face processing.

First, the early development of the right ILF is associated with the emergent functional
properties of the face perception network. Using both DTI and fMRI, Scherf et al., (2014)
investigated whether developmental differences in the structural properties of bilateral ILF
were related to developmental differences in the functional characteristics of the face-
processing regions connected by ILF (e.g. OFA, FFA). Across children, adolescents, and
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adults (ages 6-23 years), they found bilateral ILF exhibited an age-related increase in
volume, and those individuals with larger right ILF volumes also exhibited larger right FFA
volumes. This suggests a tight relationship between the structural refinements of right ILF
and functional selectivity in the developing face perception network.

Similarly, age-related declines in face perception skills have been linked to degeneration of
the right IFOF. Thomas et al., (2008) used DTI to scan subjects across a wide age range (18-
86 years) and also measured individual performance on face perception tasks. They observed
that the right IFOF was the only tract that decreased in volume as a function of age, and
subjects with smaller volumes and lower FA values in the right IFOF exhibited worse
performance on the face matching task. This evidence indicates that the right IFOF is
vulnerable to the aging process, and age-related decreases in the structural properties of this
tract might be responsible for decrements in face processing abilities in aging adults.

Moreover, disruptions in ILF and IFOF are associated with face blindness in prosopagnosia.
Developmental prosopagnosia (DP) is a social disorder characterized by a lifelong
impairment in face recognition despite normal sensory vision and intelligence. Interestingly,
DP patients exhibit normal patterns of fMRI activation in response to faces in posterior parts
of the face perception network (e.g. OFA, FFA; Behrmann et al., 2005), but reduced
activation in anterior nodes (e.g. ATL; Avidan et al., 2014). Based on this observation, it had
been suggested that the impairments in DP might arise, not from a dysfunction of cortical
parts of the face perception network, but from a failure to propagate signals from the intact
posterior components to the compromised anterior components of the network. As the two
major tracts that project through the posterior to anterior regions of the face network, the ILF
and IFOF are top candidates for testing. As such, Thomas et al., (2009) scanned a group of
DP patients and measured the severity of their face recognition deficits. Relative to the
control group, the integrity in the right ILF and IFOF in DP patients was remarkably
compromised (i.e. lower FA and volume) and the extent of this compromise was correlated
with individual face perception deficits. This finding was interpreted as evidence for DP as a
“disconnection syndrome”, i.e. face blindness occurs because intact posterior face
processing regions are unable to communicate via the ILF and IFOF with more anterior
regions. Similar findings were also observed in other types of prosopagnosia where patients
exhibited severe fiber reductions in the right ILF (Grossi et al., 2014; Valdés-Sosa et al.,
2011).

Other face processing abilities are also related to the ILF and IFOF, although the underlying
mechanisms are unclear. Unger et al., (2016) showed that face memory accuracy was
negatively correlated with FA in the right ILF and IFOF, but positively correlated with FA in
the left IFOF. Tavor et al., (2014) reported similar findings and further indicated that the
anterior part of right ILF explained the most inter-individual variation of face memory
performance. Moreover, individual differences in processing facial communicative signals
can be predicted by the structural connectivity between face-selective areas (e.g. FFA or
STS) and amygdala (AMG) via the ILF. People who are better at discerning threat-related
facial expressions showed higher FA in the FFA-AMG connectivity (Marstaller et al., 2016),
and people who have better social communication skills had larger volumes of the STS-
AMG pathway (lidaka et al., 2012).
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Aside from the ILF and IFOF, the superior longitudinal fasciculus (SLF) seems to be a third
WM tract that subserves face processing. Anatomically, the SLF connects superior-posterior
face-selective regions, such as the STS, with anterior-inferior face-selective regions (IFG
and OFC) (Ethofer et al., 2013; Gschwind et al., 2012). Functionally, the SLF has been
associated with gaze processing (Ethofer et al., 2011) and face-voice integration (Ethofer et
al., 2013).

It is important to note that almost every reported WM correlate of face processing skills is in
the right hemisphere. This lateralization of WM function is consistent with the significant
right-hemisphere predominance in the face perception literature: fMRI studies typically
show larger face activations in the right, relative to the left hemisphere, and behavioral
studies show better performance for faces presented in the left than the right visual fields
(Tavor et al., 2014). Some studies speculate that the left ILF is more specialized for face
tasks requiring access to language, such as face naming, while the right ILF may have
functions more aligned with strictly visuospatial functions, such as face discrimination
(Unger et al., 2016).

2.3.2 Mirroring Network—Converging evidence suggests that the superior longitudinal
fasciculus (SLF) is the most important WM tract for embodied social cognition (see Table
2). The SLF is a large association bundle composed of medial and lateral fibers connecting
the frontal, parietal, and temporal lobes (Kamali et al., 2014). This WM tract has a known
role in language and spatial attention (Merchant, 2011) and has recently been identified to be
the main fiber pathway for the fronto-parietal mirroring network (Hamzei et al., 2016; Hecht
et al., 2013; lacoboni and Dapretto, 2006; Parlatini et al., 2017). Several studies indicate that
the SLF is functionally associated with imitation, empathy, and emotion recognition
abilities. For example, Hecht et al., (2013) found that the evolved imitation skills across
species (macaques, chimpanzees, and humans) can be explained by increased SLF
connections supporting the fronto-parietal mirroring network. The empathy quotient is
positively correlated with FA values in the SLF bilaterally, most extensively in the right SLF
(Chou et al., 2011; Parkinson and Wheatley, 2014; Takeuchi et al., 2013). The SLF is also
associated with individual’s emotion recognition ability, regardless of whether the task is
face-based (Crespi et al., 2014; Philippi et al., 2009; Radoeva et al., 2012), story-based
(Crespi et al., 2016), or voice-based (Ethofer et al., 2013, 2012). When the right SLF is
disrupted by brain lesion (Philippi et al., 2009) or psychiatric disorders (Crespi et al., 2016,
2014; Radoeva et al., 2012; Saito et al., 2017), the integrity of SLF is also positively
correlated with patients’ emotion recognition skills.

Other robust associations between WM and embodied cognition have been identified in
three limbic tracts: the uncinate fasciculus (UF), the anterior thalamic radiation (ATR), and
the fornix. The UF is a hook-shaped ventral associative bundle that links medial temporal
areas (e.g. ATL, AMG) to portions of frontal cortices (both medial and lateral OFC) (Catani
and Thiebaut de Schotten, 2008). It has been linked to episodic memory, semantic memory,
and social-emotional processing (Von Der Heide et al., 2013). The ATR is a major projection
from the thalamus, which carries reciprocal connections from the hypothalamus and limbic
structures (e.g. AMG, hippocampus) to the prefrontal cortex and anterior cingulate cortex
(Catani et al., 2013). It has been primarily implicated in affective processing and emotion
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regulation (Downey et al., 2015). The fornix is a core limbic tract directly connecting the
hippocampus to the mammillary bodies and hypothalamus. It is mainly involved in episodic
memory and evaluative processing (Catani and Thiebaut de Schotten, 2008). Disruption of
these limbic tracts has been commonly observed in clinical disorders, such as the behavioral
variant frontotemporal dementia, mild cognitive impairment, and velocardiofacial syndrome
(Daianu et al., 2016; Liu et al., 2017; Perlstein et al., 2014), and these patients typically
exhibit severe impairments in empathy and emotion recognition abilities (Jalbrzikowski et
al., 2012; Kessels et al., 2007; Lough et al., 2006; Spoletini et al., 2008). Abnormal
diffusivity (AD, RD, and MD) has been reported in the right ATR, UF, and fornix in
frontotemporal dementia patients and correlates with disrupted understanding of emotion
and sarcasm (Downey et al., 2015). Reduced FA in the left UF in patients with mild
cognitive impairment correlates with impaired emotion recognition and expression (Fujie et
al., 2008). For patients with velocardiofacial syndrome, one study reported that empathy
scores correlated with radial diffusivity in the right ATR and negatively correlated with the
number of streamlines in right UF (Olszewski et al., 2017); the patients’ emotional
recognition performance for fear expression was also positively correlated with axial
diffusivity in the left UF (Jalbrzikowski et al., 2014). In addition, for patients with multiple
sclerosis, facial emotion recognition performance is negatively correlated with lesion
volume in bilateral UF, as well as the left fornix (Mike et al., 2013). For patients with acute
ischemic stroke or surgical resection for a diffuse low-grade glioma, disconnection of the
right UF predicted low empathy ability (Herbet et al., 2015b; Oishi et al., 2015). For
schizophrenia patients, subscales of empathy positively correlated with FA in the left ATR
(Fujino et al., 2014). Finally, the integrity of these three limbic tracts not only predicts socio-
emotional functioning in pathological circumstances, but also in normal individuals. For
instance, higher FA in the UF or ATR has been associated with higher levels of empathy
among healthy individuals (Parkinson and Wheatley, 2014), and larger WM volume in the
fornix is associated with higher empathy quotient scores (Takeuchi et al., 2013).

The ILF and IFOF also appear to be important for emotional recognition and empathy. Two
prior studies with large samples of patients with focal brain lesions reported that damage to
the right ILF or IFOF correlates with impairments in facial emotion recognition, more
specifically in the recognition of fear, anger, and sadness (Genova et al., 2015; Philippi et al.,
2009). For patients with Parkinson’s disease, decreased FA in bilateral IFOF and the left ILF
was associated with impaired sadness identification performance (Baggio et al., 2012).
Additionally, the inter-individual variation of emotion recognition and empathy abilities
among healthy adults can be predicted by the microstructure of the right ILF and bilateral
IFOF (Parkinson and Wheatley, 2014; Unger et al., 2016). Little is known, however, about
how the IFOF and ILF are implicated in embodied cognition, because the core mirroring
network (STS, IPL, and IFG) is usually thought to be part of the dorsal stream (Hamzei et
al., 2016). Since the two tracts directly project from early visual cortices to affective
mirroring areas (i.e. AMG, Al, and ACC) (Gschwind et al., 2012; Sarubbo et al., 2013), it is
possible that they engage in rapid evaluative processing paralleled with the basic embodied
simulation process to facilitate accurate recognition of emotions. Another possibility stems
from the nature of the biased behavioral paradigm used in the literature: almost all emotion
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recognition tasks are face-based, such as the Ekman Face Test, and it is already established
that the IFOF and ILF are essential for face processing (Rokem et al., 2017).

Interestingly, sex differences in empathy may be reflected in sex differences in WM
microstructure of the aforementioned tracts. Research on the “empathizing-systemizing”
theory (Baron-Cohen, 2009) suggests that females generally perform better on emotion
recognition and empathy tasks, whereas males excel in mental rotation, spatial navigation,
and mathematics (i.e. systemizing). Two studies have shown that empathizing skill is
positively correlated with microstructure in bilateral SLF, right ATR, right fornix, left ILF,
and left IFOF in females, but negatively correlated with microstructure in these tracts in
males (Chou et al., 2011; Takeuchi et al., 2013).

2.3.3 Mentalizing Network—The literature suggests that the cingulum and a portion of
the SLF, the arcuate fasciculus, are two pivotal WM tracts for mentalizing abilities (see
Table 3). The cingulum is a large association fiber pathway that encircles the corpus
callosum, going from the medial prefrontal cortex/anterior cingulate cortex through the
posterior cingulate cortex/precuneus, and from there to the medial temporal structures
proximal to the hippocampus. It is part of the limbic system and is broadly involved in
attention, memory, and emotional processing (Catani and Thiebaut de Schotten, 2008).
Given that the cingulum provides strong structural connections between the MPFC and PCC,
it has been argued as the main structural skeleton of the default mode network (van den
Heuvel et al., 2008) and the mentalizing network (Yordanova et al., 2017). The arcuate
fasciculus (AF) has long been implicated in language processing, as it connects Wernicke’s
area to Broca’s area in the left hemisphere; however, the function of the right AF remains
unclear. It has recently been proposed that the right AF might subserve mentalizing (Herbet
et al., 2014), since the tract connects frontal cortices with the right TPJ, a region responsible
for thinking about others’ thoughts and intentions (Saxe and Wexler, 2005).

Several clinical studies have reported that mentalizing abilities are compromised when the
cingulum or right AF is disrupted. For children with traumatic brain injury, the severity of
the ToM impairment is positively correlated with the degree of axonal injury in the left
cingulum (Levin et al., 2011). Individuals with high-functioning autism had lower right TPJ
activation, weaker functional connectivity between the TPJ and frontal areas during the ToM
task, and most critically, reduced WM integrity in the right AF near the TPJ (Kana et al.,
2014). Perhaps the most compelling evidence comes from two studies using direct electrical
stimulation of WM tracts during neurosurgery—the only technique that allows for direct
information on the functional role of WM tracts in cognition. Both studies found that virtual
disconnection of the right AF or cingulum severely impairs the accuracy of mental state
attribution (Herbet et al., 2015a; Yordanova et al., 2017). This suggests that proper
functioning of these tracts is essential for normal mentalizing abilities.

There is some evidence that these two tracts might be specialized for different mentalizing
processes. Studies on patients with gliomas revealed that damage to the right cingulum is
associated with impaired performance on inference-based tasks (e.g. comic strip vignettes),
whereas damage to the right AF is associated with impaired performance on perceptual-
based ToM tasks (e.g. “reading the mind in the eyes”) (Herbet et al., 2014). Considering that
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the cingulum and AF connect different nodes of the mentalizing network (the cingulum
mainly projects to medial nodes, such as MPFC and PCC, while the AF projects to lateral
nodes, such as the TPJ and IFG), this double dissociation in terms of WM function resonates
with previous fMRI studies showing that the MPFC engages most in inference-based ToM
tasks, whereas the IFG only activates during perceptual-based ToM tasks (Schurz et al.,
2014).

Substantial evidence in fMRI research suggests a critical role of the amygdala in ToM,
especially for face-based mental state inferences (Mar, 2011). This may be due to the
amygdala’s role in guiding attention to the eye region of the face, which may be an
important first step in the process of interpreting the mental states of others (Adolphs and
Spezio, 2006). However, the amygdala does not operate in isolation: WM tracts connecting
the amygdala to other mentalizing areas may also contribute to ToM processes. Several
studies have shown that amygdala-related WM tracts (i.e. UF, IFOF, and ILF) are important
for accurate mentalizing. For example, impaired ToM skills in patients with velocardiofacial
syndrome are associated with WM microstructural alterations in the left IFOF, left UF, and
bilateral ILF (Jalbrzikowski et al., 2014). Transient disconnection of the right IFOF by direct
electrical stimulation impairs performance on the “reading the mind in the eyes” task
(YYordanova et al., 2017). Cross-sectional research also supports the crucial role of these
amygdala-related WM tracts in lifespan changes in ToM abilities. Using TBSS, Grosse
Wiesmann et al., (2017) found that the emergence of explicit ToM abilities between 3 and 4
years of age is associated with an increase in streamline density in the right IFOF and
bilateral SLF/AF. Another study revealed that variation in the microstructure of the left UF
positively correlates with inter-individual variance of “reading the mind in the eyes” task
performance in 4-year-olds, but not in 6-year-olds, suggesting that the UF might be more
important for the emergence, but not maintenance, of ToM function (Anderson et al., 2015).
In addition, age-related declines in ToM abilities throughout the lifespan have been
associated with decreased FA in bilateral UF, right IFOF, and right SLF (Cabinio et al.,
2015).

2.4 Summary

To summarize, three major tracts in the right hemisphere have been implicated in face
processing: the ILF, the IFOF, and the SLF. Studies in young children and older adults, as
well as patients with prosopagnosia, all attest to the crucial role these tracts play in skilled
face perception. The literature on imitation, empathy, and emotional recognition identifies
the SLF as the most critical tract for embodied cognition, and it has also been identified as
the primary fiber pathway for the mirroring network. The ILF/IFOF and three limbic tracts
(UF, ATR, and fornix) have also shown robust associations with embodied social processes.
Disruption of these tracts causes severe impairments in empathy and emotion recognition
abilities across a variety of clinical disorders. Finally, WM research on ToM suggests that
the cingulum and the AF are essential for mentalizing abilities. This claim is bolstered by
strong evidence from direct electrical stimulation studies. Additionally, changes in ToM
abilities across the lifespan are associated with amygdala-related WM tracts (i.e. UF, IFOF,
and ILF). Bear in mind that our literature review tries to draw conclusions more generally
from the entire body of WM studies, rather than from any single finding.
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We believe our review is just the beginning to unveil the functionality of these major
associative WM tracts in social processing. We still have very limited knowledge about their
domain specificity and generality. For example, our review implicates the ILF in face
processing, empathy, emotion recognition, and mentalizing abilities, and the past literature
also suggests its critical roles in object recognition, reading and language processing
(Ashtari, 2012; Catani and Thiebaut de Schotten, 2008). This seemingly nonspecific role of
the ILF in a variety of social and non-social processes may not be surprising, considering
that the ILF is a large fasciculus reaching up to 12cm in length and that different fiber
bundles enter and exit the fasciculus at various positions. As such, the properties of WM
tissue vary systematically along the trajectory of the ILF, potentially yielding distinct
functional subcomponents that support discrete cognitive functions. For example, Tavor et
al., (2014) reported the anterior portion of the ILF is associated with face memory abilities,
whereas the middle and posterior portions are associated with scene memory abilities (also
see Gomez et al., 2015 and Song et al., 2015). These findings suggest the existence of
segregated segments or pathways within the ILF, each specialized for distinct functions (e.g.
face vs. scene processing). This logic also applies to other tracts that have been associated
with multiple social and non-social functions (e.g. UF, SLF, and IFOF) (Hecht et al., 2015;
Olson et al., 2015; Von Der Heide et al., 2013).

It is also worth noting that healthy WM in the corpus callosum (CC) appears to be important
for social cognition, as our literature review shows apparent involvement of the CC in both
embodied cognition (Baggio et al., 2012; Crespi et al., 2016; Fujino et al., 2014; Mike et al.,
2013; Parkinson and Wheatley, 2014; Takeuchi et al., 2013) and ToM (Cabinio et al., 2015;
Mike et al., 2013; Scheibel et al., 2011). This is consistent with research on autism and
agenesis of the corpus callosum, which both reveal that corpus callosum abnormalities can
cause severe impairments in social functioning in the real world (Paul et al., 2007; Travers et
al., 2012). One appealing hypothesis (Kennedy and Adolphs, 2012) is that social cognition is
contingent upon rapid and reliable communication between social brain areas that are
spatially separate, such as language-related areas in the left hemisphere and face processing
areas in the right hemisphere. Given the highly interactive, real-time nature of social
behavior, there is substantial pressure to integrate contralateral processing as efficiently as
possible; therefore, social cognition requires considerable amounts of myelinated corpus
callosum connections across hemispheres.

3. Elucidating Anatomical Architecture of Social Brain Networks

The above literature review has informed us of several important WM tracts for social
cognition. However, the exact architecture of interconnections between social brain regions
still remains unknown. Unraveling this connectivity profile is extremely useful when we
interpret results, because once we find a correlation between a WM tract and a social
behavior/disorder, we would like to infer what underlying neural communications (e.g.
AMG-MPFC interaction) are potentially involved or disrupted. A second motivation is to
bridge the conceptual gap between two major analysis methods used in the DTI literature.
The TBSS method tends to report findings based on the tract name listed in a standard brain
atlas (e.g. SLF, ATR), whereas the tractography-based studies frequently report results in
terms of pathways and seed ROIs (e.g. STS-IFG pathway). It is difficult to compare findings
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from these two methods without knowing the tract composition of each pathway. Last,
sample sizes are often small in this literature and many findings have not been replicated.
For these reasons, we conducted an empirical analysis on an existing dataset, described
below.

We performed probabilistic tractography on a large in-house DTI dataset (103 healthy young
adult subjects) accumulated from previous studies (Alm et al., 2016, 2015; Hampton et al.,
2016; Metoki et al., 2017; Unger et al., 2016). All studies used the same MR procedures and
parameters. We choose probabilistic tractography because it enables us to estimate the
likelihood/probability of every voxel involved in the trajectory of a defined WM pathway
(Behrens et al., 2007). By overlaying this probabilistic map on a standard WM atlas (i.e.
ICBM-DTI-81 atlas, Mori et al., 2008), we were able to extract the contribution of each
known WM tract to each social brain pathway (see detailed methods description in
Supplementary Materials and Methods). In short, our goal was to build the connectivity
matrix between putative regions in each social brain network and elucidate the fiber tract
composition for each pathway (see Fig. 5 and Table 4-6).

For the face perception network, probabilistic tractography classified 30.43% of WM voxels
into the tracts listed in the ICBM-DTI-81 atlas. Among all classified tracts, the SLF
occupied the most WM volume in the face network (32.35%), followed by the IFOF
(27.32%), ILF (23.81%), CC (6.17%), ATR (5.56%), and UF (5.35%). When we more
closely examined which specific pathways these tracts mainly subserved (see Table 4), we
found that the SLF constituted a large proportion of two dorsal pathways projecting to the
IFG (FFA-IFG:. 98.18%,; STS-IFG. 96.73%). This means that 98.18% of the voxels in the
FFA-IFG pathway were classified as SLF, so were 96.73% of the voxels in the STS-IFG
pathways. The IFOF was observed to mediate communications between posterior core face
areas (OFA, FFA, STS) and anterior amygdala-frontal face areas (OFA-IFG: 90.64%, OFA-
OFC: 71.71%,; OFA-AMG. 61.46%, FFA-OFC: 59.65%, STS-OFC: 55.53%, STS-AMG:
55.06%), and the ILF was found to support both short and long pathways along the ventral
stream (FFA-ATL. 69.26%, OFA-FFA: 65.41%, OFA-ATL: 49.86%). In addition, the CC
appeared to take part in two pathways with the OFC (AMG-OFC: 38.32%, IFG-OFC:
37.50%), and the ATR subserved connections between medial temporal cortex and IFG
(AMG-IFG: 94.92%; ATL-IFG: 61.90%). Finally, the UF was found to be involved in
connections between ATL, amygdala and OFC (ATL-OFC: 49.56%, ATL-AMG: 30.80%,;
AMG-OFC: 28.75%).

For the mirroring network, only 16.46% of the WM voxels could be classified by the tracts
listed in the ICBM-DTI-81 atlas. Among them, the SLF was the most dominant tract,
occupying 83.86% of WM voxels in the mirroring network, with the rest labelled as the
IFOF (6.72%), corticospinal tract (CST, 5.17%), ATR (1.96%), and UF (1.47%). For the
tract composition of each pathway in the mirroring network, Table 5 shows that the SLF
mediated all pathways between perisylvian regions (S7S-/FG: 99.68%, IPL-IFG: 99.54%,
STS-IPL. 96.35%) and played an important role in most ACC connections (/PL-ACC:
99.57%,; STS-ACC. 99.00%; IFG-ACC: 96.10%). Albeit in smaller proportions, the IFOF
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was found to be part of insula-related pathways (AMG-Al: 28.42%, STS-Al: 11.63%, Al-
ACC: 11.06%), and the CST was part of amygdala-related pathways (/PL-AMG: 22.21%,;
AMG-Al: 14.63%). The ATR and UF were mainly involved in AMG-ACC (81.25%) and
AMG-AI pathway (10.85%), respectively.

Last, for the mentalizing network, probabilistic tractography revealed that 32.04% of WM
voxels were atlas-listed tracts. The CC had the largest proportion of volume (32.58%),
followed by the IFOF (18.80%), SLF (16.39%), ATR (14.93%), ILF (7.14%), and UF
(5.79%). As shown in Table 6, large percentages of voxels in major frontal pathways were
labeled as the CC (VMPFC-dMPFC: 90.87%, VMPFC-IFG: 53.25%, IFG-dMPFC: 50.72%).
The IFOF mediated several projections to the PCC (PCC-IFG: 78.41%, PCC-AMG:
56.12%,; PCC-ATL. 49.01%), as well as to the ATL (ATL-IFG. 71.84%,; ATL-AMG:.
41.86%). The ILF was also part of ATL-related pathways ( 7TPJ-ATL. 51.18%, ATL-AMG:
40.48%,; ATL-PCC: 34.35%). The SLF exclusively subserved the connection between the
TPJ and IFG (99.81%), and the ATR was the main tract for amygdala-frontal connections
(AMG-IFG: 75.58%,; AMG-dMPFC: 56.34%). In addition, the UF was engaged in vMPFC
connections with the ATL (31.65%) and AMG (30.00%). Finally, although the cingulum
(CING) occupied a small percentage of WM in the network (4.33%), it is the most dominant
tract connecting all distant medial mentalizing areas (PCC-vMPFC: 92.01%, PCC-dMPFC:
62.59%).

These results, which are summarized in Fig. 5, are in line with previous studies using similar
tractography methods. For the face perception network, there is a dorsal and a ventral
pathway. The dorsal pathway runs from face-selective STS to the IFG via portions of the
SLF (Ethofer et al., 2013; Gschwind et al., 2012). The ventral pathway runs from OFA and
FFA to the ATL and AMG via the ILF and IFOF, and extends even more anteriorly into face-
selective frontal regions via the IFOF (Gschwind et al., 2012; Pyles et al., 2013). For the
mirroring network, Hecht et al., (2013) and Hamzei et al., (2016) revealed that the SLF
mediates two main pathways linking core mirroring areas (e.g. IPL-IFG, STS-1FG), and the
ILF is involved in the STS-IPL connection. No DTI study thus far has directly elucidated the
WM architecture of the mentalizing network; however, since the mentalizing network shares
much overlap with the default mode network (DMN) both anatomically and functionally
(Buckner et al., 2008; Li et al., 2014; Mars et al., 2012), we can glean insights from that line
of research. Most DMN studies show that the dorsal cingulum mediates the MPFC-PCC
pathway, while the ventral cingulum supports communications between the PCC and
ATL/AMG (Greicius et al., 2009; Sethi et al., 2015; van den Heuvel et al., 2009, 2008). The
TPJ connects with the ATL/AMG via the ILF (Horn, Ostwald, Reisert, & Blankenburg,
2014), and with the MPFC ventrally via the IFOF and dorsally via the SLF (Grosse
Wiesmann et al., 2017; van den Heuvel et al., 2009). In the present study, we observed these
reported structural connections and beyond that, we identified the whole connectivity profile
of each social brain network, as well as the tract composition of each social pathway. In
addition, our tractography results converge well with our literature review. The ILF, IFOF,
and SLF are the most reported tracts for face processing in the literature, and in our
tractography analyses they are the top 3 tracts occupying the majority of WM voxels in the
face network. Past studies suggest that the SLF is the most important tract for embodied
cognition, and our tractography results also support its dominant role in the mirroring
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network (i.e. 83.86% of WM voxels belong to the SLF). Finally, for the mentalizing
network, the same tracts (i.e. cingulum, SLF, UF, IFOF, and ILF) were found in both the
ToM literature and the current analyses.

We also encountered some unexpected findings, most of which related to the corpus
callosum (CC). For example, the connectivity matrix of the face perception network (Table
4) revealed that the AMG-OFC pathway was mainly subserved by the CC (38.32%),
followed by the UF (28.75%). Since all ROIs defined in our tractography were in the right
hemisphere, this finding conflicts with our knowledge of brain anatomy, since the right
AMG and OFC should be primarily connected by the right UF, rather than the CC (Catani
and Thiebaut de Schotten, 2008). Similar erroneous findings can also be manifested in
MPFC-related mentalizing pathways (Table 6), such as spuriously high probability of CC
involvement in the dMPFC-vMPFC connection (90.87%). In addition, we did not expect the
CST implicated in the mirroring network (5.17%) because this tract is primarily involved in
motor functions and thus has often been used as a non-social control tract in the literature
(Anderson et al., 2015).

These problems might arise from our atlas-based approach, which computes the tract
composition of each pathway by overlaying the probabilistic map onto a standard WM atlas.
This method typically works well for WM connections with simple fiber configurations but
is prone to produce artefactual results when the pathway travels through structures with high
uncertainty of fiber orientations (i.e. crossing fiber sites), as is seen in the CC and CST.
Moreover, it is important to bear in mind that the tract percentage numbers in the
connectivity matrices only reflects the relative contribution of each atlas-listed tract for the
pathway; they could completely change from one atlas to another. The ICBM-DTI-81 atlas
we used for the current analysis includes 48 tracts (Mori et al., 2008), which means we can
only elucidate the tract composition based on these tracts. This is why the connectivity
matrix of the mirroring network in Table 5 shows the sole engagement of the SLF for the
STS-IFG and STS-IPL pathways but in fact the literature suggests considerable involvement
of other unlisted tracts for these two pathways such as the extreme/external capsule and the
middle longitudinal fasciculus (Hecht et al., 2013). Since the ICBM-DTI-81 is currently the
best atlas in use, future research should focus on developing more fine-grained WM atlases
that include more segmented tracts and labels. This will also profoundly increase the value
and accuracy of other atlas-based methods (e.g. TBSS).

It may seem odd that our probabilistic tractography results indicated that 70-85% of WM
voxels in social brain networks were unclassified WM tissue, or in other words, do not
belong to any atlas-listed long-range tracts. This is likely due to the fact that long-range WM
tracts only comprise 4-10% of the whole human WM connectome and the majority of WM
consists of short association fibers in superficial WM (e.g. U-shaped fibers) that lie
immediately beneath the gray matter and connect adjacent gyri (Jbabdi et al., 2015; Schuz
and Braitenberg, 2002; Sotiropoulos and Zalesky, 2017; Wandell, 2016). However it is
technically difficult to study local regional fibers. The spatial arrangements around sulci or
gyri are complicated and most dMRI tractography algorithms are unsuitable for
reconstructing them (Feldman et al., 2010; Reveley et al., 2015). Researchers usually have to
adopt voxel-based or ROI-based approaches to estimate local WM properties associated with
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social cognition, or use novel fiber clustering algorithms (Zhang et al., 2014) or
sophisticated ensemble tractography approach (Takemura et al., 2016) to accurately identify
and characterize U-shaped fiber system. In the future, we anticipate more investigations of
local WM function, especially those near social brain regions, as the present literature
clearly indicates such local WM can be critical to social processing in both healthy and
clinical population (Chou et al., 2011; Gomez et al., 2015; Nakagawa et al., 2015; Song et
al., 2015; Takeuchi et al., 2013).

4. Limitations of the Current Review

We would be remiss if we didn’t point out some limitations of our review. First, we defined
three social brain networks for paper classification. Although these networks are
conceptually specialized for distinct social processes, they are not mutually exclusive. They
overlap in regards to anatomy (e.g. AMG, IFG, STS/TPJ, see Fig. 2) and interact with each
other during many social tasks (Barrett and Satpute, 2013; Greven and Ramsey, 2017;
Sperduti et al., 2014; Spunt et al., 2011; Zaki et al., 2010).

Second, the way we classified each social task or process into three brain networks might be
debatable. The challenge is that social processes are interdependent and multifaceted, and
we are far from having an agreed-upon taxonomy or factor structure (Happé et al., 2017).
For instance, some studies believe the “reading the mind in the eyes” task is measuring the
mirroring network (Herbet et al., 2015a), while others argue the task is probing the
mentalizing network (Mike et al., 2013). Some researchers might categorize studies of
“cognitive empathy”, a subtype of empathy, into the mirroring network group, while others
would sort them into the mentalizing network because the term is conceptually
interchangeable with perspective-taking and ToM (Shamay-Tsoory, 2011). Even when
empathy as a whole belongs to embodied cognition, not all of its sub-components (e.g.
“empathic concern”, “fantasy”, see “interpersonal reactivity index”, Davis, 1983) are
subserved by the same neural network (Kanske et al., 2015; Lamm and Majdandzi¢, 2015)
or tracts (Fujino et al., 2014; Parkinson and Wheatley, 2014).

Third, our summary of WM tracts for each social brain network could be biased by the fact
that the tracts that were investigated in some studies (particularly those with ROI-based or
tractography analysis) were pre-selected by the authors, and we don’t necessarily know what
other tracts might have emerged if they had exhaustively examined the whole brain when
correlating with social behavioral measures.

Fourth, we defined ROIs for our probabilistic tractography using mean MNI coordinates
from prior meta-analysis studies. This analytic choice was imposed on us by using an
existing dataset that lacked certain features. Ideally, functionally-defined gray matter regions
should supplement dMRI, allowing for the creation of functional seeds for precise fiber
tracking (Sotiropoulos and Zalesky, 2017).

Finally, several social processes were not covered by the current review due to the small
number of studies in these domains examining WM indexes. Individual studies exist
examining self-processing (Chavez and Heatherton, 2017), personality (Cohen et al., 2008),
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social reward (Bjornebekk et al., 2012), peer influence (Kwon et al., 2014), in-group bias
(Baumgartner et al., 2015), social communication skills (Lo et al., 2017), social decision-
making (Barbey et al., 2014), and social network size (Hampton et al., 2016). Future reviews
should include and discuss these in order to provide a larger overview of the WM basis for
social cognition.

5. Problems and Recommendations for Best Practices

Our review of the literature indicates that there are a large number of studies on WM in the
realm of social cognition. However, at times, the reviewed findings were inconclusive and
even contradictory to other findings. For example, Thomas et al., (2009) used DTI to
evaluate the structural integrity of long-range visual tracts (i.e. ILF and IFOF) in individuals
with developmental prosopagnosia (DP). They found that these patients showed reductions
in the integrity of the right ILF and these reductions were positively correlated with
individual face perception deficits. In contrast, Gomez et al., (2015) did not detect any WM
integrity reductions in the right ILF in DP subjects; instead, they found that DP arises from
the local WM difference in the right FFA, rather than any long-range WM tracts.

A few explanations can account for these discrepancies. One likely factor is the low
statistical power in both studies (n=6 in Thomas et al., 2009; n=8 in Gomez et al., 2015).
Another possibility comes from differences in data quality and analysis methods. Thomas et
al., (2009) collected diffusion data with only 6 gradient directions and analyzed the data with
simplistic deterministic tractography, while Gomez et al., (2015) employed 30 gradient
directions and probabilistic tractography. These interpretations are further supported by a
recent study (Song et al., 2015) using a larger sample size (n=16), optimized scanning
parameters (61 directions), and multiple analysis methods (deterministic tractography,
probabilistic tractograpphy, and voxel-wise comparison). Consistent with Gomez et al.,
(2015), they found no differences on any of the WM measures in the right ILF between the
DP and control group, but local WM differences in the right FFA accounted for the face
perception deficit in DP. Thus, it seems that small sample size, poor data acquisition, and the
relatively simple tractography method prevented the findings in Thomas et al., (2009) from
being replicated.

In summary, as the sample size, data quality, and analysis methods are significantly
improving, we expect replicability in this field to similarly improve (De Santis et al., 2014;
Jones et al., 2013; Poldrack et al., 2017). In Table 7, we describe common problems in the
field, and offer some practical solutions to these challenges.

6. Future Directions

Many social functions have only received a cursory examination in regards to their white
matter. A deeper understanding of the structural networks underlying social bonding, for
instance, would be useful for understanding several social disorders. More generally, we feel
that research on WM can open new avenues for testing social neuroscience theories.
Theories that are most amenable to this endeavor are ones that propose some sort of ordered
processing. For instance, the Haxby model is considered the most dominant neural theory of
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face processing (Gobbini and Haxby, 2007; Haxby et al., 2000). According to this model,
the OFA, FFA, and STS constitute the core system that subserves the visual analysis of
faces, and more anterior brain regions (ATL, AMG, and OFC) comprise the extended system
that gleans other information from faces, such as their emotional and personal significance.
This model postulates a hierarchical structure such that the OFA projects to both the FFA
and STS, and each plays a different role in face processing (Bernstein and Yovel, 2015).
After being processed by the core system, information is then sent to the extended system to
extract biographical knowledge, analyze emotional information, or to evaluate facial
attractiveness.

However, recent WM research challenges this framework. Gschwind et al., (2012) revealed
several direct WM pathways between early visual cortices and face-selective regions without
any mediation by the OFA, and some of these pathways were even stronger than connections
with the OFA. This signifies that face processing might not proceed in sequence, but rather
in a parallel and interactive fashion. The observation of multiple pathways to each face-
selective region also helps explain cases of neuropsychological patients who have lost
bilateral OFA but FFA and STS remain sensitive to faces (Duchaine and Yovel, 2015).
Moreover, several studies demonstrated that direct structural connections only exist between
the OFA and FFA, but not between the OFA and STS or between the FFA and STS
(Gschwind et al., 2012; Pyles et al., 2013). This suggests that the OFA and FFA are tightly
connected, but the STS seems to be more isolated within the core system. Taken together,
these findings warrant a revised framework to the Haxby model (Bernstein and Yovel, 2015;
Duchaine and Yovel, 2015).

This example illustrates how investigations of structural connectivity can provide unique
insights into the underlying organization of various social networks. This approach has only
been applied to a small number of theories, such as the dual-stream model of empathy
(Herbet et al., 2015b; Parkinson and Wheatley, 2014) and mentalizing (Herbet et al., 2014).
Future research should continue to test theoretical models in social neuroscience from the
perspective of structural connectivity.

7. Concluding Remarks

Research on structural connectivity in social neuroscience is a promising field for insights
into the anatomical basis of social cognition, social behavior, and social disorders. In the
present article, we comprehensively reviewed past literature to summarize the reported WM
structures associated with social cognition and also empirically employed probabilistic
tractography to elucidate major WM tracts scaffolding social brain networks. These two
approaches demonstrated a converging group of tracts critical for face processing (the ILF,
IFOF and SLF), embodied cognition (the SLF, UF, ATR and IFOF), and ToM (the cingulum,
SLF/AF, UF, IFOF and ILF) (Fig. 5). In addition, our review introduces multiple facets of
research on structural connectivity in social neuroscience, covering a wide array of
approaches and applications. However, the main bottleneck of this exciting field is still the
limited sample size, poor data quality, and simplistic analysis methods, which could be
potentially addressed by utilizing large open datasets, such as the Human Connectome
Project (Van Essen et al., 2013) and UK biobank (Miller et al., 2016). Nevertheless, we are
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optimistic that the current paradigm shift towards connectivity will bring with it higher-
quality data and a larger corpus of findings relevant to white matter and social neuroscience.
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Highlights
. First paper to highlight the importance of white matter on social cognition
. Systematic review of existing white matter research in social neuroscience
. The connectivity profiles of face, mirroring, and mentalizing networks are
elucidated
. The field is bottlenecked by limited sample size, poor data quality, and

simplistic methods
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Figure 1.

The proliferation of gray matter and white matter studies in social neuroscience. Both types
of research have been rapidly increased over the past 15 year; however, the number of white
matter studies per year is always less than 1/3 of the number of gray matter studies. The
plotted data were extracted from https://www.ncbi.nlm.nih.gov/pubmed/ on 4/30/2017, using
the search term “(social) AND (gray matter OR fMRI OR functional imaging)” for gray
matter research (gray bars) and “(social) AND (white matter OR DTI OR diffusion
imaging)” for white matter research (white bars).
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Figure 2.
Three major networks in the social brain. ACC, anterior cingulate cortex; Al, anterior insula;

AMG, amygdala; ATL, anterior temporal lobe; dMPFC, dorsomedial prefrontal cortex; FFA,
fusiform face area; IFG, inferior frontal gyrus; IPL, inferior parietal lobule; OFC,
orbitofrontal cortex; OFA, occipital face area; PCC/PreC, posterior cingulate cortex/
precuneus; STS, superior temporal sulcus; TPJ, temporoparietal junction; vVMPFC,
ventromedial prefrontal cortex.
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3
.‘9_. Records identified through PubMed
.g and Web of Science database
“.F:'. search (n = 506)
- l
p]
Records after duplicates removed
& (n=278)
€ l Records excluded (n = 130):
@
o 1) No English (n =21)
a Records screened (n = 278) |—> 2) Not an empirical study (n = 62)
3) No human subjects (n = 36)
l 4) Not peer-reviewed (n =11)
- Full-text articles assessed for eligibility " ed n=97k
§ (total n = 148) Records excluded (n = 97):
% « Face Perception Network (n = 47) —5| Clinical studlgs with no correla?lon analysis
= " _ between white matter properties and
o * Mirroring Network (n = 71) sl behiaviora]
* Mentalizing Network (n = 38) soctal behaviora measures
IS Studies included (n = 51)
3 * Face Perception Network (n = 16)
2 + Mirroring Network (n = 27)
- + Mentalizing Network (n = 13)
Figure 3.

PRISMA flow diagram of study selection procedure.
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No. of studies in each network

Face perception network (16 studies / 375 subjects)
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Mirroring network (27 studies / 2866 subjects)
10
Mentalizing network (13 studies / 800 subjects)
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Figure 4.

WM analysis methods
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dMRI gradient directions
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Key features of the 51 empirical studies surveyed in the present paper, including number of
clinical/non-clinical studies for each social brain network, the sample size for each technique
modality, how WM measures were analyzed and reported in the studies, and the diffusion
data acquisition parameters (the gradient directions and b-values). Note: Percentage might
add up to more than 100% because of studies often using more than one type of analysis
method, measure, or acquisition protocol. AD, axial diffusivity; DES, direct electrical
stimulation; dMRI, diffusion magnetic resonance imaging; FA, fractional anisotropy; MD,
mean diffusivity; No. Streamline, number of streamline; RD, radial diffusivity; SMRI,
structural magnetic resonance; TBSS, tract-based spatial statistics; WM, white matter.
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Face Perception Network

B

Mirroring Network

D

Mentalizing Network

Figure 5.
Social brain white matter tracts. Using probabilistic tractography, we reconstructed the WM

skeleton, across 103 subjects, between putative regions in each social brain network (A)(C)
(E), and we summarize the major white matter tracts for each network based on the literature
review and the present tractography (B)(D)(F). In the left column, each red sphere represents
a gray matter region of interest (ROI) and the blue represents the tractography-reconstructed
WM pathways between ROIs. In the right column, transparent spheres are retained to use as
landmarks. Different white matter tracts are represented by different colored streamlines.
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Table 7

Nine recommendations for future dMRI studies of social cognition

Recommendations

Rationales and comments

1. Test for conceptual
generality of structure-
function relationship

2. Test for specificity of
structure-function
relationship

3. Acquire robust data
with sufficient
measurement and
statistical power

4. Use advanced analytic
methods to analyze
diffusion data

5. Control for
confounding variables by
matching or regressing

6. Avoid simplistic
interpretations of FA

7. Don’t just focus on FA;
provide information
about other white matter
indices

8. Provide detailed
information about white
matter anatomy

Different social processes are inherently intertwined, thus most behavioral measures and paradigms might tap
multiple constructs, making interpretation difficult (Happé et al., 2017). Moreover, our review of the literature
shows that disparate tasks are used to test identical constructs, making it difficult to generalize across studies.
Leverage can be gained by using a multi-measurement approach, that hones in on the construct of interest, for
each study.

To do this, control tasks (e.g. non-social tasks with equivalent cognitive demands) and control tracts (non-social
tracts such as CST) should also be included in a study’s design and analysis.

Poor data quality in dMRI (e.g. noise, artifacts, and data under-sampling) often leads to errors in tensor
estimation and, consequently, in diffusion maps that give rise to fiber reconstructions with erroneous orientations
or lengths. Some general guidelines for best practices in data acquisition include: minimally sampling along 30
unique gradient directions (60+ directions is better) and using a b-value of at least 1000 s/mm? (even better,
multiple b-values with some up to 2000-3000 s/mm 2) (Jones et al., 2013). In addition, white matter research
requires a sufficiently large sample size (n>30) to robustly reveal the relationship between fiber tracts and inter-
subject variability of behavior (De Santis et al., 2014). In our literature review, more than one third of the studies
used protocols that did not meet these standards (Fig. 4), which significantly undermines their reliability. The
findings from these studies should not be weighted very heavily when determining a consensus.

Human white matter is extremely difficult to model, due to its high density (e.g. more than 10,000 pathways with
distinct origins and terminations, Jbabdi et al., 2015), complex trajectory patterns (e.g. 90% of white matter
voxels contains crossing fibers, Jeurissen et al., 2013), and intricate organizations in its cortical origins/
terminations (e.g. superficial white matter bundles running parallel to the cortex, impeding the detection of fibers
entering the cortex, Reveley et al., 2015). Despite these complexities, 50% of tractography studies in our
literature review used a single tensor model with a deterministic tracing algorithm, which only calculated a single
principle diffusion direction in each voxel. This method is too simplistic for characterizing white matter
microstructure in crossing fiber voxels and can lead to erroneous fiber trajectory reconstructions. Optimal
approaches include high-angular-resolution diffusion imaging with multi-shell acquisition (i.e. multiple b-values)
and more complex biophysical models such as multi-tensor models and ball-and-stick models, or utilizing
advanced “model-free” techniques such as Q-Ball Imaging and diffusion spectral imaging (Wandell, 2016).
These sophisticated tools are much easier to implement with recent advances in scanner technology and are
becoming popular in other fields of neuroscience such as vision research (e.g. Rokem et al., 2017). Thus far,
there are only three social neuroscience studies employing these optimal tools (Anderson et al., 2015; Olszewski
etal., 2017; Pyles et al., 2013). Using these methods will significantly improve reliability and reproducibility
compared to the tensor model.

White matter measurements can be measurably affected by participants’ age (Cabinio et al., 2015; Charlton et al.,
2009), gender (Chou et al., 2011), handedness (McKay et al., 2017), socioeconomic status (Ursache and Noble,
2016), intelligence (Penke et al., 2012) and head motion (Yendiki et al., 2014). These factors should be matched
between groups or regressed out.

Although FA may reflect fiber integrity, it can also be confounded by factors that do not necessarily reflect white
matter integrity, such as partial volume effects (i.e., signal mixing of white matter, gray matter, and cerebrospinal
fluid), or heterogeneity in the orientation of axons (Jbabdi et al., 2015). Therefore, any notion of being able to
relate FA to behavioral performance in a linear fashion is flawed, because higher FA is not always associated
with superior social performance (Imfeld et al., 2009; Unger et al., 2016). When exploring the white matter
correlates of individual differences, researchers should not misinterpret that those participants with higher FA
have “better” structure connectivity. Even in a situation in which higher FA indeed reflects superior white matter
connectivity, it is impossible to discern whether a pathway is inhibitory or excitatory. Therefore, lower or higher
FA values must be interpreted in the context of the known functions of a pathway and its connecting regions
(Roberts et al., 2013).

Most studies in the literature only report results based on FA (Figure 4), which may be insufficient to fully
characterize the underlying changes in white matter microstructure. Additional dMRI measures, including MD,
AD, RD, and volume, may be more informative regarding the specific nature of white matter changes and
dysfunction. It has been argued that all DT1 measures (e.g. MD, AD, RD, etc.) should be routinely analyzed and
reported even if some are not statistically significant (Alexander et al., 2007). We strongly support this practice
and believe reliable interpretation of dMRI research requires a complete and comprehensive report of white
matter measures.

Large tracts like the SLF are composed of distinct subsections (e.g. SLF I—SLF Il and AF, Kamali et al., 2014)
and for each subsection, many fasciculi enter and exit at different points such that not all WM bundles traverse
the full length of the tract. Since different subsections of a tract might be responsible for different cognitive
functions (Metoki et al., 2017; Tavor et al., 2014), it is important for researchers to report sufficient information
about the precise location of their results (anterior or posterior portion of the ILF; genu or splenium of the CC;
parahippocampal portion of the cingulum).
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Recommendations Rationales and comments
9. Consider using This will help to identify subtracts of large fasciculi that are specific to particular social processes (e.g. the

functionally defined seed pathway between face-selective STS and IFG for social gaze perception).
regions for tractography
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