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SUMMARY
Human induced pluripotent stem cell (iPSC)-derived neurons are an attractive substrate for modeling disease, yet the heterogeneity of

these cultures presents a challenge for functional characterization by manual patch-clamp electrophysiology. Here, we describe an opti-

mized all-optical electrophysiology, ‘‘Optopatch,’’ pipeline for high-throughput functional characterization of human iPSC-derived

neuronal cultures.We demonstrate themethod in a human iPSC-derivedmotor neuron (iPSC-MN)model of amyotrophic lateral sclerosis

(ALS). In a comparison of iPSC-MNs with an ALS-causing mutation (SOD1 A4V) with their genome-corrected controls, the mutants

showed elevated spike rates under weak or no stimulus and greater likelihood of entering depolarization block under strong optogenetic

stimulus. We compared these results with numerical simulations of simple conductance-based neuronal models and with literature re-

sults in this and other iPSC-based models of ALS. Our data and simulations suggest that deficits in slowly activating potassium channels

may underlie the changes in electrophysiology in the SOD1 A4V mutation.
INTRODUCTION

Cell-reprogramming technologies have created an unprec-

edented opportunity to study human neurons in vitro,

probing disease mechanisms under each patient’s unique

genetic constellation (Han et al., 2011; Pankevich et al.,

2014). Many studies have used induced pluripotent stem

cell (iPSC)-based and direct conversion methods to model

neurological, neuropsychiatric, and neurodegenerative dis-

eases, effectively describing disease-related phenotypes in

multiple neuronal subtypes (Ichida and Kiskinis, 2015).

Here we present methodology for the design and analysis

of optical electrophysiology experiments on iPSC-based

disease models, with application to a model of amyotro-

phic lateral sclerosis (ALS).

Electrical spiking is the dominant function of every

neuron. The spiking patterns, the action potential wave-

forms, and the subthreshold voltages under different stim-

ulus waveforms represent an integrative phenotype that

reflects the activity of a large number of ion channels,

transporters, and pumps, as well as the underlying cellular

metabolism. While it is not, in general, possible to deduce

the complete ion channel composition of a cell from its

spiking patterns (Brookings et al., 2014), differences in

spiking patterns between disease-model and control states

can point to likely differences in ion channel function,
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and pharmacological rescue of disease-associated func-

tional phenotypes can support efficacy of a candidate

therapeutic.

Electrophysiology data have been traditionally difficult

to attain. Manual patch-clamp measurements can be

highly accurate but are labor-intensive and slow. Multi-

electrode arrays and calcium imaging probe overall sponta-

neous activity of a culture, but do not probe details of

action potential (AP) waveforms, nor are these techniques

typically combined with precisely targeted stimulation.

The large effort required to record manually from many

neurons, combined with the intrinsic variability of

iPSC-derived cultures, presents a major obstacle to system-

atic exploration of patient populations or experimental

conditions.

A recently developed system for all-optical electrophysi-

ology (‘‘Optopatch’’) addresses this bottleneck (Hochbaum

et al., 2014). Optogenetic actuation occurs through a blue

light-activated channelrhodopsin, called CheRiff. Voltage

imaging occurs through a spectrally orthogonal near-

infrared genetically encoded fluorescent voltage indicator

called QuasAr2. Specialized optics and software allow

simultaneous stimulation and recording frommultiple sin-

gle cells embedded in a complex network (Werley et al.,

2017; Zhang and Cohen, 2017). However, low expression

levels of the Optopatch construct limited its application
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to highly robust primary neuron cultures and to commer-

cially produced iPSC iCell neurons (Hochbaum et al.,

2014). Furthermore, limitations in data handling and anal-

ysis constrained previous applications to relatively small

numbers of well-separated neurons.

Scaling up the Optopatch platform for iPSC-based disease

modeling posed a number of challenges in automated data

analysis and statistical interpretation. We developed image

segmentation techniques to extract the fluorescence traces

and morphology of individual neurons, even when they

were clumped and overlapping. We developed a suite of

filteringandfitting techniques robust to thedominantnoise

sources in our dataset to extract spike times and AP wave-

form parameters (Cunningham and Yu, 2014; Druckmann

et al., 2013). We then employed systematic regression tech-

niques to determine population- and subpopulation-level

differences between the mutant and control cell lines while

controlling for significant sources of cell-to-cell variability.

Here we apply Optopatch assays to study the electrical

properties of human iPSC-derived motor neurons

(iPSC-MNs) in a model of ALS. We developed improved

expression constructs and cell-culture protocols to measure

spontaneous andoptogenetically induced spiking inhuman

iPSC-MNs. We applied these tools to a previously validated

modelofALSwith the SOD1A4Vmutation, and its gene-cor-

rected but otherwise isogenic control. We measured 1,771

single cells across six differentiations, for mutant and con-

trol, in two independent isogenic pairs. We found that

SOD1 A4V mutant cells had higher spontaneous activity

than isogenic controls and greater firing rate at low stimula-

tion, but lowerfiring rate under strong stimulationdue to an

increased likelihood of entering depolarization block.

Mutant cells also had smaller-amplitude APs. Mutant and

genome-corrected cells had indistinguishable maximum

firing rates and intra-stimulus accommodation behavior.

To gain mechanistic insight into this array of seemingly

distinct functional comparisons, we explored simplified

conductance-based Hodgkin-Huxley-type models. Varia-

tion of a delayed rectifier potassium channel was sufficient

to account for the bulk of our findings. The relative ease

of acquiring Optopatch data creates an opportunity to

explore electrophysiology in cell-based models of neuro-

logical disease in detail and at a population scale, and to

make quantitative comparisons with theory.
RESULTS

Expression and Characterization of Optopatch in

Human iPSC-Derived Motor Neurons

We developed an experimental pipeline to apply Opto-

patch to an established (Kiskinis et al., 2014; Wainger

et al., 2014) human iPSC-based model of ALS (Figure 1A).
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The major steps were (1) differentiation of iPSCs into

MNs, (2) delivery of Optopatch genes, (3) optical stimula-

tion and recording, (4) image segmentation, (5) voltage

trace parameterization, (6) statistical analysis of population

differences, and (7) comparison with numerical simula-

tions. We applied the pipeline to two iPSC lines: one

derived from an ALS patient (39b) harboring the A4V mu-

tation in the SOD1 gene, the other an isogenic control

cell line (39b-Cor), generated by correcting the mutation

in SOD1 through zinc finger nuclease (ZFN)-mediated

gene editing. Both lines have been extensively charac-

terized and validated for pluripotency markers, develop-

mental potency, and genomic integrity described

previously (Kiskinis et al., 2014; Wainger et al., 2014). We

validated the key results in a second patient-derived line

with the samemutation in SOD1 (RB9d), and a correspond-

ing isogenic control line (RB9d-Cor) (Figures S1A and S1B).

We differentiated the iPSC lines into post-mitotic, spinal

MNs using a previously described protocol based on forma-

tion of embryoid bodies and subsequent neuralization

through dual-SMAD inhibition (Figure 1B). MN specifica-

tion was achieved through addition of retinoic acid and a

Smoothened agonist (Kiskinis et al., 2014; Boulting et al.,

2011). We and others have previously shown that the ma-

jority of MNs generated through this protocol are FOXP1/

HOXA5 positive, indicative of a lateral motor column iden-

tity with a rostral phenotype, and are able to form neuro-

muscular junctions (Kiskinis et al., 2014; Amoroso et al.,

2013). This 24-day protocol resulted in highly neuralized

cultures (>95%MAP2/TUJ1+ cells) and significant numbers

of spinal MNs (>30% of MAP2/TUJ1+ were ISL1/2 [ISL]+)

(Figures S1A and S1B). At the end of the differentiation,

MN cultures were plated onto poly-D-lysine/laminin-

coated glass-bottomed dishes for subsequent maturation

and electrophysiological analysis.

We tested the calcium-calmodulin-dependent kinase II

type a (CamKIIa) promoter as a means to achieve selective

and specific expression in iPSC-MNs. Previously published

RNA-sequencing data acquired fromfluorescence-activated

cell sorting-isolated HB9+ MNs differentiated through this

protocol (Kiskinis et al., 2014) revealed strong expression

of CAMK2A (Figure S1C). The CaMKIIa promoter is known

to be active in mature excitatory neurons (Lund and

McQuarrie, 1997). To validate the specificity of the

CamKIIa promoter for MNs, we infected iPSC-derived

MN cultures with a CamKIIa-EGFP lentiviral construct

and performed immunocytochemistry for EGFP and ISL

(Figure S1D). Of the ISL+ MNs, 75% expressed EGFP. Of

the EGFP+ cells, 89% were also ISL+ MNs (n = 1,147 ISL+

MNs and 1,289 EGFP+ cells; Figure S1E).

The previously published Optopatch construct (Hoch-

baum et al., 2014) contained the CheRiff and QuasAr2

genes joined by a self-cleaving 2A peptide. We found



Figure 1. Optopatch Reports Firing Pat-
terns of iPSC-Derived Motor Neurons in a
Model of ALS
(A) Pipeline for disease modeling with op-
tical electrophysiology.
(B) Timeline of motor neuron differentia-
tion, gene transduction, maturation, and
measurement.
(C) Top: domain structure of Optopatch
constructs. Bottom: images of an iPSC-
derived motor neuron expressing both
CheRiff-EGFP and QuasAr2-mOrange2.
(D) Simultaneous fluorescence and patch-
clamp recordings of spiking in iPSC-derived
motor neurons under optical stimulation.
Left: images from mutant and genome-cor-
rected controls. Right: fluorescence (red,
black) and voltage (blue). Illumination
protocols are shown above.
All scale bars, 10 mm. See also Figure S1.
that this construct did not express highly enough for

robust functional recordings in iPSC-MNs. The expression

level was considerably higher when the two genes were

packaged in separate lentiviruses. We generated low-titer

lentiviruses (see Experimental Procedures) for QuasAr2-

mOrange2 (Addgene #51692) and CheRiff-EGFP (Addg-

ene #51693), both under control of the CamKIIa

promoter (Figure 1C). We delivered the Optopatch genes

via lentiviral transduction of the MN cultures 10 days

before each recording.

Neurons were imaged 22–28 days post plating. Neurons

showed robust expression of EGFP, indicative of CheRiff
expression, as well as near-infrared fluorescence indicative

of QuasAr2 expression (Figure 1C). Both proteins showed

extensive membrane trafficking in the soma and in distal

processes, although QuasAr2 also showed some intracel-

lular puncta.

Optopatch expression was reported not to have signifi-

cant effects on electrical properties of primary or iPSC-

derived neurons (Hochbaum et al., 2014), but those

measurements did not include MNs. To test for effects

of expression on MN electrophysiology, we performed

manual patch-clamp measurements in iPSC-MNs express-

ing either CaMKIIa-driven Optopatch or a CaMKIIa-driven
Stem Cell Reports j Vol. 10 j 1991–2004 j June 5, 2018 1993



EGFP control (see Experimental Procedures). Optopatch

expression did not significantly perturb resting voltage,

membrane resistance, membrane capacitance, rheobase,

or AP threshold voltage relative to control cultures express-

ing EGFP (Figures S2A–S2E). Both Optopatch and EGFP-

transduced cells had slightly lower membrane resistance

and higher membrane capacitance than non-transduced

controls, indicating that within the heterogeneous in vitro

neuronal population, the CaMKIIa promoter targeted

expression to neurons with larger surface area, a marker

of greater maturity. We further tested for differences in AP

properties between EGFP- and Optopatch-expressing MNs

in both SOD1A4Vand genome-corrected controls. Individ-

ual cells showed widely varying firing patterns, particularly

in the vicinity of depolarization block, ranging from single

spikes to tonic firing.Many cells showed subthreshold ring-

ing oscillations that gradually diminished as the cell

entered depolarization block. In neither genotype did we

observe significant differences between EGFP- and Opto-

patch-expressing MNs in AP amplitude, maximum firing

rate, or width of the first spike following stimulus onset

(Figures S2F–S2H).

To test whether the optical measurements were a faithful

reporter of AP waveforms, we acquired simultaneous

manual patch-clamp and optical recordings, with optoge-

netic stimulation (Experimental Procedures and Figure 1D).

Fluorescence traces were extracted from single-cell re-

cordings using a previously described pixel-weighting

algorithm that automatically identified pixels whose fluo-

rescence correlated with the whole-image mean (Kralj

et al., 2012). APs were resolved optically on a single-trial ba-

sis and tagged with an automatic spike-finding algorithm

(Supplemental Experimental Procedures). Of the optically

identified spikes, 4% were not automatically identified in

the patch-clamp recordings; of the electrically identified

spikes, 5% were not automatically identified in the optical

recordings (n = 148 spikes, 4 cells). These discrepancies

came not from shot noise (which contributed an error

rate of <10�6) but from low-amplitude oscillations near de-

polarization blockwhose classification as spike or not-spike

was ambiguous even to human observers (see Figure 6B for

an example).

We compared AP parameters of spikes recorded simulta-

neously optically and electrically. Optically recorded APs

had a root-mean-square error of 1.2 ms in time of peak de-

polarization relative to the electrical signal (n = 148 spikes,

4 cells), and a systematic overestimate of spike full-width at

half-maximum (FWHM) by 1.8 ± 1.1 ms (mean ± SD)

compared with an electrically recorded mean spike

FWHM of 5.6 ms (Figure S2I). These mean widths included

exceptionally broad spikes near onset of depolarization

block. The average width for the first electrically recorded

AP after stimulus onset was 3.9 ms, comparable with the
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literature on developingmotor neurons (in rat, AP duration

is 9.3 ms at embryonic day 15–16 and 3.4 ms at postnatal

day 1–3, at 27�C–29�C [Ziskind-Conhaim, 1988]). In the

electrical recordings, the first AP after stimulus onset was

narrower in width (3.9 ms versus 6.7 ms FWHM) and

higher in amplitude (74 mV versus 60 mV) than subse-

quent APs. In the optical recordings the first AP was also

narrower than subsequent APs (5.7 ms versus 8.7 ms), but

appeared smaller in amplitude (2.5% DF/F versus 2.8%

DF/F) than subsequent APs. The differing trends in

apparent spike amplitude are explained by low-pass

filtering of the optical signal due to the 2-ms exposure

time of the camera and the 1.2-ms response time of

QuasAr2. This level of time resolution enabled robust spike

counting and coarse parameterization of APwaveforms but

not detailed analysis of submillisecond dynamics.

The fluorescence signal showed a slow increase in base-

line during each optical stimulus epoch (Figure 1D), which

we traced to blue light photoproduction of a red-fluores-

cent product, as has been reported previously for other

Arch-derived voltage indicators (Venkatachalam et al.,

2014; Hou et al., 2014) (see Supplemental Discussion).

This effect had been negligible in previous experiments

in primary rodent neurons (Hochbaum et al., 2014) on ac-

count of higher CheRiff expression (necessitating lower

blue stimulus intensity) in the primary cells. We did not

include gradual changes in baseline in the analysis,

focusing instead on spike timing and shape parameters.

Probing Neuronal Excitability with Optopatch

Figure 2A shows the illumination protocol used to probe

the cell-autonomous excitability of human iPSC-MNs. Re-

cordings were acquired at 500-Hz frame rate for 9,000

frames. Illumination with red light (635 nm, 800 W/cm2)

induced near-infrared voltage-dependent fluorescence of

QuasAr2. Cells were monitored for 10 s without stimula-

tion to quantify spontaneous activity. Cells were then stim-

ulated with eight 500-ms pulses of blue light of linearly

increasing intensity from 6 mW/cm2 to 100 mW/cm2. Af-

ter each blue stimulus pulse, cells were recorded for another

500 ms without blue stimulus and then given 5 s of rest

with neither red nor blue illumination. Mutant SOD1

A4V and genome-corrected control MN cultures were

differentiated in parallel, and recordings from paired cul-

tures were performed on the same day.

Image Segmentation and Data Processing

To accommodate the large quantities of Optopatch data

(1,039movies, 200 gigabytes in total), we developed a pipe-

line for analysis in a parallel computing environment (Fig-

ure S3). The first stage comprised image segmentation.

Cells often clustered, with overlapping somas and inter-

twined processes. On average, 60% of each cell body area



Figure 2. Optopatch Measurement and
Analysis Pipeline
(A) Cells were subject to 10 s of
unstimulated recording to measure spon-
taneous activity (red), and then to eight
stimulation pulses of 500 ms duration and
increasing intensity (blue).
(B) Activity-based movie segmentation.
Image stacks were filtered spatially and
temporally, then processed via principal
components analysis (PCA) followed by in-
dependent components analysis (ICA) to
identify clusters of pixels whose fluores-
cence values co-varied in synchrony. The
movie was decomposed into a sum of over-
lapping neuron images, each with its own
spiking pattern.
(C) Parameterization pipeline. Spikes
were identified in the fluorescence traces.
Spiking patterns were analyzed within
stimuli, between stimuli, and between
populations. AP waveforms were also
parameterized, enabling comparison of
width, height, and after-polarization within
and between cells. The results of the seg-
mentation in the spatial domain enabled
measurement of morphological features
(soma versus dendrite) and of CheRiff-EGFP
expression level. Finally, all of this infor-
mation was integrated to build a coherent
picture of phenotypic differences between
mutant and control cell lines.
All scale bars, 10 mm. See also Figures
S2–S4.
overlapped with other cells in the controls, and 63% in the

mutants (distribution difference p = 0.07 by Mann-Whit-

ney U test, not significant). The large degree of overlap

implied a need to un-mix the fluorescence signals from

overlapping cells.

Our segmentation approach was derived from an inde-

pendent components analysis (ICA) algorithm, originally

developed for calcium imaging (Mukamel et al., 2009),

with modifications to accommodate the differing morpho-

logical, statistical, and noise properties of voltage imaging

data (see Supplemental Experimental Procedures). In brief,

movieswere high-pass filtered in time to accentuate the sig-

nals from spikes, and low-pass filtered in space to suppress

spatially uncorrelated shot noise. Movies were then sub-

jected to principal components analysis (PCA) to reduce
the dimensionality of the dataset, then time-domain ICA

to identify linear combinations of principal components

thatmaximized statistical independence between intensity

traces. The spatial filters produced from ICA were then

applied to the original (unfiltered) movie to extract the un-

derlying intensity traces (Supplemental Experimental Pro-

cedures and Figure 2B).

Complex images of up to six overlapping neurons were

readily decomposed into single-cell traces. No information

about cell morphology was used in the image seg-

mentation, so emergence of neuron-shaped objects with

corresponding stereotyped AP waveforms confirms the

effectiveness of the algorithm. Inspection of the firing pat-

terns revealed negligible crosstalk between signals derived

from overlapping cells. Single-cell fluorescence traces
Stem Cell Reports j Vol. 10 j 1991–2004 j June 5, 2018 1995



Figure 3. Comparison of Spiking Patterns in SOD1 A4V and Control Motor Neurons
(A) Top: representative optical trace with stimulus protocol (blue) and identified spikes (red stars). Bottom: raster plot showing spike
timing for a subset of the recorded cells. Black are controls, red are SOD1 A4V.
(B) Spontaneous activity.
(C) Population-average number of APs as a function of optogenetic stimulus strength.
(D and F) Histograms of number of APs as a function of stimulus intensity for (D) controls and (F) SOD1 A4V mutants.
(E) Left: spike train in a control neuron showing monotonically increasing number of APs as a function of stimulus strength. Right: image
of the cell.

(legend continued on next page)
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were then processed with a spike-finding algorithm that

used a dynamically adjusted threshold to accommodate

different signal-to-noise ratios in different cells (Supple-

mental Experimental Procedures and Figure 2C). Sources

were classified as active cells if they showed five or more

spikes during the experiment and had a signal-to-noise

ratio greater than 5, ensuring a shot noise contribution to

errors in spike calling of <10�6.

The second stage of the pipeline comprised parameteriza-

tion of the spike waveforms. A standard set of parameters

has been proposed to describe AP waveforms recorded

via conventional electrophysiology (Druckmann et al.,

2013). Fluorescence differs from patch clamp in that fluo-

rescence has a lower signal-to-noise ratio, does not have

an absolute voltage scale, is subject to baseline drift, and

has lower time resolution. To determine which parameters

we could use robustly, we first described spikes with a large

set of parameters and then used an information-theoretic

approach to eliminate redundancies (Supplemental Discus-

sion and Figure S4). Our final set of parameters described

the upstroke duration, downstroke duration, initiation

threshold relative to baseline, spike amplitude relative to

baseline, and after-hyperpolarization relative to baseline.

Our image segmentation method also enabled quantita-

tive description of cellular morphology. We used filters

derived from the activity-based segmentation to identify

the two-dimensional footprint of each cell. We then em-

ployed morphological image processing to identify cell

soma and dendrites (Supplemental Experimental Proced-

ures and Figure S4).

Comparison of Mutant SOD1 A4V with Isogenic

Control MNs

We compared the firing patterns between iPSC-MNs with

the SOD1 A4V mutation (n = 331) and genome-corrected

controls (n = 843). Figure 3A shows a raster plot of the spike

timing for a subset of the cells (not including the recording

of spontaneous activity at the start of each trace). Figure 3B

shows that, on average, SOD1 A4V cells had higher sponta-

neous activity than genome-corrected controls (mean

spontaneous rates 1.50 ± 0.18 Hz in mutant, 0.98 ±

0.12 Hz in control; p = 0.003, Wilcoxon signed-rank test

used because of non-normal distribution). Figure 3C shows

the population-average spike count in a 500-ms stimulus as

a function of stimulus intensity for the two genotypes. The

curves formutant and control crossed: in themost strongly
(G) Left: spike train in an SOD1 A4V mutant showing depolarization b
(H) Number of APs as a function of stimulus strength among the
No significant differences were observed between mutant and contro
(I) Fraction of cells in depolarization block as a function of stimulus
Error bars represent SEM. Asterisks indicate significance differences b
n = 834 control neurons, n = 331 SOD1 A4V, and six rounds of differe
stimulated epoch, mutant cells fired less on average than

controls (mean rates 12.6 ± 0.5 Hz in mutant, 14.6 ±

0.3 Hz in control; p = 0.0012, unpaired t test). We then per-

formed matched experiments in a second patient-derived

SOD1 A4V cell line (RB9d) and its isogenic control (RB9d-

Cor). As with the 39b line, the RB9d mutant cells showed,

on average, enhanced spontaneous activity, hyperexcit-

ability at weak stimulus, and hypoexcitability at strong

stimulus (Figure S5).

Population-level differences in activity could arise from

uniform shifts in all cells or from redistribution of cells

among subpopulations with different firing patterns. The

single-cell Optopatch data allowed us to examine the un-

derlying distributions of single-cell behavior that led to

the population-average differences (Figure 3D for controls

and Figure 3F for mutants).

Under strong stimulus, two clear subpopulations

emerged: cells that fired rapidly and tonically (Figure 3E)

and cells that generated just one or two spikes before going

quiet (Figure 3G). We presumed that these quiet cells were

constitutively inactive. However, a majority of these cells

(64% in the control, 72% in the mutant) fired four or

more times during a stimulus of intermediate intensity.

These results established that a subpopulation of neurons

showed a non-monotonic dependence of firing rate on

stimulus strength, with a maximum in firing rate at inter-

mediate stimulus strength.

We then examined the fluorescence waveforms of the

cells that inactivated under strong stimulus. These cells

were depolarized but not firing, a signature of depolariza-

tion block (Pontiggia et al., 1993). To quantify the popula-

tions in depolarization block, we defined the onset of

depolarization block as a decrease in number of spikes

upon an increase in stimulus strength. Cells that did not

show depolarization block had statistically indistinguish-

able firing rates in mutant and control populations at

high intensity (p = 0.11, unpaired t test at the strongest

stimulus; Figure 3H). However, the proportion of cells

that entered depolarization block differed significantly be-

tween mutant and control: at the strongest stimulus, the

SOD1 A4V cells were 32% more likely to be in depolariza-

tion block than the controls (p = 0.008, binomial model

t test with Holm-Bonferroni correction, two hypotheses;

Figure 3I). This difference in propensity to enter depolariza-

tion block under strong stimulus was the most dramatic

difference between mutant and control.
lock upon strong stimulus. Right: image of the cell.
subpopulation of cells that did not enter depolarization block.
l.
number.
etween mutant and control, *p < 0.01. Data in all panels based on
ntiation. Scale bars, 10 mm. See also Figures S5 and S6.
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Figure 4. Characteristic Firing Pattern
of iPSC-MNs as a Function of Stimulus
Strength
(A and B) Heatmaps showing universal
shape of the F-I curves for control and SOD1
A4V mutant iPSC-MNs. F-I curves from each
cell were rescaled along the x and y axes as
follows. Firing rate was expressed as a per-
centage of the cell’s maximum firing rate.
Stimulus intensities were aligned to the
lowest intensity stimulus at which this
maximum firing rate was achieved. This
rescaling revealed typical F-I trajectory
shapes in a manner that was independent of
changes in CheRiff expression level. Control
(A) and SOD1 A4V mutant iPSC-MNs (B)
showed a linear increase in firing rate versus
stimulus strength for weak stimuli, a plateau
in firing rate for moderate stimuli, and a
collapse in firing under strong stimuli. Data
based on n = 834 control neurons, n = 331
SOD1 A4V, and six rounds of differentiation.
(C) Top: fluorescence traces from a single
representative cell passed through three
distinct stages of firing in response
to monotonically increasing optogenetic
stimulus strength. Bottom: fit of piecewise-
continuous F-I curves to the data in (A) and
(B) for (black) genome-corrected and (red)
SOD1 A4V mutant cell lines. Curves were
constructed from measurements of sponta-
neous rate, average slope of the F-I curve
(controlling for expression level), maximum
firing rate, and the number of stimulus steps
spent at the maximum.
Aligning all cells’ F-I curves by the stimulus pulse at

which they reached their maximum firing rate revealed a

stereotyped F-I curve (Figure 4). Cells showed linear depen-

dence of firing rate on stimulus strength up to amaximum,

maintenance of the maximum firing rate in a plateau

phase, and then a rapid collapse into depolarization block.

The mutant population tended to have a narrower plateau

phase and a greater propensity to enter depolarization

block than the controls. For cells with matched firing rates

at a given stimulus strength, the odds of a cell going into

depolarization block in the next stronger stimulus

were 88% higher in the mutants than in the controls

(p = 1.7 3 10�4, logistic regression coefficient t test). The

mutant and control neurons reached the same maximum

firing rate (mean rates 8.7 ± 0.4 Hz in mutant, 9.2 ±

0.3 Hz in control; p = 0.51, linear model coefficient t test).

We next studied the timing of the APs within each stim-

ulus epoch. After the first two APs, cells showed nearly con-

stant firing rate throughout the stimulus, provided that the

cell was not in depolarization block (Figure 5). To quantify
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the degree of firing rate adaptation, we defined the nth in-

ter-spike interval by ISIn = tn+1 – tn, where tj represents the

time of peak of spike j. We then defined the degree of firing

rate adaptation by
D
ISIn+1

ISIn

E
� 1, where the average is over all

spikes during a stimulus epoch. This quantity did not differ

significantly between SOD1 A4V and control neurons

(8.7% in control, 8.9% in mutants; p = 0.87, unpaired

t test). We also detected no differences between mutant

and control in the ratio of first inter-spike interval to the

average inter-spike interval during a stimulus epoch, ISI1
hISIi

(33% in control, 34% in mutant; p = 0.45, unpaired t test).

Finally, we studied the waveforms of individual APs.

Within each 500-ms stimulus epoch, the AP waveform of

each single cell was consistent from spike to spike, after

the first two spikes, provided that the cell was not in depo-

larization block (Figure 5 and Supplemental Discussion).

AP waveforms did vary with firing rate and with stimulus

intensity. After controlling for these parameters, average

AP waveforms still differed between mutant and control

iPSC-MNs. In the weak stimulus regime, where firing rate



Figure 5. Comparison of AP Waveforms
in Mutant and Control
(A and B) Average phase plots,�

dðDF=FÞ
dt vs DF=F

�
, from steps with

nine action potentials, for (A) control and
(B) SOD1 A4V cell lines. The first two spikes
are highlighted in blue, after which the cells
converged to a stable limit cycle.
(C and D) Average AP waveforms from all
stimuli, which produced (C) two and (D)
nine APs during a single stimulus epoch.
APs from stimuli during which the cell
entered depolarization block were
excluded. Spikes were aligned in time by
their peak and in DF=F by their pre-peak
minimum. Average waveforms from stimulus
epochs with different numbers of APs are
quantified in Table S2.
was proportional to stimulus strength, mutants had 10%

smaller AP peak amplitude than controls (p = 3.1 3 10�8,

linear model coefficient t test, significant after Holm-

Bonferroni multiple comparison correction; Figure 5 and

Table S2).

In accord with previous findings (Kiskinis et al., 2014),

we observed statistically significant morphological differ-

ences between the mutant and control MNs. The mutants

had a smaller soma and fewer projections than the controls

(Figure S6 and Supplemental Experimental Procedures).

This observation suggested that the changes in excitability

seen in the mutant cells might be a by-product of the

mutant line’s differences in morphology. We included

terms for soma area and ratio of soma area to whole-cell

area (‘‘soma fraction’’) in a logistic regression model for

the probability of depolarization block as a function of

firing rate. When trained on control data, the coefficients

on these morphological parameters were not significant

(p = 0.06 for soma area, p = 0.47 for soma fraction, separate

models, logistic regression coefficient t test). Whenmutant

data were controlled for these parameters, the difference

between mutant and control remained significant

(p = 1.43 10�4 for soma area, p = 1.23 10�4 for soma frac-

tion, logistic regression coefficient t test). Thusmorpholog-

ical parameters (soma area and soma fraction) did not

predict the probability of depolarization block either

within or between genotypes. While this analysis cannot

rule out possible contributions from other morphological
parameters, we focused subsequent analysis on electro-

physiological variables.

Simulations

We sought to relate the phenotypic differences and simi-

larities between SOD1 A4V mutant and control neurons

to hypotheses about underlying disease mechanisms.

While complex multi-compartment models of MNs have

been developed (Powers et al., 2012; Powers and Heck-

man, 2015), it is well established that voltage recordings

alone are insufficient to constrain the parameters of

such models (Brookings et al., 2014). Furthermore, consid-

ering the large cell-to-cell variability in the observed

firing patterns, a morphologically and molecularly

detailed model was deemed inappropriate. Instead, we

sought a parsimonious model that could account for mul-

tiple population-level observations with a small number

of parameters.

Previous studies have singled out potassium channels

in general (Kanai et al., 2006) and KV7 (KCNQ) channels

in particular (Wainger et al., 2014) as a target of investi-

gation in both SOD1 and C9ORF72 models of ALS, but

it is not clear how these mutations affect ion channel

expression or function. We asked whether changes in

Kv7 current alone could account for some or all of the

observed functional effects. We performed numerical

simulations of a minimal Hodgkin-Huxley-type model,

containing only a NaV channel, a fast KV channel, a
Stem Cell Reports j Vol. 10 j 1991–2004 j June 5, 2018 1999



Figure 6. Numerical Simulation of Firing Patterns with Variable Channel Levels
(A) Simulation (blue) and fluorescence trace (black) of a neuron showing tonic firing.
(B) Simulation (blue) and fluorescence trace (black) of the same neuron shown in (A) approaching the transition to depolarization block
under strong stimulus.
(C–E) Each trace shows the number of APs in a 500-ms interval as a function of the optogenetic stimulus strength (gm). Maximum
conductances of the indicated channels were varied from 0.67- to 1.5-fold basal level. (C) Variation in NaV level. (D) Variation in KV
(delayed rectifier) level. (E) Variation in KV7 level. The changes in the F-I curve that came with lower KV7 conductance phenotypically
matched the differences and similarities between SOD1 A4V and control neurons.
slow KV7 channel, and a channelrhodopsin (Powers

et al., 2012; Powers and Heckman, 2015). We varied the

model parameters systematically and studied the result-

ing simulated firing patterns using the same parameters

as for the experimental data.

The starting ion channel parameters were taken from

previous numerical simulations of a human MN (Powers

et al., 2012; Powers and Heckman, 2015), and the chan-

nelrhodopsin was modeled as a conductance with a

reversal potential of 0 mV and an opening time constant

of 1 ms. Following our experimental illumination proto-

col, simulations were runwith steps of increasingmaximal

channelrhodopsin conductance. To account for the capac-

itive load from passive membrane structures and to match

simulated firing rates to the range observed experimen-

tally, we increased the membrane capacitance beyond

the literature value (see Supplemental Experimental Pro-

cedures). The simulated cells showed stimulus-dependent

firing and depolarization block, clearly recapitulating the

main qualitative features of the data (Figure 6A). The
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experimentally recorded waveforms varied considerably

from cell to cell, so we focused on studying the depen-

dence of spiking properties on channel conductances

rather than on trying to match simulated and experi-

mental waveforms precisely.

We varied each conductance in the model to determine

its effect on low-stimulus excitability, threshold for depo-

larization block, maximum firing rate, and AP waveform.

Figure 6 shows simulated firing rate as a function of optoge-

netic stimulus strength, for a range of channel conduc-

tances bracketing the original model parameters. Decreases

in KV7 conductance increased low-stimulus excitability,

decreased threshold for depolarization block, decreased

spike height, and had no effect on maximum firing rate

(Table S3). Thus, remarkably, changes only in the KV7

conductance were sufficient to reproduce all the major

functional phenotypes and null results cataloged in our

Optopatch experiments. Neither variation in the NaV
conductance nor in the fast KV channel showed the correct

qualitative trends (Figure 6).



DISCUSSION

Our demonstration of optical electrophysiology recordings

in a delicate and complex human cellular preparation

opens the prospect to record large quantities of functional

data in this and other human models of neuronal disease.

Key to extracting meaning from these data is a statistically

robust analysis pipeline and comparisons with numerical

simulations at an appropriate level of detail.
Patch versus Optopatch

The optical and manual patch-clamp techniques offer

different tradeoffs in resolution and throughput, and thus

should be seen as complementary rather than competing

techniques. One must exercise caution in applying con-

cepts from conventional electrophysiology to Optopatch.

Principally, Optopatch and patch deliver different kinds

of stimulation. CheRiff is a conductance while electrical

stimulation is via a current source. CheRiff current reverses

directionwhen themembrane voltage crosses 0mV,while a

current clamp maintains constant current irrespective of

membrane voltage. In ourMN simulation, the dependence

of firing rate on stimulus strength and channel levels had

the same qualitative features for CheRiff stimulation as for

current injection. In other parameter regimes, however,

the two modes of stimulation induced strikingly different

firing patterns. Spike trains induced optogenetically may

be a more faithful indicator of in vivo firing because AMPA

(a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)

receptors are a conductance with reversal potential

of �0 mV, not a current source. One can simulate mem-

brane conductances with dynamic patch clamp (Prinz

et al., 2004), but this technique is not widely used.

Optical and electrical recordings also are subject to

different types of noise and artifacts (Cohen and Venkata-

chalam, 2014). Patch-clamp recordings remain the gold

standard for accuracy and time resolution: one can record

submillivolt changes in membrane voltage on a submilli-

second timescale. One can also use a voltage clamp to

dissect the contributions of distinct conductances to mem-

brane currents. However, patch-clamp measurements are

slow and laborious (four cells per hour in the present exper-

iments), increasing the risk of statistical artifacts from small

sample sizes in highly heterogeneous stem cell-derived cul-

tures. Furthermore, in themost commonly used whole-cell

configuration, manual patch clamp risks dialyzing cyto-

plasmic contents. Manual patch-clamp measurements

also lack spatial resolution and are exceedingly difficult to

apply to a single cell on successive days.

Optopatch has lower temporal resolution (1–2 ms) and

lower precision than patch clamp. The signal-to-noise ratio

in the optical recordings was 13.0 ± 6.7 (mean ± SD), corre-
sponding to a noise level of approximately 5.2 mV in a

500-Hz bandwidth. The lower signal-to-noise ratio relative

to published results in primary rodent neurons (Hochbaum

et al., 2014) was due to a smaller soma size and lower Opto-

patch expression in the iPSC-derived neurons. Cell-to-cell

variations in QuasAr2 expression level prevented assign-

ment of absolute voltage values to fluorescence measure-

ments. Thus, Optopatch measurements are most useful

for determining spiking statistics and for examining AP

waveforms, and at present less so for quantifying sub-

threshold events or absolute voltage values.

Optopatch has considerably higher throughput than a

manual patch clamp (34 cells per hour in the present

experiments). Wide-field imaging systems could poten-

tially increase this throughput considerably (Hochbaum

et al., 2014). Although not used here, Optopatch measure-

ments can, in principle, be readily combined with genetic

or immunohistochemical targeting with cell-type-specific

markers. Measurements targeted to MNs (e.g., via HB9-Cre

[Peviani et al., 2012] or post-measurement HB9 staining)

are a natural extension of the work. Optopatch can also

probe spatial relations of electrical activity, both within

and between cells.

Neuronal Excitability in ALS

Our simple computational models showed non-mono-

tonic dependence of firing rate on stimulus strength in all

cases, consistent with our data. Variations in KV7 currents

led to firing rate curves that crossed each other. Together,

these observations show that ‘‘excitability’’ is not a well-

defined attribute of a neuron, but rather depends on the

magnitude of the stimulus strength. In our data, in both

the mutant and controls cells with a higher spontaneous

rate were more likely to show a decrease in firing under

strong stimulus: the odds of entering depolarization block

increased by 34% with every 1-Hz increase in spontaneous

rate (p = 0.005, logistic regression coefficient t test) in con-

trol and 49% per Hz in mutant (p = 0.0004). Thus neurons

that appeared hyperexcitable under weak or zero stimulus

tended to appear hypoexcitable under strong stimulus.

One should therefore use caution in speaking of hyper- or

hypoexcitability as intrinsic neuronal properties.

These observations also highlight the importance of

analyzing neuronal recordings at the single-cell level rather

than simply looking at aggregate population-level statis-

tics. The population-average curves of firing frequency

versus stimulus strength may be strikingly different from

the curves for every individual neuron. Due to the non-

linear dependence of firing frequency on ion channel

levels, efforts to fit the population-average data may lead

to incorrect mechanistic conclusions.

By recording data in two pairs of mutant and genome-

corrected lines, we can compare the effect size due to the
Stem Cell Reports j Vol. 10 j 1991–2004 j June 5, 2018 2001



SOD1 A4V mutation versus the effect size due to line-to-

line differences (39b-Cor versus RB9d-Cor). In our record-

ings, the line-to-line differences in firing rate were

comparable in magnitude with the difference between

mutant and corrected within each line (Figure S5). At pre-

sent it is not known whether these line-to-line differences

reflect underlying genetic heterogeneity or epigenetic

effects reflecting the different histories of the iPSC lines.

Resolving that questionwould require comparisons ofmul-

tiple lines derived from the same individuals, as well as

lines derived from different individuals. Nonetheless, these

results highlight the importance of making matched

isogenic comparisons when looking for mutation-associ-

ated phenotypes at the level of individual lines.

The pathways by which mutations in ALS-causing genes

lead to a change in neuronal excitability remain unknown.

The KV7 potassium channel has recently emerged as a po-

tential therapeutic target and is the subject of an ongoing

clinical trial of retigabine for ALS (McNeish et al., 2015).

While expression profiling did not identify effects of the

SOD1 A4V mutation at the transcriptional level (Kiskinis

et al., 2014), there aremany post-translationalmechanisms

for regulating the KV7 current. This channel has multiple

interaction partners (Delmas and Brown, 2005), is regu-

lated by PtdIns(4,5)P2 (Suh and Hille, 2008), and is redox

sensitive (Gamper et al., 2006). Thus defects in any of these

interaction partners, in lipid metabolism, or in redox ho-

meostasis could contribute to excitability defects. Recently,

deficits in trafficking of RNA granules have been found in a

TDP43 model of ALS (Alami et al., 2014). These findings

provide a plausible mechanism for proteostatic deficits in

ALS, including deficits in ion channels.

In a mutant C9ORF72 model of ALS, Sareen et al. (2013)

reported hypoexcitability of the mutants relative to con-

trols. However, the previously published plots of firing fre-

quency as a function of stimulus strength (Figures 3H and

S12 of Sareen et al.) resemble our data showing depolariza-

tion block at strong stimulus (Figures 3B and 3C). Although

we did not probe the C9ORF72 model, these observations

raise the intriguing possibility that loss of KV7 conductance

could provide a common mechanism across genotypes.

The sufficiency of a KV7 deficit to account for both hyper-

and hypoexcitability phenotypes cannot rule out other

possible contributions to the electrophysiology, including

other ion channels, shifts in channel kinetics or gating

thresholds, and shifts in cellular morphology, resting po-

tential, or ion channel spatial distribution.

The iPSC-MNs studied here represent an immature

developmental state, while ALS typically strikes in adult-

hood. Whereas the disease-causing mutation is present

throughout the life of the patient, its effect is clearly age

dependent. It is not known whether time in vitro is a real-

istic proxy for chronological age in vivo and, if so, the rela-
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tive scaling of these timelines. Thus, while time-course data

in vitro may yield interesting changes in function or

physiology, it is not clear whether such data provide infor-

mation relevant to age-related processes. Despite these

limitations, functional optogenetic screening has potential

uses in identifying diseasemechanisms, testing prospective

therapeutics, and stratifying patients.
EXPERIMENTAL PROCEDURES

Cell Culture
All cell cultures were maintained at 37�C and 5% CO2. Cells tested

negative for mycoplasma contamination. Pluripotent stem cells

were grown on Matrigel (BD Biosciences) with mTeSR1 medium

(STEMCELL Technologies). Culture medium was changed every

24 hr and cells were passaged byDispase (Gibco) or Accutase (Inno-

vative Cell Technologies) as required.

Motor Neuron Differentiation
Stem cell cultures were differentiated into motor neurons as previ-

ously described (Kiskinis et al., 2014). In brief, iPSCs were dissoci-

ated to single cells and plated in suspension in low-adherence

flasks (400 k/mL), in mTeSR medium with 10 mM ROCK inhibitor.

Medium was gradually diluted (50% on day 3 and 100% on day 4)

to knockout serum replacement (KOSR) (DMEM/F12, 10% KOSR)

between days 1 and 4 and to a neural induction medium

(DMEM/F12 with L-glutamine, non-essential amino acids

[NEAA], 2 mg/mL heparin, N2 supplement [Invitrogen]) for days

5–24. From days 1–6 cells were cultured in the presence of 10 mM

SB431542 (Sigma-Aldrich) and 1 mM dorsomorphin (Stemgent),

and fromdays 5–24with 10ng/mLbrain-derived neurotrophic fac-

tor (BDNF; R&D Systems), 0.4 mg/mL ascorbic acid (Sigma), 1 mM

retinoic acid (Sigma), and 1 mM Smoothened agonist 1.3 (Calbio-

chem). On day 24 floating cell aggregates were dissociated to single

cells with Papain/DNase (Worthington Bio) and plated onto poly-

D-lysine/laminin-coated dishes for electrophysiological analysis.

Once dissociated, MN cultures were fed every 2–3 days with

complete neurobasal medium (neurobasal with L-glutamine,

NEAA, Glutamax, N2, and B27), with 10 ng/mL BDNF/ciliary neu-

rotrophic factor/glial cell-derived neurotrophic factor (R&D) and

0.2 mg/mL ascorbic acid (Sigma).

Gene Editing
Correction of the SOD1 A4Vmutation in the ALS patient iPSC line

RB9d was performed using ZFN-mediated targeting as described

previously (Kiskinis et al., 2014).

Electrophysiology
Measurements were conducted in Tyrode’s solution containing

125 mM NaCl, 2.5 mM KCl, 3 mM CaCl2, 1 mM MgCl2, 10 mM

HEPES, and 30 mM glucose (pH 7.3) and adjusted to 305–310

mOsm with sucrose. Prior to imaging, neurons were incubated

with 5 mM all-trans retinoic acid for 30 min and then washed

with Tyrode’s solution.

Synaptic blockers were added to the imaging medium for mea-

surements of single-cell electrophysiology. The blockers comprised



10 mM NBQX (Tocris), 25 mM D(�)-2-amino-5-phosphonovaleric

acid (Tocris), and 20 mM gabazine (SR-95531; Tocris). Patch-clamp

data were used if and only if access resistance was <25MU, and did

not vary over the experiment. Recordings were terminated if mem-

brane resistance changed by >10%. Experimentswere performed at

23�C under ambient atmosphere.
Optopatch Recordings
Cells were imaged on a custom-built epifluorescence inverted mi-

croscope. Imaging experiments were conducted in Tyrode’s buffer

(pH 7.3). Excitation of QuasAr2 was via a 500-mW 640-nm diode

laser (Dragon Lasers), which provided a field of view of 31 3

37 mm, with an intensity at the sample of 800W/cm2. Blue illumi-

nation from a 50-mW 488-nm solid-state laser (Coherent OBIS)

was modulated by an acousto-optical tunable filter (Gooch and

Housego) to control timing and amplitude of the optogenetic stim-

ulation. The blue and red beams were then combined and imaged

onto the sample through the objective lens. Images were collected

with a 603water objective (Olympus, numerical aperture 1.2) and

imaged onto a scientific CMOS camera (Flash 4.0, Hamamatsu).

Data were collected at a frame rate of 500 Hz. Custom code written

in LabView (National Instruments) controlled the hardware.

The stimulation protocol consisted of:

1. 10 s of continuous red light to measure spontaneous firing

2. 50 ms with red light only

3. 500 ms with red and blue light to stimulate firing

4. 500 ms with red light only

5. 5 s with no light for cell recovery

Steps 2–5 were repeated 8–10 times with increasing intensities of

blue light.

Procedures for immunocytochemistry, virus production, gene

delivery, data analysis, and simulation are described in detail in

Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Discussion,

Supplemental Experimental Procedures, six figures, and three ta-

bles and can be found with this article online at https://doi.org/

10.1016/j.stemcr.2018.04.020.
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