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Abstract

Dysregulated mRNA translation and aberrant energy metabolism are frequent in cancer. 

Considering that mRNA translation is an energy demanding process, cancer cells must produce 

sufficient ATP to meet energy demand of hyperactive translational machinery. In recent years, the 

mammalian/mechanistic target of rapamycin (mTOR) emerged as a central regulatory node which 

coordinates energy consumption by the translation apparatus and ATP production in mitochondria. 

Aberrant mTOR signaling underpins the vast majority of cancers whereby increased mTOR 

activity is thought to be a major determinant of both malignant translatomes and metabolomes. 

Nonetheless, the role of mTOR and other related signaling nodes (e.g. AMPK) in orchestrating 

protein synthesis and cancer energetics is only recently being unraveled. In this review, we discuss 

recent findings that provide insights into the molecular underpinnings of coordination of 

translational and metabolic programs of cancer cells, and potential strategies to translate these 

findings into clinical treatments.
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Introduction

The dysregulation of mRNA translation is a prominent characteristic of cancer cells (Bhat et 

al., 2015; Pelletier et al., 2015). Elevated protein synthesis is required to support neoplastic 

growth, which consequently results in a high energy demand (Buttgereit and Brand, 1995; 

Morita et al., 2015; Rolfe and Brown, 1997). As mRNA translation is one of the most 

energetically demanding process in the cell, cancer cells require sufficient ATP production to 

maintain elevated mRNA translation rates (Buttgereit and Brand, 1995; Topisirovic and 

Sonenberg, 2011). Protein synthesis occurs in four major steps: initiation, elongation, 

termination and ribosome recycling (Hershey et al., 2012). Each step of mRNA translation 
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comprises a complex interplay between mRNA, ribosomes, transfer RNAs and auxiliary 

proteins also known as translation factors that function together in a highly orchestrated 

manner to generate newly synthesized proteins (Hershey et al., 2012) (Figure 1).

Translation and energy demand

During the initiation of mRNA translation in both eukaryotes and prokaryotes, a number of 

initiation factors recruit the initiator tRNA (tRNAi
Met in eukaryotes) and mRNA to the small 

ribosomal subunit (Hinnebusch, 2014; Voigts-Hoffmann et al., 2012). The initiator tRNA is 

positioned in the P site of the small ribosomal subunit upon recognition of the start codon 

which is followed by joining of the large ribosomal subunit to form the translationally 

competent ribosome (Hinnebusch, 2014; Voigts-Hoffmann et al., 2012). Although the 

general mechanisms of translation in prokaryotes and eukaryotes exhibit some resemblance, 

eukaryotes utilize many more initiation factors, larger ribosomal complexes and more 

energy. In eukaryotes, cap-dependent initiation of translation of most cellular mRNAs occurs 

by the scanning mechanism which requires the formation of a 43S pre- initiation complex 

(PIC) consisting of eukaryotic translation initiation factors (eIF) 1, 3, 5, the 40S ribosomal 

subunit and the ternary complex (TC) which comprises GTP bound eIF2 and tRNAi
Met 

(Hinnebusch, 2014). The eIF4F cap-binding complex, which contains eIF4A DEAD box 

helicase, eIF4E cap-binding protein, and eIF4G which acts as a scaffold, recruits 43S PIC to 

the ribosome via the interaction of eIF4G and eIF3, which leads to the 48S PIC assembly 

(Hinnebusch, 2014). This stimulates 43S PIC scanning of the mRNA 5′ UTR towards the 

start codon (Hinnebusch, 2014). 43S PIC scanning requires the removal of secondary 

structure present in the 5′UTR which is achieved by eIF4A and requires ATP hydrolysis 

(Rogers et al., 1999; Svitkin et al., 2001). Recognition of the start codon triggers hydrolysis 

of GTP from the TC resulting in its release followed by the dissociation of other eIFs and 

joining of the 60S ribosomal subunit, which is stimulated by initiation factor 5B, resulting in 

the hydrolysis of an additional GTP (Hinnebusch, 2014). In prokaryotes, initiation of protein 

synthesis is much simpler whereby the recruitment of the initiator tRNA (N-formyl 

methionine tRNA) to the 30S ribosomal subunit does not require the eIF4F complex 

assembly nor complex scanning mechanisms (Wintermeyer and Gualerzi, 1983). This makes 

initiation in eukaryotes more energetically expensive, inasmuch as it requires two GTP for 

the recycling of the TC and the formation of the 80S monosome and one ATP for mRNA 

activation, as compared to one GTP utilized by prokaryotes when forming the 70S 

monosome (Laursen et al., 2005; Voigts-Hoffmann et al., 2012). In contrast to initiation, 

elongation of mRNA translation is well conserved between eukaryotes and prokaryotes 

(Rodnina and Wintermeyer, 2009). Eukaryotic elongation factor 1 (eEF1) consists of eEF1A 

and eEF1B, wherein eEF1A (homologous to EF-Tu in prokaryotes) delivers amino-acyl 

tRNAs (Voigts-Hoffmann et al., 2012) to the A site of the ribosome (Carvalho et al., 1984). 

Upon proper codon recognition, rapid hydrolysis of eEF1A-bound GTP induced by eEF1B 

causes the release of eEF1 resulting in the formation of a new peptide bond (Voorhees et al., 

2010). Secondary to peptide-bond formation, eEF2 (EF-G in prokaryotes), facilitates the 

translocation of the ribosome to free the A-site, whereas uncharged tRNA is transferred to 

the E-site which requires hydrolysis of another GTP molecule (Stark et al., 2000; Taylor et 

al., 2007). The tRNA itself is recycled by the amino acyl synthetase complex that requires 
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hydrolysis of ATP to AMP, which is equivalent to two ATP molecules (Han et al., 2003) 

(Figure 1). This makes elongation the most energetically demanding step of mRNA 

translation requiring a total of two ATPs and two GTPs (Ibba and Soll, 1999) (Figure 1). The 

termination step of mRNA translation requires hydrolysis of GTP for the release of the 

nascent polypeptide, however the mechanism is quite different between prokaryotes and 

eukaryotes. In eukaryotes, release factors are likely part of the ribosome complex (Pisareva 

et al., 2006) where eukaryotic release factor 1 (eRF1) triggers peptidyl-tRNA hydrolysis 

while eRF3 accelerates this process. Upon recognition of the stop codon eRF1 stimulates 

GTP hydrolysis by eRF3 which facilitates the release of the nascent polypeptide (Alkalaeva 

et al., 2006) (Figure 1). In prokaryotes, release factors are recruited to the ribosome upon 

recognition of the stop codon and promote release of the nascent polypeptide followed by 

GTP hydrolysis (Zavialov and Ehrenberg, 2003). Collectively, these data indicate that 

mRNA translation imposes a significant energetic burden which cells must resolve by 

orchestrating protein synthesis rates and ATP production.

mTOR dictates mRNA translation and metabolic reprograming of cancer 

cells

As noted above, the complexity of the initiation increased more dramatically throughout 

evolution as compared to the other phases of mRNA translation (Malys and McCarthy, 

2011). This, in conjunction with high energy demand of elongation, suggests that initiation 

represents the rate-limiting step of protein synthesis wherein the most of regulation takes 

place to prevent extensive energy consumption by the translational apparatus (Chu et al., 

2016; Sonenberg and Hinnebusch, 2009). Initiation is therefore tightly regulated, which is in 

a large part achieved by the mammalian/mechanistic target of rapamycin (mTOR) (Figure 

2). mTOR adjusts global protein synthesis rates as well as the composition of the 

translatome in response to a number of environmental stimuli and intracellular cues to 

support cellular growth and proliferation (Efeyan et al., 2015; Morita et al., 2015; Saxton 

and Sabatini, 2017). More recently, the findings pointing out the importance of the mTOR-

dependent regulation of the elongation step of translation in the context of energy 

homeostasis are starting to emerge (Leprivier et al., 2015; Proud, 2015). Accordingly, 

frequent hyperactivation of mTOR in cancer is thought to underpin dysregulation of 

translation and energy metabolism which fuel neoplastic growth (Bhat et al., 2015).

mTOR is a serine/threonine kinase that plays a critical role in regulating cell growth and 

proliferation (Figure 2) (Saxton and Sabatini, 2017). In mammals, mTOR exists in at least 

two different complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) 

(Saxton and Sabatini, 2017). Both complexes share the catalytic subunit mTOR, GTPase β-

subunit like protein GβL (also known as mLST8, which is orthologous to LST8 in S. 
cerevisiae) and negative regulator DEPTOR (disheveled, Egl-10, pleckstrin [DEP] domain 

containing mTOR interacting protein), whereas RAPTOR (regulatory-associated protein of 

TOR) and RICTOR (rapamycin-insensitive companion of TOR); mSIN1 (mammalian stress-

activated protein kinase (SAPK)-interacting protein) and protor (Proline-rich protein 5, also 

known as PRR5) are mTORC1- and mTORC2-specific components, respectively (Saxton 

and Sabatini, 2017). mTORC1 is the better studied of the two complexes and it senses 
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alteration in nutrients (e.g. amino acids, glucose), oxygen levels, growth factors (e.g. IGFs), 

and hormones (e.g. insulin) via RAG GTPases and the Phosphoinositide 3-kinase 

(PI3K)/AKT/tuberous sclerosis complex (TSC)/Ras-homologue enriched in brain (RHEB) 

pathway (Ben-Sahra and Manning, 2017; Bond, 2016; Saxton and Sabatini, 2017; Wolfson 

and Sabatini, 2017) (Figure 2). Moreover, energy depletion resulting in increased AMP/ATP 

ratio and hypoxia both reduce mTORC1 activity via AMP-activated protein kinase (AMPK) 

(Bolster et al., 2002; Hardie et al., 2012; Inoki et al., 2006) and are regulated in development 

and DNA damage responses (REDD1), respectively (Brugarolas et al., 2004). mTORC1 

mainly induces anabolic processes such as protein and lipid synthesis, stimulates glycolysis 

and inhibits autophagy, thereby promoting cell growth and proliferation (Duvel et al., 2010; 

Saxton and Sabatini, 2017) (Figure 2). In most cell lines, mTORC1 also appears to be more 

sensitive to naturally occurring allosteric inhibitor rapamycin than mTORC2, at least during 

acute treatment (Sarbassov et al., 2006). Upstream regulators of mTORC2 are largely 

unknown, and its functions are chiefly mediated by AGC kinases [e.g. AKT, protein kinase 

C (PKC) and serum and glucocorticoid-regulated kinase 1 (SGK1)] which regulate 

cytoskeletal organization and survival (Destefano and Jacinto, 2013; Su and Jacinto, 2011). 

Moreover, mTORC2 has been shown to associate with ribosomes where it is thought to 

regulate stability of newly synthesized polypeptides (Zinzalla et al., 2011) and regulate lipid 

and glucose metabolism (Hagiwara et al., 2012; Lamming and Sabatini, 2013; Masui et al., 

2013).

Downstream effectors of mTOR-dependent orchestration of cancer 

translatome and energetics

Since other mTORC1 effectors and their impact on translation and metabolism are covered 

in several excellent recent reviews (Ben-Sahra and Manning, 2017; Bond, 2016; Saxton and 

Sabatini, 2017; Thoreen, 2017), we will focus on recent findings highlighting the 

mTORC1/4E-BP and mTORC1/S6K/eEF2K axis as major nodes which orchestrate energy 

metabolism and protein synthesis.

The mTORC1/4E-BP axis

mTORC1 phosphorylates and inactivates translational suppressors 4E-binding proteins (4E-

BP1-3 in humans) (Burnett et al., 1998; Gingras et al., 1999; Hara et al., 1997; Roux and 

Topisirovic, 2012; von Manteuffel et al., 1996). 4E-BPs bind to mRNA 5′ cap binding 

protein eIF4E thereby impeding assembly of the eIF4F complex and recruitment of the 

mRNA to the ribosome (Pause et al., 1994). This leads not only to a decrease in global 

protein synthesis rates, but also to a selective increase in synthesis of a subset of proteins 

including those with mitochondrial functions [e.g. electron transport chain (ETC) 

components, NADH dehydrogenase (ubiquinone) complex I, assembly factor 6 (NDUF6), 

ATP synthase subunit O (ATP5O), and ATP synthase subunit D (ATP5D)] (Larsson et al., 

2012; Morita et al., 2013). The unifying features of the vast majority of these mRNAs that 

encode proteins with mitochondrial function is that they harbor short 5′UTRs (<40 

nucleotides), which appears to render translation of these transcripts exceptionally sensitive 

to changes in levels and/or activity of eIF4E, but not eIF4A component of the eIF4F 
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complex (Elfakess et al., 2011; Gandin et al., 2016b; Sinvani et al., 2015). Notably, eIF1 

prevents translation from 5′mRNA cap proximal start codons by inducing leaky scanning 

and favoring the open, scanning competent state of the 43S preinitiation complex 

(Hinnebusch, 2014; Hinnebusch et al., 2016). Recently it has been shown that a subset of 

mRNAs with short 5′UTRs, including those containing the Translation Initiator of Short 5′ 
UTR (TISU) element, efficiently initiate from 5′ mRNA cap-proximal start codons 

(Elfakess et al., 2011). Although the precise mechanism of this cap-dependent but scanning 

free process of translation initiation remains largely unknown, it appears that it encompasses 

of interactions between eIF1 and eIF4G (Sinvani et al., 2015) as well as eIF1A-directed 

association of ribosomal protein S3 (RPS3) and RP10a with TISU element (Haimov et al., 

2017). This selective increase in translation of factors which are involved in mitochondrial 

functions enhances ATP production. Therefore, translational reprograming caused by 

mTORC1 activation increases synthesis of ETC components and other factors with 

mitochondrial functions (e.g. TFAM), which stimulates energy production required to fuel 

protein synthesis as well as other anabolic processes in the cells, ultimately stimulating cell 

proliferation and growth (Gandin et al., 2016b).

The mTORC1/S6K/eEF2K axis

In addition to 4E-BPs, eEF2 kinase (eEF2K) appears to play a major role in coordinating 

protein synthesis rates and cancer energetics (Ryazanov, 2002) (Figure 2). eEF2K 

phosphorylates eEF2 on Thr56 in humans and inhibits its ribosome association, thereby 

preventing ribosome translocation and attenuating elongation (Carlberg et al., 1990). In turn, 

mTORC1 increases elongation rates via phosphorylating and inactivating eEF2K (at Ser 366 

in humans), through the action of ribosomal protein S6 kinases (S6Ks) (Wang et al., 2001). 

mTORC1 has also been shown to directly phosphorylate eEF2K (Ser 78 and 359 in 

humans), which leads to its inactivation (Browne and Proud, 2004; Smith and Proud, 2008). 

Under physiological conditions, energy depletion in the muscle stimulates release of calcium 

and consequently increases eEF2K association with calmodulin (Kenney et al., 2014). This 

results in the activation of eEF2K and subsequent reduction in ATP consumption by the 

translation machinery (Kenney et al., 2014). Understanding of the biological consequences 

of eEF2K phosphorylation in cancer however is still largely incomplete. In general, protein 

synthesis correlates with proliferation, and therefore it is expected that increased elongation 

rates upon eEF2K inhibition stimulate neoplastic growth. Indeed, in a mouse model of 

intestinal carcinogenesis caused by the adenomatous polyposis coli (APC) tumor suppressor 

loss, ablation of eEF2K drives oncogenic mTOR signaling, suggesting that eEF2K may exert 

tumor suppressive properties (Faller et al., 2015). In stark contrast, in a variety of cancer cell 

lines and xenograft models, eEF2K exerts tumor protective properties, in particular under 

conditions wherein nutrients are limiting (Leprivier et al., 2013). In this context, eEF2K 

engenders decrease in protein synthesis thereby conserving energy when nutrients are 

limiting, which occurs when tumors outstrip their vasculature (Kenney et al., 2014; Leprivier 

et al., 2013; Leprivier et al., 2015). These findings suggest that whereas the loss of eEF2K 

activity bolsters tumor initiation and early carcinogenesis, the increase in eEF2K may 

maintain energy homeostasis and prevent energy crisis under conditions when energy 

resources are compromised.
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The role of AMPK in orchestrating protein synthesis and cancer energetics

AMPK acts as a central sensor of energy status in the cell (Hardie et al., 2012). Inadequate 

energy state leads to AMPK activation and consequent engagement of mechanisms which 

reduce anabolic processes such as lipogenesis and protein synthesis and induce autophagy, 

oxidation of fatty acids and other catabolic processes to conserve energy (Hardie and Pan, 

2002; Hardie et al., 2012; Li et al., 2011; Shaw et al., 2004; Woods et al., 2003). AMPK is a 

heterotrimeric enzyme, composed of catalytic α, and regulatory β and γ subunits, which is 

traditionally thought to be activated by an increase in the AMP/ATP ratio, whereby AMP (or 

ADP) associates with γ subunit, leading to the phosphorylation of the activation loop 

(Thr172 in human protein) by a number of kinases, most notably LKB1 (Hardie et al., 

2016). More recently, however, it has been shown that glucose withdrawal activates AMPK 

prior to increase in AMP/ATP levels by a mechanism that likely involves glycolytic enzyme 

aldolase (Zhang et al., 2017). Upon activation, AMPK reduces catabolic processes including 

protein and lipid synthesis which is chiefly mediated by inactivation of mTORC1 and acetyl-

CoA carboxylase (ACC), respectively (Inoki et al., 2003; Zang et al., 2004; Zannella et al., 

2011). AMPK has been shown to inhibit mTORC1 by a multitude of mechanisms including 

via TSC1/2, which dampens ATP consumption by translational machinery (Hong-Brown et 

al., 2012; Zannella et al., 2011) (Figure 2). In addition, it has been shown that AMPK can 

directly phosphorylate translational regulators such as eEF2K (Ser398 in humans), leading 

to its activation and a reduction in protein synthesis (Browne et al., 2004) (Figure 2). Recent 

studies wherein energy stress was induced by anti-diabetic biguanides (i.e. metformin and 

phenformin), which represses complex I of ETC and subsequently reduces mitochondrial 

ATP production (Andrzejewski et al., 2014; Bridges et al., 2014; Owen et al., 2000), 

revealed that the LKB1/AMPK/mTORC1 axis may play an essential role in preventing 

energy crisis and death of cancer cells (Algire et al., 2010; Shackelford et al., 2013). To this 

end, biguanides exhibited extensive cytotoxicity in cells which do not possess functional 

LKB1 and are thus incapable of reducing protein synthesis and other anabolic processes in 

response to energy stress (Algire et al., 2010; Shackelford et al., 2013). In contrast, 

biguanides induced only minimal cytotoxic effect in LKB1-proficient cells (Algire et al., 

2010; Shackelford et al., 2013). Notwithstanding that AMPK regulates a number of anabolic 

and catabolic processes which are involved in adaptation to energy stress (Hardie et al., 

2012), it is reasonable to postulate that an energy crisis in LKB1-deficient cells is at least in 

part caused by their inability to suppress protein synthesis. Consistently, it has been 

demonstrated that cancer cells adapt to nutrient stress by engaging AMPK-eEF2K axis and 

reducing mRNA translation (Leprivier et al., 2013).

eIF2α kinases and coordination of cancer energetics and protein synthesis

In addition to the eIF4F complex assembly, ternary complex (TC) recycling is an additional 

rate limiting step of translation initiation (Hinnebusch, 2014). As mentioned above, TC 

consists of eIF2 bound to GTP along with initiator tRNA (tRNAi
Met). tRNAi

Met delivery to 

the P site of the ribosome is accompanied by the hydrolysis of GTP, which results in the 

release of the eIF2:GDP complex. Next, eIF2:GDP is recycled to eIF2:GTP via the action of 

a multi-subunit guanine nucleotide exchange factor (GEF) eIF2B for the next round of 

initiation (Hinnebusch, 2014; Wortham and Proud, 2015) (Figure 1). The regulatory eIF2α 
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subunit of eIF2 (also containing β and γ subunits) undergoes phosphorylation at position 

S51 (in mouse; S52 in human) in response to various stimuli including amino acids 

deprivation, ER stress, viral infection or heme deficiency, via General Control 

Nonderepressible 2 (GCN2), protein kinase R (PKR)-like endoplasmic reticulum kinase 

(PERK), protein kinase R (PKR) and heme-regulated inhibitor kinase (HRI) kinases, 

respectively (Hinnebusch, 2014) (Figure 2). In turn, PPP1R15 family members growth arrest 

and DNA damage-inducible protein 34 (GADD34) or the constitutive reverter of eIF2α 
phosphorylation (CReP), in collaboration with protein phosphatase 1 (PP1), dephosphorylate 

eIF2α (Jousse et al., 2003; Novoa et al., 2001). Phosphorylation of eIF2α leads to enhanced 

association of eIF2 with eIF2B, which blocks eIF2B GEF activity thus limiting TC 

availability (Hinnebusch, 2014). This leads to downregulation of translation of most cellular 

mRNAs, which is accompanied by translational upregulation of mRNAs which harbor 

inhibitory upstream open reading frames (uORFs) in their 5′UTR, including activating 

transcription factor 4 (ATF4), CCAAT-enhancer-binding protein homologous protein 

(CHOP) and GADD34 (Hinnebusch et al., 2016). While GADD34 induces 

dephosphorylation of eIF2α to resolve acute stress response (Brush et al., 2003; Novoa et 

al., 2001), ATF4 and CHOP are transcription factors that play a major role in metabolic 

regulation including governing glucose and glutathione metabolism and stimulating 

expression of amino acid transporters (Huggins et al., 2015; Krokowski et al., 2013; Wan et 

al., 2014). Moreover, it has been shown that aberrant ATF4 and CHOP expression leads to 

oxidative stress and increase in protein synthesis, which results in cell death and can be 

averted by suppressing translation via e.g. depletion of ribosomal proteins (Han et al., 2013). 

Accordingly, eIF2α phosphorylation which limits protein synthesis, has been shown to 

protect cancer cells from cell death upon glucose and amino acids depletion (Muaddi et al., 

2010; Ye et al., 2010). In recent years a number of cross-talk mechanism between eIF2α 
phosphorylation, ATF4, mTORC1 and AMPK have been described (Ben-Sahra et al., 2016; 

Gandin et al., 2016a; Liu et al., 2006; Mounir et al., 2011; Park et al., 2017; Wengrod et al., 

2015). This suggests that mTORC1, AMPK and the eIF2α/ATF4 axis may constitute central 

nodes of a master regulatory network that adjusts protein synthesis rates to cellular energy 

status.

Potential application of eIF4A inhibitors to target mechanisms coordinating 

protein synthesis and energy metabolism in neoplasia

Considering that uncoupling protein synthesis and cancer energetics appears to be 

detrimental to the survival of neoplastic cells, there is a heightened interest to develop 

therapeutic modalities to disrupt orchestration of mRNA translation and energy metabolism 

in the clinic (Erazo et al., 2016; Guichard et al., 2015; Powles et al., 2016). Considering the 

central role of mTOR in metabolic control, it is not surprising that mTOR inhibitors induce 

profound metabolic changes in the cell including reduction of protein, nucleotide and lipid 

synthesis and glycolysis (Duvel et al., 2010). Moreover, mTOR inhibitors also perturb 

metabolism at the organismal level (Gonzalez and Hall, 2017). A number of mTOR 

inhibitors have been discovered and/or developed in the last four decades. Rapamycin, a 

macrolide antibiotic produced by S. hygroscopicus which exerts antifungal and 

immunosuppressive properties (Houchens et al., 1983; Martel et al., 1977) acts as an 
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allosteric inhibitor of mTOR and also exhibits anti-neoplastic properties (Garcia-Echeverria, 

2010). Rapamycin binds to FKBP–rapamycin-binding (FRB) domain of mTOR in complex 

with FK-506-binding Protein 12 (FRBP12) and allosterically interferes with mTORC1 

function, whereas it has only marginal effect on mTORC2, at least during the acute 

treatment (Aylett et al., 2016; Saxton and Sabatini, 2017). mTORC2 however appears to be 

rapamycin-sensitive over prolonged treatment in some cell lines and in vivo (Sarbassov et 

al., 2006). Rapamycin and its synthetic analogs (rapalogs) showed promising anti-neoplastic 

properties in a number of pre-clinical models which led to clinical trials for oncological 

indications and resulted in FDA approval for several indications including kidney and breast 

cancers (Basho et al., 2017; Chan et al., 2005; Hudes, 2007). Nonetheless, the anti-

neoplastic efficacies of rapalogs were less than expected (Benjamin et al., 2011; Faes et al., 

2017). This in part was attributed to the inhibition of the S6K-insulin receptor substrate 1 

(IRS1)-PI3K-AKT feedback loop, which results in AKT activation and incomplete 

suppression of some mTORC1 outputs including 4E-BP phosphorylation (Dowling et al., 

2010; Faes et al., 2017). Later findings spearheaded the development of the second 

generation of mTORC1 inhibitors which target the ATP binding pocket of mTOR (e.g. 

torin1, INK128) and thus inhibit both mTORC1 and mTORC2 (Benjamin et al., 2011). 

More recently, a third generation mTOR inhibitor (e.g. rapalink) which combines allosteric 

effects and targeting of the active site was developed (Rodrik-Outmezguine et al., 2016). 

Notwithstanding that the second and third generation of mTOR inhibitors exert more potent 

anti-proliferative effects than rapamycin in pre-clinical models, their effects, at least in the 

preclinical models, appear to be cytostatic, but not cytotoxic (Faes et al., 2017). This can at 

least in part be explained by the effects of mTOR inhibitors on the translatome. mTOR 

inhibitors simultaneously suppress translation of the short 5′UTR mRNAs which encode 

proteins with mitochondrial function (e.g. components of the ETC), as well as those which 

contain long 5′UTR and encode for proteins which maintain mitochondrial integrity [e.g. B-

cell lymphoma 2 (BCL2) family members] (Gandin et al., 2016b). This decreases 

mitochondrial energy production which is compensated by reduced energy consumption by 

protein synthesis machinery. Moreover, mTOR inhibitors stimulate fusion of mitochondria 

and enhance removal of damaged mitochondria by autophagy (Gandin et al., 2016b; Morita 

et al., 2017). Together, this is expected to result in metabolic dormancy and cytostatic but not 

cytotoxic effects. In turn, inhibition of eIF4A results in selective inhibition of translation of 

mRNAs with long 5′UTR which are enriched in genes encoding for proteins which protect 

mitochondrial integrity (e.g. BCL-2 family members), but not those with short 5′UTRs 

encoding proteins with essential mitochondrial functions (ETC component complexes) 

(Gandin et al., 2016b). In addition, eIF4A inhibitors slightly increase mTORC1 signaling 

and thus do not induce autophagy (Galicia-Vazquez et al., 2012; Gandin et al., 2016b). This 

eIF4A inhibitor-induced combination of translational reprograming and suppression of 

autophagy is paralleled by mitochondrial depolarization and cell death (Gandin et al., 

2016b). These findings suggest that eIF4A, but not mTOR inhibitors disrupt coordination 

between translational machinery and energy metabolism thereby resulting in a cytotoxic 

effect. Dramatic differences in translational and metabolic programs of non-transformed and 

cancer cells are thought to provide sufficient therapeutic window to employ eIF4A inhibitors 

in the clinic. Indeed, recent studies have shown that eIF4A inhibitors at doses that eradicate 
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cancer cells exert only minimal toxicity in non-transformed cells and mice (Cencic et al., 

2009; Cencic et al., 2013; Nasr et al., 2013).

Concluding remarks

Protein synthesis is one of the most energetically expensive biological processes (Buttgereit 

and Brand, 1995). In cancer cells where mRNA translation is commonly hyperactive, 

increased protein synthesis rates require elevated ATP production (Buttgereit and Brand, 

1995; Morita et al., 2015; Rolfe and Brown, 1997). Emerging data indicate that this is 

achieved via the interplay between AMPK, mTORC and eIF2α phosphorylation. Notably, 

translational programs governed by the latter factors appear to be further integrated with 

other levels of regulation of gene expression including transcription. To this end, mTORC1 

was reported to upregulate expression of mitochondrial genes involved in oxidative 

phosphorylation via the transcriptional factor Ying-Yang 1 (YY1) (Cunningham et al., 

2007), and more recently to be directly involved in transcription of metabolic genes (Audet-

Walsh et al., 2017; Chaveroux et al., 2013). The cross talk between energy production and 

protein synthesis is further corroborated by the findings that p62, a positive regulator of a 

glutamate transporter, may enable cancer cells with hyperactivated mTOR signaling to limit 

mitochondrial dysfunction by maintaining intercellular pools of glutathione (Lam et al., 

2017). Additional components of the translational machinery have also been proposed to be 

implicated in metabolic regulation. For example, eIF6, which is involved in 60S ribosome 

biogenesis and subunit joining (Brina et al., 2015a), increases synthesis of transcriptional 

factors which regulate lipogenesis and glycolysis (Brina et al., 2015b), whereas eIF3, a large 

multiprotein complex that participates in the recruitment of mRNA to the ribosome, appears 

to control translation of mRNAs encoding mitochondrial factors (Shah et al., 2016). In 

conclusion, emerging findings highlight several mechanisms that underpin cross-talk 

between protein synthesis and cancer energetics, and suggest that future research is required 

to delineate cellular networks which orchestrate mRNA translation and energy metabolism 

of cancer cells, which may eventually result in novel therapeutic avenues to treat neoplasia.
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Figure 1. Energy consumption by the eukaryotic translational machinery
In eukaryotes, protein synthesis occurs in four major steps: initiation, elongation, 

termination and ribosome recycling. (A) Step 1: Initiation. Initiation requires the assembly 

of the 43S pre-initiation complex (PIC) and eIF4F (1). The 5′ capped mRNA is activated in 

an ATP-dependent manner by eIF4F. The 48S PIC is assembled by association of 43S PIC 

and the eIF4F complexes (2). As a part of eIF4F, eIF4A unwinds 5′UTR in an ATP-

dependent manner while the 5′UTR is scanned in the 5′-->3′ direction (3). Recognition of 

the translation initiation codon triggers hydrolysis of GTP from the ternary complex (TC) 

resulting in TC release (4). This is followed by the dissociation of other initiation factors 

(eIFs). eIF5B accelerates the release of eIFs and the joining of the 60S ribosomal subunit 

which is accompanied by the hydrolysis of an additional GTP (4). (B) Step 2: Elongation. 

Aminoacyl-tRNAs (aa-tRNA) are recruited by elongation factor (eEF) 1A. The anticodon of 

the incoming aa-tRNA is matched against the mRNA codon positioned in the A site 

resulting in the hydrolysis of GTP which is stimulated by eIF1B leading to the release of 

eEF1A (1). The growing polypeptide chain is covalently linked to the new amino acid, 

leaving an empty tRNA in the P site (2). As the mRNA moves one codon forward, the empty 

tRNA from the P site is displaced to the E site as the peptidyl tRNA is translocated into the P 

site which is facilitated by eEF2 and requires GTP hydrolysis. tRNAs are aminoacylated by 
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aminoacyl tRNA synthetase, which requires hydrolysis of ATP to AMP (3). These steps are 

repeated until the ribosome encounters an in-frame stop codon. (C) Step 3: Termination. An 

in-frame stop codon is positioned in the A site (1). Release factors (eRFs) 1, 2 and 3 

assemble with GTP forming a complex near the A site (1). Upon recognition of the stop 

codon by eRF1 and eRF2, GTP hydrolysis is triggered by eRF3 resulting in the release of 

the polypeptide chain (2). eRFs are released followed by the dissociation of the 40S, 60S 

ribosomal subunits and mRNA (3). The ribosomal subunits are then recycled. Abbreviations: 

eIF, eukaryotic initiation factor, eRF, eukaryotic release factor, eEF, eukaryotic elongation 

factor, PIC, preinitiation complex, TC, ternary complex, PABP, poly(A) binding protein, 

tRNAi
Met, initiator tRNA, M7G, 7-methylguanylate cap.
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Figure 2. Simplified scheme of signaling pathways that coordinate energy production and protein 
synthesis
The mammalian/mechanistic target of rapamycin (mTOR) pathway emerged as a pivotal 

regulator of protein synthesis and energy metabolism. It is present in at least two 

functionally and structurally distinct complexes mTORC1 and mTORC2. mTORC1 

integrates a number of signals via various upstream pathways. For instance, hormones and 

growth factors (e.g. insulin and IGFs) which activate receptor tyrosine kinases (e.g. insulin 

receptor) lead to activation of PI3K which via AKT inactivates TSC1/2 complex. TSC1/2 

complex acts as a GAP (GTPase-activating protein) towards the Ras homologue enriched in 

brain (RHEB) GTPase, which converts RHEB-GTP to its inactive RHEB-GDP form thus 

preventing activation of mTORC1. In addition, nutrients and in particular amino acids 

activate mTORC1 via RAG GTPases, while the effects of oxygen tension and energy status 

in the cell on mTORC1 activity are mediated by REDD1 and AMPK, respectively. mTORC1 

stimulates translation by modulating the activity of its downstream effectors including S6Ks, 

4EBPs and eEF2K. mTOR simultaneously perturbs other metabolic processes including 

induction of lipogenesis and glycolysis, and suppression of autophagy. Increase in energy 

consumption under conditions wherein mTOR is activated is compensated by the 

perturbations in the translatome that allow selective increase in translation of the nuclear-

encoded mRNAs that encode proteins that bolster mitochondrial number and functions. In 

addition to mTOR, a number of stress conditions including amino acid deprivation, ER 
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stress, heme deficiency and viral infection translation is downregulated via eIF2α kinases 

which phosphorylate eIF2α and impedes the recycling of ternary complex. Emerging results 

suggest that the activity of AMPK, mTOR and/or eIF2α phosphorylation may be co-

regulated. Abbreviations: PDK1, 3-phosphoinositide-dependent protein kinase-1, RAG, Ras-

related GTP-binding protein, RPS6, ribosomal protein S6, PIP3, Phosphatidylinositol 

(3,4,5)-trisphosphate, PIP2, Phosphatidylinositol 4,5-bisphosphate, eIF, eukaryotic initiation 

factor, eEF, eukaryotic elongation factor.
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