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Multispectral palmprint recognition system (MPRS) is an essential technology for effective human identification and verification
tasks. To improve the accuracy and performance of MPRS, a novel approach based on autoencoder (AE) and regularized extreme
learning machine (RELM) is proposed in this paper. The proposed approach is intended to make the recognition faster by reducing
the number of palmprint features without degrading the accuracy of classifier. To achieve this objective, first, the region of interest
(ROI) from palmprint images is extracted by David Zhang’s method. Second, an efficient normalized Gist (NGist) descriptor is used
for palmprint feature extraction. Then, the dimensionality of extracted features is reduced using optimized AE. Finally, the reduced
features are fed to the RELM for classification. A comprehensive set of experiments are conducted on the benchmark MS-PolyU
dataset. The results were significantly high compared to the state-of-the-art approaches, and the robustness and efficiency of the

proposed approach are revealed.

1. Introduction

Biometrics is an effective technology used for security
purposes in many applications [1]. Recently, it has gained
more and more attention of researchers throughout the
world. A number of biometric traits, including fingerprint,
face, iris, gait, key-stroke, and palmprint, have been widely
used according to the suitability of the applications [2-4].
Comparing to other biometric traits, palmprint has a strong
stability, low distortion, and high uniqueness [5]. Unfortu-
nately, palmprint patterns may be affected by some factors,
such as variations in illumination, changes in orientation, and
sensor noise that may lead to misclassification. Variations
in illumination and changes in orientation of multispectral
palmprint images can extremely affect the capability of such
systems to recognize the individuals.

Several works have been proposed to solve these issues
by using different feature extraction, reduction, and matching
methods. These works can be categorized into four groups:
line-based, statistic-based, subspace-based, and coding-
based approaches.

The line-based approaches are proposed to detect the
palmprint lines by using edge detector methods. For example,
Han et al. [6] have proposed a method based on Sobel edge
detector with morphological operations to extract the line
features from palmprint images. Wu et al. [7] used the Sobel
mask to compute the magnitudes of palmprint lines and
project these magnitudes along both the x- and y-axes for
generating the histograms as discriminative features.

Statistic-based approaches are also proposed in different
studies and attained reasonable results [8-10]. There are sev-
eral statistics that have been used in this group of approaches,
such as Hu moments, Zernike moments, variance, mean,
standard deviation, energy and histograms of local binary
patterns. A number of transforms have also been utilized
to extract the useful features from palmprint images. For
example, Gan and Zhou [11] used a wavelet transform to
convert the palmprint image into a small number of wavelet
coefficients, then compute the variance and mean of these
coeflicients, and generate a feature vector of palmprint image.
Lietal. [12] proposed a two-phase test sample representation
(TPTSR) method as feature extractor for effective palmprint
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recognition. A Coarse to Fine K-Nearest Neighbor Classifier
(CFKNNC) is proposed by Xu et al. [13] to improve the
accuracy of palmprint recognition system. However, the
CFKNNC is a more complicated than FKNNC because it
consists of a large number of steps. Zhang and Gu [14]
proposed a novel palmprint recognition method based on
RBF kernel mapping function. In this method, a linear
combination of all training dataset in the feature space is used
to represent the testing dataset. A different set of methods
based on texture features of palmprint is also introduced by
some researchers in the area of palmprint recognition. These
methods are proposed to compute the statistical features
after extracting the palmprint textures using some filters and
transforms such as Gabor wavelet, Gaussian derivative filters,
wavelet transform, and Fourier transform. In this context,
Xu et al. [15] proposed a method for palmprint recognition
based on a quaternion matrix. This method utilized the
principal components analysis (PCA) and wavelet trans-
form for extracting the palmprint texture features from the
quaternion matrix. For palmprint matching, the Euclidean
distance classifier is used to compute the similarity between
the extracted features.

Subspace-based methods are used to extract subspace
features for improving the palmprint recognition system.
Various representative subspace learning approaches such as
principal components analysis (PCA), linear discriminant
analysis (LDA), and independent component analysis (ICA).
Lu et al. [16] proposed an approach to transform the original
palmprint images into a small feature space set, called
eigenpalms. In fact, the eigenpalms are the eigenvectors of
the PCA, representing the training dataset of the palmprint
images. In this method, Euclidean distance classifier is
used for matching. In [17], a vertical and horizontal two-
dimensional LDA (2DLDA) are applied to extract the Gabor
features, then a distance-based adaptive method is employed
to merge the vertical and horizontal features. Recently, Xu
et al. [18] proposed a multispectral palmprint recognition
approach using digital Shearlet transform and multiclass
projection extreme learning machine. The approach used
the singular value decomposition (SVD) to compute the
projection matrix from the training dataset, after that, kth
singular vector is extracted depending on the largest values
in the singular matrix. Lu et al. [19] presented a multispectral
palmprint recognition approach using fast and adaptive
bidimensional empirical mode decomposition (FABEMD)
method with tensor flow extreme learning machine (TFELM)
classifier. In this approach, the multispectral images are
decomposed into their bidimensional intrinsic mode func-
tions by the FABEMD method; then the fusion coefficients
are constructed at the decomposition level by using weighted
Fisher criterion method. The experimental results of [18,
19] have demonstrated the capability of ELM classifier to
recognize the palmprint patterns. However, ELM is not
robust to translation, rotation, and other changes of palm-
print templates and needs some regularization parameters
for generality during the training phase. El-Tarhouni et al.
[20] proposed a method for multispectral palmprint feature
extraction. In this method, a kernel discriminant analysis
(KDA) is used to reduce the dimensionality of features. For
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classification, a KNN classifier is used; however, it is not
robust to inter- and intraclass variations of palmprint.

Coding-based approaches are the fourth group which is
usually widely used in many works of palmprint recogni-
tion. Some coding methods are used to generate palmprint
codes such as palm code [5], fusion code [21], ordinal code
[22], competitive code [23], and Log-Gabor code [24]. For
instance, Kong et al. [21] proposed a method for encoding
the phases and responses of the six Gabor filters as a fusion
code which is used later for competition. Jia et al. [25]
proposed a robust line orientation code (RLOC) method
to extract the orientation features of palmprint. A modified
finite Radon transform is used in this method and the
extracted feature vector is utilized as a competitive code.
The classification step is performed using KNN classifier.
However, the large size of features may lead to overfitting
of palmprint classification. Hong et al. [26] proposed an
approach to extract the palmprint orientation features. In
this approach, rough feature and fine feature are extracted
using Block Dominant Orientation Code (BDOC) and Block-
based Histogram of Oriented Gradient (BHOG), respectively.
Unfortunately, this approach may be affected by changes in
illumination and shadowing of palmprint images. Fei et al.
[27] proposed a half orientation code (HOC) for palmprint
feature extraction. The authors used the half of Gabor filters to
represent the HOC. Another method in [28] is introduced to
extract the palmprint features based on a double orientation
code (DOC) of Gabor filters with nonlinear classifier for
matching. For evaluation, the methods in [27, 28] are tested
using MS-PolyU database of multispectral palmprint images.

To improve the efficiency and performance of palmprint
recognition system, we propose a novel multispectral palm-
print recognition approach based on AE and RELM with
efficient NGist descriptor. NGist is an extended version of
Gist descriptor, used for describing the spatial envelope of the
palmprint image. In NGist descriptor, we added a new step,
named a variation tolerance step to cancel out the variation
of average intensity values computed from different blocks
of different scales and orientations. The variation tolerance
step normalizes the palmprint features using Euclidean norm
reducing the variations of features values due to changes
in illumination, shadowing, and orientations. Hence, it can
summarize the normalized features of scales and orientations
for different parts of an image, providing a normalized rough
description of the palmprint image. The NGist feature vector
has a high dimension of features that increases the complexity
of the classifier. To overcome this, we use the AE which not
only help in dimensionality reduction but also address the
nonlinearity of features. For recognition, a fast and robust
regularized extreme learning machine (RELM) classifier is
applied for palmprint recognition. In RELM classifier, a
Frobenius norm is adopted as a regularization parameter to a
trade-off between the approximated error and the regularized
degree of the training samples.

The remainder of the paper is organized as follows:
Section 2 explains the proposed multispectral palmprint
recognition approach. The main steps of the approach based
on NGist and AE with RELM are also introduced in this
section. Section 3 demonstrates the applicability of the
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proposed approach by a number of experimental models on
a public database of multispectral palmprint images, named
MS-PolyU. Finally, the conclusion and future work are sum-
marized in Section 4.

2. Proposed Approach for Multispectral
Palmprint Recognition

The improved palmprint recognition system is based on the
optimal spectral band which attains the highest recognition
rate. The proposed approach starts after segmenting the
region of interests (ROIs) from all spectral bands images by
using Zhang et al’s method [5]. The main steps of the pro-
posed approach can be labeled as follows: NGist-based fea-
ture extraction, feature reduction using AE, and multispectral
palmprint classification based on RELM. Figure 1 shows the
diagram of the proposed approach and its fundamental steps.

In NGist-based feature extraction, we extract the palm
features by using effective NGist descriptor. Then, an opti-
mized AE method is adopted to reduce the size of the
extracted NGist feature vector (i.e., dimensionality of fea-
tures).

Finally, in the classification step, the correct recognition
of a person is accomplished when its palmprint image
matches a palmprint image of the same person in the
training dataset. While the incorrect recognition of a person
may happen when its palmprint image does not match any
palmprint image either for the same person or not or matches
the palmprint image of another person in the training dataset.
The classification step of the proposed approach is based on
the RELM classifier. The advantages of RELM such as the
speed for training and testing and the generality achieved by
the regularization are exploited for improving the palmprint
recognition system.

2.1. NGist-Based Feature Extraction. Global image features
can be summarized by characterizing several substantial
statistics of the input image. One of the methods used for
feature extraction is the convolution process of the Gabor
filter with an image at different scales and orientations.
Consequently, the high and low frequency responses of
gradient directions are measured as discriminative features.
Taking the average intensity values of the convolution filter at
each scale and orientation generates the Gist feature vector of
an image. This feature vector is commonly being utilized for
the image classification [29-31]. The first step of the proposed
feature extraction method is converting the input image into
a grayscale image. Then, the grayscale image is processed
by a whitening filter and normalized according to the local
contrast for preserving the main structural details. After that,
it passed through a number of 2D Gabor filters of m scales
with n orientations. The 2D Gabor filter function, g(x, y),
and its Fourier function transform, G(u, v), can be calculated
using (1) and (2), respectively:
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where 0, = (1/2)no,, 0, = (1/2)70; with the Gabor
functions, a complete and nonorthogonal basis set can be
formed. Using this basis set, the signals can be expanded to
provide with the best description of the localized frequency.
Consider g(x, y) as a mother Gabor wavelet. Subsequently,
self-similar filter dictionary can be obtained by suitable
rotation and dilation parameters (orientation 6 and scaling
factor «) of following function:
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where « > 1,m, n are integers and x’ and y' are given by (4)
as

x' =a ™ (xcosO + ysin6),
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where 6 = nm/K and K represents the number of orien-
tations. The scale o™ in (3) is aimed to guarantee that the
energy is independent of m. The Gabor wavelets nonorthog-
onality indicates that there is a small redundancy among
information of the filtered images, and the following strategy
can be applied to reduce this redundancy of information.
Consider the lower and upper center interest frequencies are
indicated by U; and Uj,. K and S represent the number of
orientations and the number of scales in the multiresolution
decomposition, respectively. Using (5), the projection of
filters in the design strategy can be used to ensure that
filter responses in the half-peak magnitude of the frequency
spectrum touch one another.
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where W = U, andm = 0,1,...,S — 1. For multispectral
palmprint feature extraction, Gabor filters with different
scales and orientations can be used for ensuring maxi-
mum information with minimum redundancy. The proposed
method uses 4 scales (m = 0,1,2,3) and 8 orientations
(n = 0,1,...,7) of the Gabor wavelet, resulting in a total
of 32 Gabor images for each input image. These generated
images are divided into a 4-by-4 block. For each block, the
average intensity value is calculated to represent the feature of
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FIGURE 1: A diagram of the proposed approach for multispectral palmprint recognition.
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FIGURE 2: A simple autoencoder consists of a single hidden layer, input layer, and output layer.

that block. The final output is a concatenated features vector,
named Gist of 32 x 4 x 4 = 512 dimensions.

To cancel out the variation of average intensity values for
blocks computed from different scales and orientations, we
extend the traditional Gist descriptor by adding a new step,
called variation tolerance step. In this step, the Gist features
are normalized by using Euclidean norm as in Eq. (6). This
extended version of Gist descriptor is named a normalized
Gist (NGist) descriptor.

Gist

NGist = ——
Y |Gist (i)

(6)

It is worth mentioning that we chose the Euclidean norm
because it is the natural norm associated with the dot-product
that measures the similarity between objects.

2.2. Feature Reduction Using AE. AE is a feedforward neural
network (FNN), utilized for unsupervised learning as an
efficient encoding algorithm [32, 33]. The goal of AE is
to learn the feature representation, especially for feature
dimensionality reduction. Figure 2 shows a simple form of
AE consists of a single hidden layer, input layer, and output
layer and.

In this subsection, a nonlinear AE is practically utilized
to reduce the dimensionality of the NGist feature vector. New
features from the extracted features of training and testing
data samples are produced, separately. There are several
parameters for AE should be tuned and prepared through

this step. The key parameters of AE include the activation
function, the number of hidden nodes, the weight decay and
regularization parameter, the weights of hidden nodes, the
amount of epochs to be iterated, and the learning rate.

Now, suppose that the structure of the AE as shown in
Figure 1, the input vector, X € %°'%, represents the extracted
NGist feature vector, and the output, X € %°'2, represents the
reconstructed feature vector. Because we have only K hidden
nodes, the AE is subjected to learn a compressed feature
vector, Z € &K (new feature vector), to recover 512-features
of input, X. This new feature vector will be the input to the
RELM for the classification task.

2.3. Multispectral Palmprint Classification Based on RELM.
RELM is a feedforward neural network (FNN) consists of a
single hidden layer, input layer and output layer. The weights
of the input layer will be initialized randomly and the weights
of the output layer can be computed arithmetically [34].

Suppose that X € %™K is a matrix of training dataset.
The RELM with K hidden nodes and activation function,
g(x), can be modeled by the following equation:

K
)= Fhalurne). j=tn O

i=1

where w; = [w;,wy,...,wg] is a weight vector which
connects each hidden node i with all input nodes, w; - x;
represents an inner product of w; and x;, b, is a threshold of
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the ith hidden nodes, and B;= [, Bips- - > Bin]" is a weight
vector between the ith hidden nodes and the output nodes.
The N data samples can be approximated with zero error by

N
2 o=t =0, (8)
j=1

where ¢; is an encoding of the user’s ID as a target vector.
In order to represent this encoding uniformly, we define the
target vector corresponding to users’ IDs (id j) as

T
t;= (e bo b)) )

where m is a number of users in the training set and b, is equal
to 1 or —1 depending on whether the related user’s ID belongs
to the corresponding IDs or not.

For example, suppose that there are three users (m = 3);
the users’ IDs, fc153 = (1,2,3), and the related target

vectors are as follows: t, = (1,—1,—1)" belongs to the first
user, t, = (~1,1,-1)" belongs to the second user, and t; =

(-1,-1, DT belongs to the third user.
Equation (7) can be reformulated shortly as matrices by

T = Hp, (10)
where
[ g(wy-x, +b) - g(wg-x; +bg)
H= : : (1)
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where H is an output matrix of the hidden layer where each
i column of H represents the output of the i hidden node
related to the inputs, x;, x5, ..., X). The parameters of hidden
nodes with nonzero activation functions, g(-), can be fixed
randomly and the output weights can be computed on any
input data sets [34, 35].

For testing phase, the output target matrix can be com-
puted by

Y = Hp, (13)

where H is an output matrix of the hidden layer for the testing

dataset and 8 is a matrix of weights for the testing dataset
which is computed as

B=(HTH+AI) HT, (14)

where I is an identity matrix, H” is a transpose matrix of H, T
is a target output matrix, and A is a regularizer parameter to
trade-off between the regularized degree and the estimated
error [36]. Frobenius norm is adopted as a regularization
method in our work. This is because its efficiency to deal with
sparse weights values.

For encoding the users’ IDs (multilabel), we define each
user’s ID by using a discriminative target function written as

t; = afg max (Y). (15)

Algorithm 1 describes the phases and steps of the classifica-
tion task of the proposed approach.

3. Experimental Models and Discussion

A complete set of experimental models are done on the
public database of multispectral palmprint, created by Hong
Kong Polytechnic University (MS-PolyU) [5]. To evaluate
and validate the robustness and efficiency of the proposed
approach, we systematically establish three different experi-
mental models during our experiments.

3.1. MS-PolyU Database Description. The database consists
of 24000 multispectral images of 250 people, each with
two different palms, taken under four varied illuminations:
red, green, blue, and NIR spectral bands. The images were
acquired from 55 females and 195 males in two separated
sessions. In every session, six images were collected for each
spectrum of each palm. The average interval time between
the two sessions was about nine days. So, there is in total 250
(volunteers) x 2 (different palms) x 4 (different spectra) x 6
(images) x 2 (sessions) = 24,000 images within the MS-PolyU
database. Figure 3 shows the ROI images of a palm sample
taken from the MS-PloyU database.

3.2. Parameters Setup. The number of hidden nodes in AE,
K,g, is fixed to 250, since it is enough to represent the
most important extracted features of palmprint. Another
most important parameter is the number of hidden nodes
within the RELM, Kgppy- This parameter is selected using a
grid search technique depending on the maximum accuracy.
The grid search technique is done by using 71 different
numbers of hidden nodes, ranging from 800 to 1500 with a
common nonlinear sigmoid activation function. Table 1 states
all parameters which are initialized in our experiments.

3.3. Experimental Model 1. In this experimental model, six
samples images of each palm from the first session are taken
as a training dataset, while the six samples images of each
palm from the second session are taken as a testing dataset.
So, there is in total 3000 (500 x 6) training images and 3000
(500 x 6) testing images for each spectral band (red, green,
blue, and NIR illuminations). The results of recent previous
works, such as TPTSR [12], NFS [13], DWT [15], FABEMD +
TELM [19], LBP-HF + Gabor [20], Log-Gabor + Dyy,nm [24],
and Log-Gabor + Dy; [24] are used to compare and evaluate
the results of the proposed approach according to this model.
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Input: the compressed features of AE for training and testing sets and parameters’ values
Output: the users’ IDs of the testing dataset
Training phase:
(1) Initialization step:
(i) Assign random values for the weights and biases of RELM
(2) Computational step:
(i) Compute the matrix, H of the hidden layer using Eq. (11)
(ii) Compute the matrix, T' of the training set using Eq. (10)
(iii) Compute the output weights,  using Eq. (14)
Testing phase:
(1) Computational step:
(i) Compute the matrix, H of the hidden layer using Eq. (11)
(ii) Compute the output target value, Y using Eq. (13)
(2) Classification step:
(i) Classify the testing user’s ID using Eq. (15) depending on whether this ID belongs to the user ID in the training set.

AvrGoriTHM 1: Multispectral palmprint classification based on RELM.

(@ (®) () (d)

FIGURE 3: ROI images of a palm sample from the MS-PloyU database: (a) blue, (b) green, (c) red, and (d) NIR.
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FIGURE 4: Recognition rates of blue spectral band using different numbers of RELM’s hidden nodes.

In this experimental model, we study the influence of  the maximum accuracy (100%). In Figures 4 and 5, there
the number of hidden nodes on the recognition accuracy.  are a large number of high accuracy values, reaching the
As we see in Figures 4-7, the highest recognition rates are ~ maximum value for both blue and green spectral bands. For
highlighted and marked as orange and red circles. Orange  red spectral band, there is only one maximum recognition
circles mean that the highest accuracy value is equal to  rate when the number of hidden nodes is 1270. Nevertheless,
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FIGURE 5: Recognition rates of green spectral band using different numbers of RELM’s hidden nodes.
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FIGURE 6: Recognition rates of red spectral band using different numbers of RELM’s hidden nodes.
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FIGURE 7: Recognition rates of NIR spectral band using different numbers of RELM’s hidden nodes.

the recognition rate, 99.97%, is also obtained with different
numbers of hidden nodes. For NIR spectral band in Figure 7,
the highest accuracy value is 99.83% which is repeated five
times with five different numbers of hidden nodes (870, 910,
1040, 1240, and 1480). Although this accuracy value did not
attain the maximum accuracy (100%), most of recognition
rates are higher than 99.50%.

To show the effectiveness of the proposed approach based
on AE and RELM using NGist features over the features of

the original Gist, we computed the recognition rates using
extracted features of both descriptors at different numbers of
RELM’s hidden nodes. Figures 8-11 reveal the improvements
of the proposed approach using NGist features over Gist
features. For NGist features, we notice that the proposed
approach achieves the maximum value of recognition rate
(100%) or nearest to this value at different numbers of RELM’s
hidden nodes demonstrated in Figures 4-7. On the contrary,
we note that the Gist features did not achieve the maximum
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FIGURE 9: Recognition rates of green spectral band using extracted features of NGist and Gist at different numbers of RELM’s hidden nodes.
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F1GURE 10: Recognition rates of red spectral band using extracted features of NGist and Gist at different numbers of RELM’s hidden nodes.

value of recognition rate at any number of RELM’s hidden
nodes. The reason of this improvement is due to the ability
of the proposed approach to cancel out the variations of
extracted features computed from different blocks of different
scales and orientations and improve the generalization to
changes in palmprint images.

Moreover, we can see in Table 2 and Figure 12 that the
proposed approach yields a highest recognition rate (100%)
for the blue, green, and red spectral bands. Also, it achieves a
recognition rate of 99.83% for the NIR spectral band. These
results are highlighted in bold font in Table 2. Consequently,

in the case of the blue spectral band, there is an improvement
of 21.87% compared to TPTSR, 2.7% compared to NFS, 6.17%
compared to DWT, 3.27% compared to FABEMD + TELM,
1.98% compared to LBP-HF + Gabor, 0.77% compared to
Log-Gabor + Dy, and 0.97% compared to Log-Gabor +
Dy

In the case of the red spectral band, the results indi-
cate that the proposed approach achieves also impressive
improvements compared to the state-of-the-art approaches.
Even though this experimental model mimics the real life
situation where the system may be exposed to different
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TABLE 1: Parameters setup.
Network Parameters
Model
A number of hidden nodes of AE is K, = 250.
Encoder and Decoder transfer function is a logistic sigmoid function.
AE Maximum epochs = 10.
L2WeightRegularization = 0.004.
A loss function is a mean squared error function.
Training algorithm is a conjugate gradient descent.
A number of hidden nodes of RELM, is
Kpgiu € (800,810,820, ...,1500} .
RELM

A regularization parameter (1) = exp(val), where
val € {-1,-0.9,-0.8,...,0.9, 1}

An activation function is a nonlinear sigmoid function, g(x) = (1/(1 + e™™))
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TaBLE 2: Comparison of recognition rates for the proposed approach with the state-of-the-art approaches for different spectral bands: blue,

green, red, and NIR according to experimental model I.

Recognition Rate (%)

Method [Ref.]

Blue Green Red NIR
TPTSR [12] 78.13 98.02 98.58 98.34
NFS [13] 9730 96.37 97.97 98.17
DWT [15] 93.83 93.50 95.20 94.60
FABEMD + TELM [19] 96.73 96.93 97.80 97.67
LBP-HF + Gabor [20] 98.02 98.37 98.74 98.67
Log-Gabor + Dy, [24] 99.23 99.10 99.30 99.33
Log-Gabor + Dy [24] 99.03 98.90 99.13 98.93
Proposed Approach 100 100 100 99.83

TaBLE 3: The EERs (%) of the proposed approach against some orientation-based methods.

Method [Ref] ERRs (%)
Blue Green Red NIR

Palm code [5] 0.0463 0.0507 0.0297 0.0332
Fusion code [21] 0.0212 0.0216 0.0179 0.0213
Ordinal code [22] 0.0202 0.0202 0.0161 0.0180
Competitive code [23] 0.0170 0.0168 0.0145 0.0137
RLOC [25] 0.0203 0.0249 0.0223 0.0208
BDOC-BHOG [26] 0.0487 0.0418 0.0160 0.0278
HOC [27] 0.0147 0.0144 0.0131 0.0139
DOC [28] 0.0146 0.0146 0.0119 0.0121
Proposed approach 0.0001 0.0003 0.0007 0.0017

conditions, the proposed approach attains an interesting
result.

This is due to the strength of the proposed NGist des-
criptor for feature extraction. The approach has a high inde-
pendency to changes in illumination and orientation prob-
lems. Moreover, the advantages of AE to deal with the
nonlinearity of features and RELM to solve the overfitting
problem made the power of the proposed approach.

For further evaluation of the proposed approach, the
Equal Error Rate (EER) [5] is also used to assess the perform-
ance of the experimental results. It can be calculated accord-
ing to the average of False Accepted Rates (FARs) and False
Rejected Rates (FRRs) in different thresholds between 0
and 1. Usually, FAR is used to measure the possibility that
the biometric approach accepts incorrectly an attempt by
a user which is not registered as an authorized user. It is
arithmetically computed as the ratio of the number of false
acceptances divided by the number of recognition attempts.
Contrarily, the FRR metric is used to measure the possibility
that the biometric approach rejects incorrectly an attempt by
a user who is indeed registered as an authorized user. FRR
is computed as the ratio of the number of false rejections
divided by the number of recognition attempts. Table 3
exhibits the EERs of the proposed approach against the
orientation based methods in the literature review, including
competitive code, palm code, fusion code, ordinal code, and
recent methods such as RLOC, BDOC-BHOG, HOC, and
DOC on the four types of spectral bands. From Table 3, we

can see that the proposed approach achieves the lowest EERs
compared to the other methods in the state of the art on all
spectral bands.

Additionally, we notice that the proposed approach
achieves smaller EERs for the blue and green spectral bands
than the red and NIR bands. The main possible reason is that
the features of the palmprint in the red and NIR bands are
very fine and need some level of sharpness to be more useful
for recognition.

3.4. Experimental Model II. To demonstrate the robustness
and efficiency of the proposed approach, we compare its
results with some state-of-the-art approaches that follow this
experimental model, namely, NFS [13], RBF [14], and LBP-
HF + Gabor [20] on the same benchmark database. In this
experimental model, the first three samples images of each
palm from the first session are taken as a training dataset
to form 1500 (500 x 3) images for each spectral band, and
the other six samples images of each palm from the second
session are used as a testing dataset of 3000 (500 x 6).
This is done for red, green, blue, and NIR spectral bands,
separately.

The results in Table 4 obviously demonstrate the advan-
tage of the proposed approach in terms of effectiveness and
robustness over other reported approaches. It offers attractive
recognition rates of 99.70% to 100%, which are highlighted
in a bold font in Table 4. With regard to the recognition
rates of blue, green, red, and NIR spectral bands, it can be



Computational Intelligence and Neuroscience

1

TABLE 4: Comparison of recognition rates for the proposed approach with the state-of-the-art approaches for different spectral bands: blue,

green, red, and NIR according to experimental model II.

Recognition Rate (%)

Method [Ref.]

Blue Green Red NIR
NFS [13] 95.10 92.87 95.40 95.63
RBF [14] 96.70 96.50 98.20 98.40
LBP-HF + Gabor [20] 97.70 97.44 98.24 98.57
Proposed Approach 100 99.93 99.93 99.70

TaBLE 5: Comparison of average recognition rates for the proposed approach with the state-of-the-art approaches for different spectral bands:

blue, green, red, and NIR according to experimental model III.

Average Recognition Rate (%)

Method [Ref.]

Blue Green Red NIR
MPELM (18] 98.58 99.05 99.45 99.21
ELM [18] 95.02 95.93 98.08 96.87
LPP + SMOSVM [18] 96.09 97.71 98.21 98.78
LPP + LSSVM [18] 95.75 97.45 97.96 98.22
Proposed Approach 100 99.97 99.99 99.93

observed that the proposed approach yields improvements of
2.3%, 2%, 1.69%, and 1.13% compared to the LBP-HF + Gabor
approach, which has the highest recognition rates against
other approaches.

In addition to the recognition rates of our approach, the
simplicity and efficiency compared to the LBP-HF + Gabor
approach make it a robust and eflicient approach. Further-
more, the small simple size of training dataset which are taken
at different sessions and tested by a new test case is a rigorous
challenge. Actually, the robustness of NGist descriptor with
AE and RELM handles this challenge effectively. Figure 13
visualizes the recognition rates of this work compared to the
recent works that have high recognition rates.

3.5. Experimental Model III. Here, we take randomly three
images of each different palm from the two sessions as a
training dataset to form 1500 (500 x 3) images and the other
nine images are taken as a testing dataset with 4500 (500 x
9) images. This model is done for each spectral band (blue,
green, red, and NIR). The results are evaluated repeatedly
for 30 times of random selection of the images in training
and testing phases. The average recognition rates will be had
as final results. The results of this model are compared with
results of recent work given in [18].

As we see in Table 5 and Figure 14, the proposed approach
achieves high average recognition rates of 100%, 99.97%,
99.99%, and 99.93%, regarding blue, green, red, and NIR
spectral bands, respectively. Similarly, it can be observed that
the proposed approach yields improvements of 1.42%, 0.92%,
0.54%, and 0.72%, compared to the MPELM approach. These
results indicate that the blue spectral band outperforms all
other spectral bands effectively, whereas the red spectral band
performs better than the green and NIR spectral bands.

3.6. Computational Cost. All experimental models have been
implemented using MATLAB R2015a on a laptop with

TABLE 6: Average execution time of the proposed approach steps for
one test sample (in seconds).

Step Average execution time (s)
Feature extraction 0.237

Feature reduction 0.000024294
Classification 0.000317

Windows 10 (x64), Intel Core i7-7500U with 2.7 GHz CPU
processor, and 16 GB RAM. Execution time of feature extrac-
tion, feature reduction, and classification is shown in Table 6.

We notice that the average execution time of all steps is
very small which makes the proposed approach is efficient
and fast enough for real time condition.

4. Conclusion and Future Work

A novel multispectral palmprint recognition approach is
proposed based on AE and RELM with an efficient extended
version of Gist descriptor, named NGist. The NGist descriptor
was applied to extract the features of palmprint, while AE was
used to solve the problem of high dimensionality associated
with the NGist features.

Recognition rate of the proposed approach has been
evaluated using the public MS-PolyU database of multi-
spectral palmprint images. The experiments were performed
through three different experimental models, proving that the
proposed approach attains higher recognition rates compared
to the recent methods in the state of the art. Moreover, it
has been observed that the blue spectral band outperforms
all other bands effectively, whereas the red and green bands
perform better than the NIR band in all three procedures.

Our next step is to extend the approach to handle
spoofing problem by using multispectral palmprint fusion
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techniques. Additionally, we will investigate the applicability
of pretrained deep learning models and transfer learning
concept for biometric multispectral palmprint recognition.
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