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Genome-wide association study 
identifies genes associated with 
neuropathy in patients with head 
and neck cancer
Cielito C. Reyes-Gibby1,2, Jian Wang2, Sai-Ching J. Yeung1, Patrick Chaftari1, Robert K. Yu2, 
Ehab Y. Hanna3 & Sanjay Shete2,4

Neuropathic pain (NP), defined as pain initiated or caused by a primary lesion or dysfunction in the 
nervous system, is a debilitating chronic pain condition often resulting from cancer treatment. Among 
cancer patients, neuropathy during cancer treatment is a predisposing event for NP. To identify 
genetic variants influencing the development of NP, we conducted a genome-wide association study 
in 1,043 patients with squamous cell carcinoma of the head and neck, based on 714,494 tagging 
single-nucleotide polymorphisms (SNPs) (130 cases, 913 controls). About 12.5% of the patients, who 
previously had cancer treatment, had neuropathy-associated diagnoses, as defined using the ICD-9/
ICD-10 codes. We identified four common SNPs representing four genomic regions: 7q22.3 (rs10950641; 
SNX8; P = 3.39 × 10−14), 19p13.2 (rs4804217; PCP2; P = 2.95 × 10−9), 3q27.3 (rs6796803; KNG1; 
P = 6.42 × 10−9) and 15q22.2 (rs4775319; RORA; P = 1.02 × 10−8), suggesting SNX8, PCP2, KNG1 and 
RORA might be novel target genes for NP in patients with head and neck cancer. Future experimental 
validation to explore physiological effects of the identified SNPs will provide a better understanding of 
the biological mechanisms underlying NP and may provide insights into novel therapeutic targets for 
treatment and management of NP.

Head and neck cancer (HNC) is the sixth-most-common malignancy worldwide. Patients with HNC live longer 
relative to patients with other cancers. The treatment and management of pain is a significant clinical concern in 
this population. Pain is a common symptom reported by head and neck cancer patients, resulting from tumor 
invasion or compression of anatomic structures. Acute pain is extremely common during and after surgery, 
chemo- and/or radiotherapy. An estimated 80% of head and neck cancer patients report pain during treatment, 
and pain persists for some 36% of patients beyond treatment1. Neuropathic pain (NP), defined as pain initiated 
or caused by a primary lesion or dysfunction in the nervous system, is a debilitating chronic pain condition often 
resulting from cancer treatment. Patients typically describe it as a burning, shooting, or lancinating pain. It is 
often associated with allodynia and hyperalgesia. Various nerve damaging stimuli in the peripheral or central 
nervous system can lead to NP. Among cancer patients, clinical studies suggest that neuropathy during cancer 
treatment is a predisposing event for NP2. Chemotherapeutic agents, including vinca alkaloids, taxanes, and 
platinum-based compounds, may damage peripheral nerves resulting in aberrant somatosensory processing of 
the peripheral or central nervous system. Surgery may also result in NP, with hypoesthesia as a significant predic-
tive factor for the development of NP3. Radiation therapy may also cause NP, including brachial plexus-associated 
neuropathy.

NP is a major clinical problem since existing analgesics are often ineffective. First-line pharmacologic ther-
apies include tricyclic antidepressants (eg, amitriptyline), serotonin-norepinephrine reuptake inhibitors (eg, 
duloxetine), and anticonvulsants (eg, gabapentin, pregabalin). However, these agents only have a modest effect. 
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Second-line options include lidocaine patches, capsaicin high-concentration patches, and tramadol. Opiates and 
botulinum toxin A are typically reserved for refractory cases, but only with marginal therapeutic benefit. Studies 
continue to explore the mechanisms underlying NP, its treatment and management.

Genome wide association studies are an agnostic approach for exploring potential markers of disease suscep-
tibility genes, uncovering underlying mechanisms of disease conditions and identifying novel targets for drug 
development. We have conducted a genome wide association (GWA) study in patients with head and neck cancer 
(HNSCC) to identify single nucleotide polymorphisms (SNPs) associated with neuropathy, a precursor to the 
development of NP.

Results
Our study population include 1,043 patients with HNSCC, the most common type of HNC, who were treated 
at the Head and Neck Center at MD Anderson Cancer Center. Cases include 130 HNSCC patients with neu-
ropathy (104 male, 26 female; mean age = 58 years; standard deviation [sd] = 10), and controls include 913 
HNSCC patients without neuropathy (689 male, 224 female; mean age = 59 years; sd = 11). All patients included 
in this study were self-reported Caucasians. No hidden population substructures were detected based on the 
analysis of identity-by-state distance4. With the application of the standard quality control procedure, including 
Hardy-Weinberg proportion test, minor allele frequency (MAF) etc, we analyzed 714,494 SNPs for these 1,043 
patients with HNSCC.

From the GWA analysis, we identified four SNPs representing four genomic regions that satisfied the 
genome-wide significance level, P values < 5 × 10−08 (Table 1). The Manhattan plot of GWA results is shown in 
Fig. 1 and the plots for the four genomic regions, including four significant SNPs, are shown in Fig. 2. In par-
ticular, the most significant SNP was rs10950641 (odds ratio [OR] = 2.88; 95% confidence interval [CI] = [2.19, 
3.79]; P value = 3.39 × 10−14), which localizes within the gene SNX8 (Sorting Nexin 8) on the chromo-
some 7 (7q22.3; 2334386 bp; Fig. 2, panel (A)). The second was rs4804217 (OR = 0.58; 95% CI = [0.48, 0.69];  
P value = 2.95 × 10−9), which localizes within the gene PCP2 (Purkinje Cell Protein 2) on the chromosome 19 
(19p13.2; 7699347 bp; Fig. 2, panel (B)). Other SNPs identified included rs6796803 (OR = 0.51; 95% CI = [0.41, 
0.64]; P value = 6.42 × 10−9), which localizes near gene KNG1 (Kininogen 1) on chromosome 3 (3q27.3; 
186464107 bp; Fig. 2, panel (C)) and rs4775319 (OR = 1.59; 95% CI = [1.36, 1.87]; P value = 1.02 × 10−8), which 
localizes within gene RORA (RAR-related Orphan Receptor Alpha) on chromosome 15 (15q22.2; 61213564 bp; 
Fig. 2, panel (D)).

Discussion
In this study, we found that 12.5% of our patients with HNSCC received a neuropathy associated diagnosis. Using 
GWA study, we found four SNPs in four genes (SNX8; PCP2; KNG1; and RORA) to be statistically significantly 
associated with neuropathy.

Sortin Nexin 8, the most significant gene that we found to be associated with neuropathy, belongs to a family 
of proteins that are involved in endocytosis, endosomal sorting and signaling. Its yeast homologue (Mvp1) has 
been shown to be involved in endosome-to-Golgi retrieval5. SNX8’s role in endosomal content sorting has been 
implicated in the risk for neuropathologies, i.e., for late onset Alzheimer’s disease. While SNXs fundamental role 
is increasingly being investigated, SNXs has been recently implicated in pain. A study by Lin et al.6 showed the 
importance of SNXs as a critical element for glutamatergic-receptor-dependent neural plasticity and in endoso-
mal sorting machinery in an animal model of NP. Specifically, they showed in an experimental neuropathic injury 

SNP Chr. Gene Location (bp)* SNP type MAF Minor allele OR [95% CI] P

rs10950641 7 SNX8 2334386 Intron 0.07 A 2.88 [2.19, 3.79] 3.39E-14

rs4804217 19 PCP2 7699347 Intron 0.38 A 0.58 [0.48, 0.69] 2.95E-09

rs6796803 3 KNG1 186464107 Intergenic region, 
downstream 0.28 A 0.51 [0.41, 0.64] 6.42E-09

rs4775319 15 RORA 61213564 Intron 0.35 G 1.59 [1.36, 1.87] 1.02E-08

Table 1.  Summary of results for the SNPs associated with neuropathy in patients with HNSCC. *Human 
annotation release 105; the build of the human genome GRCh37. MAF: minor allele frequency; OR: odds ratio; 
CI: confidence interval.

Figure 1.  The Manhattan plot of the GWA study of neuropathy in patients with HNSCC. P values (as −log10 
values; left y axis) were calculated based on a logistic regression model with the Fisher’s exact test.
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the upregulation of SNX27 and spinal vacuolar protein sorting associated protein (VPS26A); and VPSA’s recruit-
ment and interaction with SNX27 (VPS26A-SNX27). They also showed association between VPS26A-SNX27 
complex and spinal plasticity underlying NP.

Kininogen-1 (KNG1), identified as protective in this study, is a protein coding gene, which generates two 
different proteins, high and low molecular weight kininogens (HMWK and LMWK, respectively)7. Bradykinin, 
released from HMWK, and its related kinins are a family of small peptides which act as mediators of pain and 
inflammation7,8. KNG1 has been associated with diseases including high molecular weight kininogen deficiency 
and angioedema8,9. A study of mutant kininogen-deficient rats showed a low incidence of thermal and mechan-
ical hyperalgesia induced by chronic nerve constriction injury suggesting that kinin were partly involved in 
nociceptor hypersensitivity10. Subsequent studies showed that kinin- receptor deficient mice have a significant 
reduction in paclitaxel-induced hyper-nociceptive responses compared to wild-type mice11,12.

Purkinje Cell Protein 2 (PCP2), identified as protective in this study, is also a protein coding gene that is 
expressed only in Purkinje cells of the cerebellum and in bipolar neurons of the retina, and may function as a 
neuron-specific modulator of intracellular signaling via G proteins13,14. The Gα, Gβ and Gγ form heterotrimers 
that transduce extracellular stimuli into intracellular responses, and the receptors coupled to G proteins consti-
tute the largest superfamily of transmembrane receptors, ie, the G-protein-coupled receptors (GPCRs). PCP2 
interacts with Gαo

15, which is coupled to several neuronal receptors in the central nervous system that regulate 
some K+ channels and N-type Ca+2 channels16–19. Gαo can also be regulated by Growth Cone-Associated Protein 
43 (GAP43), also known as neuromodulin, in neurites during development17. Knockout of Gap43 in mice causes 
derangement in neuronal pathfinding18; in contrast, Gnao1 (the gene for Gαo) knockout mice have anatomically 
normal appearing central nervous system but manifest motor and behavioral abnormalities and early death16,19. 
Given that μ opioid agonists act through GPCRs (e.g., OPRM1 gene)20, GPCRs are therapeutic targets in pain 
pathways. Interestingly, a transient expression study demonstrated that transcription of PCP2 is activated by 
RAR-related orphan receptor alpha (RORA), which binds to a half-site motif of a Retinoic Acid-Related Orphan 
Receptor Response Element (RORE) in the promoter region21.

Finally, RAR-related orphan receptor alpha (RORA) is also a protein coding gene. The protein encoded by this 
gene has been shown to interact with NM23-1, which is the product of a tumor metastasis suppressor candidate 
gene22,23. It has been associated with diseases such as atrial tachyarrhythmia with short PR interval and trait 
depression22,24–26. Li and colleagues27 conducted a molecular mapping of a developing dorsal horn by microar-
ray. The dorsal horn of the spinal cord consists of distinct lamina serving as a region for relaying somatosensory 
signals of touch, temperature and pain. They found for the first time, that RORA transcription factors showed a 
unique expression pattern in lamina II, suggesting the potential importance of RORA in pain.

Ingenuity Pathway Analysis (Ingenuity® Systems, www.ingenuity.com) reveals that RORA, PCP2 and SNX8 
can be connected in a regulatory network by microRNAs (Fig. 3). MiR-1229-39 regulates RORA and SNX8 and 

Figure 2.  Linkage disequilibrium structure and association results for the four neuropathy-associated genomic 
regions. (A) SNX8; (B) PCP2; (C) KNG1; and (D) RORA. Base pair positions and genes were based on the build 
of the human genome GRCh37. Fisher’s exact test P values (as −log10 values; left y axis) are shown for SNPs 
analyzed in the GWA studies.

http://www.ingenuity.com
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miR-6877-5p regulates PCP2 and SNX8. Although KNG1 belongs to a family of small peptides consisting of 
bradykinin and kinins which are mediators of pain and inflammation, the mechanism behind the link of this SNP 
near KNG1 gene with NP is unclear.

To our knowledge, this is the first GWA study to identify the importance of SNPs in SNX8, PCP2, KNG1, 
and RORA for neuropathy in patients with head and neck cancer. In a recent GWA study, Hertz and colleagues28 
found that a SNP in VAC14 (rs875858) was significant for docetaxel-induced neuropathy in patients with meta-
static castration-resistant prostate cancer. Conversely, a GWA study of cisplatin-induced peripheral neuropathy 
in testicular cancer survivors did not show significance for any of the 5.1 million SNPs but showed significance 
for the expression level of RPRD1B with cisplatin-induced peripheral neuropathy29. Other GWA studies of neu-
ropathic pain in patients with diabetes have shown the significance of Chr8p21.3 (GFRA2)30 and sex-specific 
involvement of Chr1p35.1 (ZSCAN20-TLR12P) for females and Chr8p23.1 (HMGB1P46) for males for diabetic 
neuropathic pain31. In a recent study, Zorina-Lichtenwalter and colleagues32 replicated an association for two 
variants in IL10, which underscores the importance of neuroimmune interactions for neuropathic pain. Studies 
continue to explore potential genetic mechanisms underlying the development of neuropathic pain.

There are limitations to our study. Using ICD-9 and ICD-10 diagnosis for identifying patients with neurop-
athy may have resulted to an underestimation of its prevalence. This study should be considered exploratory 
and preliminary in nature, and future validation using independent data sets as well as in other cancer sites is 
necessary. Moreover, our study population only involved self-reported Caucasians, therefore, future GWA studies 
that incorporate other races or ethnicities would be important. The sample size of our study (1,043 patients with 
head and neck cancer, with 130 patients having neuropathy) is relatively small, implying limited statistical power. 
Thus, we conducted a post hoc power analysis to investigate the statistical power using the software PS: Power and 
Sample Size Program33. With a total sample size of 1,043 patients, we found that we had 80% power to detect an 
OR of 3.03 for a SNP‒neuropathic pain association in patients with HNC, given a genome-wide significance level 
of 5 × 10−8 to account for multiple comparisons. We might also have missed additional SNPs that could be associ-
ated with neuropathic pain, due to the limitation from our sample size. Future studies exploring the physiological 
effects of the identified SNPs will provide a better understanding of the biological mechanisms underlying NP and 
may provide insights into novel therapeutic targets for treatment and management of NP.

Methods
Patients.  The study was approved by the Institutional Review Board at The University of Texas MD Anderson 
Cancer Center, and all procedures adhered to its guidelines and regulations, in accordance with the Declaration of 
Helsinki. All participants provided written informed consent. This study included patients with newly diagnosed 
and histologically confirmed HNSCC. The details of patient recruitment (including inclusion and exclusion cri-
teria), the demographic characteristics and clinical data collection have been described in our previous study34.

Specifically for this study, we used the International Classification of Diseases, ninth and tenth revisions 
(ICD-9 and ICD-10, respectively), which is the system of codes for diagnoses and procedures in the United 
States, to identify neuropathy associated diagnosis among the patient cohort. We specifically searched for the 
following ICD-9 codes (053.13; 337.0; 337.09; 337.1; 356.4; 356.8; 356.9; 357.2; 357.3; 357.9; 377.41) and ICD-10 
codes (G58.8; G58.9; G62.0; G62.2; G62.9; G63.0). Epidemiological data, such as age and sex, were also collected.

Figure 3.  Ingenuity Pathway Analysis of SNX8, PCP2, KNG1, and RORA. Data were analyzed through the use 
of IPA (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis).

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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Genotyping and Quality Controls.  These procedures were previously described34. In brief, genomic DNA 
was genotyped using Illumina HumanOmniExpress-12v1 BeadChip (Illumina, San Diego, CA)35. Clustering and 
SNP calling were conducted using Illumina’s BeadStudio36. SNPs were considered as missing genotypes if no 
clusters were observed at a locus. Study genotypes were filtered and limited to autosomal SNPs with (1) call 
rate ≥90%; (2) MAF ≥0.05 and (3) Hardy-Weinberg proportion test P value ≥ 10−6 in control subjects37,38. We 
excluded individuals with: (1) call rates less than 95%; (2) discordant sex information and (3) duplicates. The 
genome-wide identity-by-state distances on SNPs39,40 for each pair of individuals were calculated to assess the 
cryptic relatedness among individuals. If two individuals have allele sharing of >80%, the one with lower call rate 
was excluded. We also investigate the non-Western European ancestry for all individuals by using the information 
from 2,502 reference samples from the 1000 Genomes Project data set (phase 3)41. All the quality control proce-
dures were conducted using PLINK (v1.07)4. GRCh37 was the build of the human genome used for the study and 
the base pair (bp) locations will only match exactly with that build.

Statistical analyses.  The primary variable of interest was the binary outcome of neuropathy. The 
chi-squared test or Fisher’s exact test (cell count <5) was used to assess the Hardy-Weinberg proportion for each 
SNP38. A nearest neighbor cluster analysis4,39 was conducted to obtain the information of cluster for each individ-
ual based on genetic similarity. Specifically, with at least one case and one control in each cluster, it was obtained 
using pairwise population concordance at P value < 0.005. Associations between the neuropathy and SNPs were 
assessed using multivariable unconditional logistic regression, where sex, age and information of clusters were 
included as covariates. Significance was assessed using a Fisher’s exact test. We assumed an additive genetic 
model for each SNP in the association analysis. The genome-wide significance P value threshold of 5 × 10−8 
was employed to account for multiple testing issue. Statistical analyses were conducted using PLINK (v1.07)4. 
Manhattan plot (Fig. 1) was generated using R software42. Gene Ontology (GO) information was retrieved from 
the Gene Ontology Annotation database43,44.

Ingenuity Pathway Analysis.  We used the Ingenuity Pathway Analysis (IPA, Ingenuity® Systems, www.
ingenuity.com) to investigate the interactions among genes that harbor or near the SNPs (SNX8, PCP2, KNG1, 
and RORA) found to be significantly associated with neuropathy in our GWA study45. In brief, genes of interest 
were entered into the IPA software to build an interaction network, using the following steps: (1) The “Grow” tool 
was used to obtain both direct and indirect interactions of the genes of interest with other molecules. We added 
a maximum of 10 molecules at a time for ease of viewing and optimal performance46. Ingenuity Knowledge Base 
was used, with a limitation to only human species. (2) The “Connect” tool was used to obtain both direct and 
indirect connections among the genes. (3) Unconnected genes or pathways were trimmed with the “Trim” tool to 
improve the clarity of the network.

Data availability.  For future meta-analysis, information on all p-values are available from authors. The data-
sets generated during and/or analyzed during the current study are available in the dbGaP repository, phs001173.
v1.p1.
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