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There is a significant difference in prognosis between the germinal center B-cell (GCB) and activated B-cell (ABC) subtypes of
diffuse large B-cell lymphoma (DLBCL). However, the signaling pathways and driver genes involved in these disparate subtypes are
ambiguous. This study integrated three cohort profile datasets, including 250 GCB samples and 250 ABC samples, to elucidate
potential candidate hub genes and key pathways involved in these two subtypes. Differentially expressed genes (DEGs) were
identified. After Gene Ontology functional enrichment analysis of the DEGs, protein-protein interaction (PPI) network and sub-
PPI network analyses were conducted using the STRING database and Cytoscape software. Subsequently, the Oncomine database
and the cBioportal online tool were employed to verify the alterations and differential expression of the 8 hub genes (MME, CD44,
IRF4, STAT3, IL2RA, ETV6, CCND2, and CFLAR). Gene set enrichment analysis was also employed to identify the intersection
of the key pathways (JAK-STAT, FOXO, and NF-𝜅B pathways) validated in the above analyses. These hub genes and key pathways
could improve our understanding of the process of tumorigenesis and the underlying molecular events and may be therapeutic
targets for the precise treatment of these two subtypes with different prognoses.

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is themost common
type of adult non-Hodgkin lymphoma (NHL) in Western
countries, accounting for 25-30% of all cases of NHL; in 2015,
it was estimated that approximately 24,000 new cases/year are
diagnosed in the United States [1, 2]. Recent gene expression
microarray analyses of DLBCL have revealed significant
heterogeneity within this diagnosis, including the germinal
center B-cell (GCB) and activated B-cell (ABC) DLBCL
subtypes, which are derived from B cells at different stages
of differentiation. GCB DLBCL appears to arise from GCBs,
whereas ABC DLBCL likely arises from post-GCBs that are
blocked during plasmacytic differentiation [3, 4]. The LNH-
98.5 trial confirmed that R-CHOP improves patient outcomes
in elderly DLBCL patients and that the beneficial effects
are sustained over a long follow-up period compared with
the CHOP treatment regimen [5]. Analysis of molecular
subtypes and outcomes following upfront CHOP treatment

showed a statistically significant difference in 5-year OS
between the DLBCL subtypes: 59% for GCB DLBCL and
31% for ABC DLBCL, independent of IPI (International
Prognostic Index) risk group [6]. Another analysis performed
on 233 biopsies obtained from patients treated with R-
CHOP indicated that patients with GCB DLBCL exhibited
more favorable survival outcomes than those with ABC
DLBCL, with 3-year OS rates of 84% and 56%, respectively
(P<0.001); as expected, the OS of both GCB and ABC
DLBCL patients recorded in this study was better than that
in the prerituximab era [4]. Following the same therapeutic
method, the significantly different prognostic characteristics
of these two DLBCL subtypes revealed differences in the
molecular pathogenesis of the two subgroups leading to their
disparate survival rates and prognoses. Thus, elucidating the
causes and the underlying molecular mechanisms of these
DLBCL subtypes and identifying molecular biomarkers for
diagnosis, prevention, and personalized therapy are critically
important.
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Gene chip analysis, or gene profiling, is a gene detection
technique that has been used for more than ten years. Gene
chips can quickly generate expression information for all of
the genes in a sample at a given time point and are particularly
suitable for differentially expressed genes (DEGs) screening
[7]. Integration and reanalysis of data deposited and stored in
public databases provide valuable clues for new research, and
many microarray data profiling studies have been performed
on DLBCL in recent years. However, these results were
generated froma single cohort study, and there are limitations
due to tissue or sample heterogeneity in independent studies.
Nevertheless, the combination of integrated bioinformatics
methods with expression profiling could be revolutionary
and overcome these shortcomings.

The NCBI-Gene Expression Omnibus Database (NCBI-
GEO) has facilitated such analyses by furnishing several
microarray datasets, including the GSE53786, GSE56315, and
GSE31312 datasets, including a total of 250 GCB samples
and 250 ABC samples. We used the R package to analyze
aberrantly expressed genes, performed Gene Ontology (GO)
and pathway enrichment analysis to screen differentially
expressed genes (DEGs) at the Database for Annotation,
Visualization and Integrated Discovery (DAVID) website,
integrated the DEGs into a protein-protein interaction (PPI)
network, and performed modular analysis using the Search
Tool for Retrieval of Interacting Genes/Proteins (STRING)
database and Cytoscape software to identify hub genes.Then,
the Oncomine database, the cBioportal online tool, and gene
set enrichment analysis (GSEA) were utilized to validate
the reliability and authenticity of the hub genes in the two
different DLBCL subtypes. The identification of significant
DEGs, enrichment of their biological functions and key
pathways, and visualization of the network of DEGs and
hub genes will provide more accurate and reliable biomark-
ers and therapeutic targets for early diagnosis, individual-
ized prevention measures, and improvement of therapeutic
efficacy.

2. Materials and Methods

2.1. Microarray Data Information and DEG Identification.
NCBI-GEO is a free database of microarray/gene profiles and
next-generation sequencing data, from which three DLBCL
GCB- and ABC-subtype gene expression profiles (GSE53786,
GSE56315, and GSE31312) were obtained. These datasets
were based on the GPL570 platform ([HG-U133 Plus 2]
AffymetrixHumanGenomeU133 Plus 2.0 Array, Santa Clara,
CA, USA). A total of 324 DLBCL samples were included in
GSE31312, comprising 160 samples from the GCB subtype
and 164 samples from the ABC subtype (submission date:
August 10, 2011) [8]. GSE56315 (submission date: Mar 27,
2014) and GSE53786 (submission date: January 02, 2014)
included 44 GCB- and 46 ABC-subtype samples and 46
GCB- and 40 ABC-subtype samples, respectively [9, 10]. We
chose these three datasets for our integrated analysis in this
study because these datasets, which include both the GCB
andABC subtypes, were generated from the same sequencing
platform. Thus, we could integrate these datasets in our
subsequent processing steps.

The Robust Multiarray Average (RMA) algorithm in
the Bioconductor package (http://www.bioconductor.org/)
was applied to the raw data for high-throughput functional
genomic expression, including background correction, quar-
tile normalization, and probe summarization. The linear
models for microarray data (LIMMA, http://www.biocon-
ductor.org/packages/release/bioc/html/limma.html) package
in Bioconductor were utilized to mine statistically significant
DEGs based on the difference in their expression values
between samples of the GCB and ABC subtypes. We defined
the corresponding p values for genes after the T-test as the
adjusted p value, and an adjusted p value < 0.05 and a
|log2FC(fold change)|≥1 were defined as the cut-off criteria.

2.2. GOandPathway EnrichmentAnalysis. The functions and
pathway enrichment of candidate DEGs were analyzed using
DAVID (http://david.abcc.ncifcrf.gov/) [11], which is a gene
functional classification implement that accommodates a set
of functional annotation tools for investigators to analyze the
biological roles of genes and be used to perform GO and
KEGG (Kyoto Encyclopedia ofGenes andGenomes) pathway
enrichment analyses ofDEGs. A count≥2 andEASE>0.1 were
considered as the cut-off criteria.

2.3. Integration of the PPI Network, Molecular Analysis, and
Identification of Significant Candidate Genes and Pathways.
Using the online STRING (http://string-db.org/) database
[12], which is a biological database and web resource for
known and predicted PPIs, we developed a network of
DEG-encoded proteins and PPIs. Cytoscape software [13]
was applied to visualize the protein interaction relationship
network and analyze hub proteins, which are important
nodes with many interaction partners. We utilized the Cyto-
Hubba application in Cytoscape, employing five calculation
methods: Degree, EPC, EcCentricity, MCC, and MNC. The
intersecting genes derived using these five algorithms encode
core proteins and may represent key candidate genes with
important biological regulatory functions. ClusterONE, an
application in Cytoscape, was utilized to identify the crucial
modules for further analysis. ClueGO and CluePedia were
also employed to draw KEGG pathways for visualization
purposes.

2.4. Validation of the Aberrant Expression and Clinical Value
of Hub Genes. To verify the genetic alterations associ-
ated with these hub genes, including amplifications, dele-
tions, or point mutations, cBioPortal (available online:
http://www.cbioportal.org/), a tool developed by the Com-
putation Biology Center at Sloan Kettering, was used to
summarize possible transcriptional changes, mutual expres-
sion tendencies, and overall survival through Kaplan-
Meier analysis, and the results were presented as Onco-
Print and mutual exclusivity or cooccurrence data. The
clinical value of the genetic alterations was also evalu-
ated. Furthermore, datasets from the Oncomine database
(http://www.oncomine.org) were extracted to validate the
highly differentiated hub genes between the GCB and ABC
subtypes.

http://www.bioconductor.org/
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://david.abcc.ncifcrf.gov/
http://string-db.org/
http://www.cbioportal.org/
http://www.oncomine.org
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Table 1: Eighty-seven differentially expressed genes (DEGs), 54
upregulated genes and 33 downregulated genes, were identified from
3 profile datasets in the ABC samples compared with those in the
GCB samples. The DEGs are listed from the largest to the smallest
fold change in the table.∗ GCB common markers. ∗∗ ABC common
markers.

DEGs Gene Names

ABC
Down-regulated

MYBL1∗, MME∗, LINC00487, C17orf99,
STAG3, BTNL9,

STAP1, CCDC85A, RP11-138I18.2, SSBP2,
IGHE, SEL1L3,

SNX29P1, CILP, SPINK2, MARCKSL1,
ITPKB, MAML3,

SPRED2, ASB13, HOPX, CRNDE, LRMP∗,
ZFAND4,

TEX9, NLRP4, DEF8, LMO2∗, SLC30A4,
POSTN, HLA-DOB, TOX, CDK14

ABC Up-regulated

IGHM∗∗, XK, KIAA0226L, MIR155
(MIR155HG), CLECL1,

AICDA, TNFRSF13B∗∗, BATF, FAM129C,
FOXP1∗∗,

C1orf186 (LOC101929219), P2RX5, FUT8,
IRF4∗∗, CYB5R2,

SFN, TBC1D27, JADE3, PARP15, ADTRP,
MNDA, FCRL5,

FAM46C, MPEG1, BLNK, CD44,
CCND2∗∗,

BTBD19, EHHADH,RAB29, CCDC50,
DHRS9,

CHST2, S100A8, SLA, CFLAR, PIM2∗∗,
STAT3, ELL2, IL2RA, ETV6, NFKBIZ,

ENTPD1,
HSP90B1 (MIR3652), LIMD1∗∗, ACTG2,

TGIF1,
SLC2A13, ABHD17C, RNF183, TCF4,

CCR10, BCL2A1

2.5. GSEA. GSEA is a method employed to analyze and
interpretmicroarray data using biological technology and has
been previously described [14]. Preconditioned GEO data are
analyzed based on differential enrichment in a predefined
coexpression or biological pathway (gene set) from a previous
experiment. If the majority of a gene set exhibits high
expression accompanied by a high risk score, the gene set will
present a positive enrichment score and will be referred to
as ‘enriched’[15]. GSEA was downloaded fromGSEAHOME
(http://software.broadinstitute.org/gsea/index.jsp) and run
in a Java environment. Significant gene sets with an FDR
<25% and a nominal p value < 0.05 were identified.

3. Results

3.1. Identification of DEGs between the GCB and ABC Sub-
types. After removing batch differences and performing data
normalization, a total of 33 ABC-downregulated DEGs and
54 ABC-upregulated DEGs were obtained based on the
cut-off criteria (p < 0.05 and |log2 FC|>1) (Table 1). The
hierarchical cluster analysis of the posttreatment data demon-
strated that the DEGs accurately distinguished the ABC
samples from the GCB samples (Figure 1). The heatmap.2

package in Bioconductor was utilized to visualize the cluster
analysis, with parameters including Euclidean distance and
the average algorithm. Using the calculated criteria, all the
aberrantly expressed genes with log2 FC scores and –log10
p values were used to generate a volcano plot in R language,
which is a visual tool for showing DEGs among overall gene
expression levels (Figure 2).

3.2. Enrichment Analyses of the DEGs. The functions and
pathway enrichment of the candidate DEGs were evaluated
at the DAVID website. GO analysis further classified the
DEGs into the following three functional groups: (1) cellular
components, (2) molecular functions, and (3) biological
processes (Figure S1). As shown in Figure 3 and Table 2, the
DEGs were mainly enriched in transcription, apoptotic pro-
cesses, inflammatory responses, and B-cell or T-cell signaling
pathways in the biological process group. In the cellular
component group, aberrantly expressed genes were mainly
enriched in the nucleus and cytoplasm. In the molecular
function group, transcriptional activity and protein binding
were the main areas of enrichment. Most of the enriched
genes came from the ABC-upregulated group; the ABC-
downregulated group made a lesser contribution, with the
majority of these genes displaying no significant enrichment.
These results showed thatmost of theDEGswere significantly
enriched in transcription processes, B- or T-cell signaling
pathways, cell components, and various types of binding.
According to the KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway enrichment analysis, the DEGs were
mainly enriched in transcriptional misregulation in cancer,
the intestinal immune network for IgA production, the
hematopoietic cell lineage, and the NF-𝜅B signaling pathway
(Figure 3 and Table 3). Only a small fraction of the genes
extracted from the ABC-downregulated genes were enriched
in any pathway; these genes included LMO2, CDK14, MME,
and HLA-DOB.

3.3. Identification of Hub Genes and Pathways through
DEG PPI Network Analysis. A PPI network containing
28 nodes and 34 interactions was constructed using the
STRING online database, with parameters including a
minimum required interaction score > 0.4 (medium con-
fidence) and only query proteins being displayed; thus,
28 of the 87 DEGs were included in the DEG PPI
network (Figure 4(a)). After importing the data into
Cytoscape and running the CytoHubba application, the
top 10 genes evaluated by the five calculation meth-
ods (Degree, EPC, EcCentricity, MCC, and MNC) were
listed (Table 4). Furthermore, using an online website
(http://www.ehbio.com/ImageGP/index.php/Home/Index/
VennDiagram.html), we observed the intersections of these
five algorithms and generated a Venn plot to identify sig-
nificant hub genes (Figure 5). The 8 most significant genes
were MME, CD44, interferon regulatory factor 4 (IRF4),
signal transducer and activator of transcription 3 (STAT3),
interleukin 2 receptor subunit alpha (IL2RA), ETV6, cyclin
D2 (CCND2), and CASP8 and FADD like apoptosis regulator
(CFLAR), all of which interacted with one another and
were employed to perform GO analysis with the STRING

http://software.broadinstitute.org/gsea/index.jsp
http://www.ehbio.com/ImageGP/index.php/Home/Index/VennDiagram.html
http://www.ehbio.com/ImageGP/index.php/Home/Index/VennDiagram.html
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Figure 1: Heatmap of the DEGs. Each raw read represents a single gene, and each column represents a tissue sample. The gradual color
change from green to red represents the shift from ABC-upregulated to ABC-downregulated genes.This analysis revealed 87 DEGs that were
significantly different between the ABC and GCB tissues. ∗COO common markers are in red (ABC-markers) or green (GCB-markers).

database (Table 5). These hub genes were chiefly enriched
in cytokine signaling or biological processes and the JAK-
STAT and FOXO signaling pathways. In the case of increased
interactions between our DEGs and other proteins, other
networkswith nomore than 50 interactors were also analyzed
(Figure 4(b)), and one important module was constructed
using ClusterONE for further investigation (Figure 4(c)).
Strikingly, all the DEGs in this module were upregulated
genes, and each hub gene was embodied in this module. GO
enrichment analysis revealed that this module consisted of
34 nodes and 222 edges, which were mainly associated with
the regulation of biological processes, cellular components,
and protein binding (Table 6). In the KEGGpathway analysis,
the highest-ranking pathways included cytokine-cytokine
receptor interactions and the JAK-STAT and FOXO signaling
pathways, which compared well with the hub gene pathways
(Figure 6).

3.4. Validation of Hub Genes in the Oncomine Database. The
Oncomine database was utilized to explore the expression
of the hub genes between the ABC and GCB subtypes of
DLBCL. We used search terms and isolated datasets repre-
senting lymphoma histology analysis and GCB versus ABC.
An analysis of a representative dataset (Salaverria lymphoma)
revealed thatMMEexpression levels were significantly higher
in the GCB subtype than those in the ABC subtype and that
IL2RA, ETV6, and CCND2 expression levels were higher in
the ABC subtype than those in the GCB subtype. Another
lymphoma dataset (Compagno Lymphoma Statistics) indi-
cated that the expression levels of CD44 and STAT3 were
higher in ABC than those in GCB. The expression levels
of both IRF4 and CFLAR were higher in ABC than those
in GCB (investigated in the Lenz Lymphoma Statistics and
Zhang Lymphoma Statistics datasets, respectively) (Figure
S2). For further validation, we identified 7 datasets that
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Table 2: Analysis of significant enrichment of DEGs in DLBCL.

Term Description Count P Value Genes
Biological process

GO:0045944 positive regulation of transcription
from RNA polymerase II promoter 10 0.008568 BATF, SSBP2, LMO2, MAML3, IRF4,

MYBL1, ETV6, TCF4, FOXP1, STAT3

GO:0043066 negative regulation of apoptotic
process 7 0.006042 CFLAR, HSP90B1, CD44, CCND2,

BCL2A1, PIM2, STAT3

GO:0006954 inflammatory response 6 0.012073 NFKBIZ, IL2RA, NLRP4, S100A8,
CHST2, BLNK

GO:0050853 B cell receptor signaling pathway 3 0.016456 IGHE, MNDA, IGHM

GO:0009967 positive regulation of signal
transduction 3 0.020706 STAP1, BLNK, SLA

Cell component

GO:0005634 nucleus 28 0.081986 CYB5R2, S100A8, LMO2, ITPKB,
MYBL1, SFN, BATF, STAG3, LIMD1. . .

GO:0005737 cytoplasm 27 0.089649 FUT8, MARCKSL1, EHHADH, MME,
POSTN, SFN, BATF, ACTG2, CD44. . .

Molecular
function

GO:0005515 protein binding 43 0.027431 CYB5R2, S100A8, LMO2, MARCKSL1,
EHHADH, SPINK2, XK. . .

GO:0000978
RNA polymerase II core promoter
proximal region sequence-specific

DNA binding
9 6.28E-05 BATF, SSBP2, TGIF1, IRF4, MYBL1,

ETV6, TCF4, FOXP1, STAT3

GO:0001077
transcriptional activator activity, RNA
polymerase II core promoter proximal

region sequence-specific binding
7 2.91E-04 BATF, SSBP2, IRF4, MYBL1, ETV6,

TCF4, STAT3

GO:0005515 protein kinase binding 5 0.056821 STAP1, CCND2, SPRED2, SFN, STAT3
GO:0005070 SH3/SH2 adaptor activity 3 0.019671 STAP1, BLNK, SLA

Table 3: Significantly enriched pathway terms for DEGs in DLBCL. Functional and signaling pathway enrichment analyses of the DEGs were
conducted using the DAVID website.

Term KEGG Pathway Count P Value Genes

hsa05202 Transcriptional misregulation in cancer 7 0.00014 NFKBIZ, FUT8, LMO2, CCND2,
BCL2A1, ETV6, CDK14

hsa04672 Intestinal immune network for IgA production 4 0.001522437 CCR10, TNFRSF13B,
AICDA, HLA-DOB

hsa05340 Primary immunodeficiency 3 0.011947217 TNFRSF13B, AICDA, BLNK
hsa04640 Hematopoietic cell lineage 3 0.06510351 IL2RA, CD44, MME
hsa04064 NF-kappa B signaling pathway 3 0.067811577 CFLAR, BCL2A1, BLNK
hsa00533 Glycosaminoglycan biosynthesis - keratan sulfate 2 0.071387272 FUT8, CHST2

included ABC and GBC gene expression to perform a
comparative analysis to observe the expression levels of the
8 hub genes in each dataset. In the comparative analysis,
almost every pair of datasets indicated that there was a
significant difference between the ABC and GCB groups.
Thus, all the hub genes showed significantly higher expression
levels in the ABC subtype than those in the GCB subtype,
except for MME, which showed lower expression in the ABC
subtype.

3.5. Analysis of the Potential Molecular Mechanisms of Hub
Genes andTheir Prognostic Influence in cBioPortal. To inves-
tigate the clinical significance of the hub genes, the genetic

changes in the hub genes were verified by interrogating
cBioportal, an online tool that can analyze datasets extracted
from TCGA database. OncoPrint from cBioportal revealed
that 58% (28/48) of cases exhibited genetic alterations, includ-
ing amplification, severe depletion, mRNA upregulation,
and various mutations. The cluster heatmap indicated that
one case with higher MME expression potentially displayed
a tendency toward lower expression of seven other hub
genes (Figure 7). cBioportal also provided the probable
mutual exclusivity or cooccurrence of these hub genes. As
shown in Supplemental Table 1, there was a significant
tendency towards cooccurrence between ETV6 and CCND2
and between CFLAR, IRF4, and IL2RA in DLBCL. More
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Table 4: Top 10 genes evaluated in the PPI network using five calculation methods (MCC, MNC, Degree, EPC, and EcCentricity) and
employing CytoHubba in Cytoscape.

gene name MCC Gene name MNC gene name Degree gene name EPC gene name EcCentricity
IRF4 11 STAT3 6 IRF4 8 STAT3 10.782 STAT3 0.28571
STAT3 11 IRF4 5 STAT3 7 IRF4 10.659 IRF4 0.21429
CD44 8 CD44 5 CD44 5 CD44 10.346 CD44 0.21429
MME 6 MME 4 MME 4 IL2RA 9.487 IL2RA 0.21429
ETV6 4 ETV6 3 CCND2 4 MME 9.32 CCND2 0.21429
LMO2 4 IL2RA 3 CDK14 4 CCND2 9.148 CFLAR 0.21429
CCND2 4 CCND2 2 LMO2 4 CFLAR 8.598 BATF 0.21429
CDK14 4 CDK14 2 ETV6 3 BATF 8.404 NFKBIZ 0.21429
IL2RA 4 CFLAR 2 IL2RA 3 ETV6 8.374 MME 0.17143
CFLAR 3 HOPX 2 CFLAR 3 HOPX 7.399 ETV6 0.17143
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Figure 2: Volcano plot showing the aberrantly expressed genes
between the ABC and GCB samples. Red dots indicate the genes
showing an expression difference with a |log2 FC|>1 and p < 0.05,
while the black dots fail tomeet these criteria.TheABC-upregulated
DEGs are displayed on the left of the plot, and the downregulated
DEGs are on the opposite side. Hub genes and some genes with
highest adjust p value and |log2 FC| value were marked in the figure.
The x-axis represents the log2 FC score, and the y-axis shows the
–log10 value (𝑃 value). This volcano plot was generated using R
language (R 3.4.0).

interestingly, the cases with genetic alterations in ABC-
upregulated hub genes displayed poorer survival compared
with the cases without alterations, while the same cases
showing changes in MME showed better survival (Figure
S3). The overall survival of each ABC-upregulated gene was
analyzed, and statistical significance was only found for IRF4
(Figure S3). One limitation of the cBioportal analysis was that
none of the cases were divided into ABC and GCB groups.
However, genetic alterations and up- or downregulation of
these hub genes could be demonstrated.

3.6. GSEA. Here, we employed GSEA as a conventional
approach for identifying pathways related to the differences
in the ABC and GCB subtypes. The results revealed no
significant gene sets at an FDR<25% in the GCB group,
but 42 gene sets were identified in the ABC group. Among
the significant gene sets in the ABC group, the JAK-STAT
signaling pathway comprised the most genes, with 151 genes
involved in this pathway (ES=-0.41, NOM p-val=0.006,
FDR=0.208 and FWER p value=0.775) (Figure 8). Some
important pathways, such as the TGF-𝛽, WNT, and GnRH
signaling pathways, failed to meet the screening criteria,
such as the FDR score requirement. Only the JAK-STAT
signaling pathway overlapped between the GSEA and the
former analysis with a significant difference.

4. Discussion

In the present study, an integrated bioinformatics analysis
was performed to explore potential crucial genes and key
pathways associated with the GCB and ABC subtypes in
DLBCL. In this study, three cohort profile datasets from
different groups were integrated to thoroughly examine the
information they contained using bioinformatics methods,
and 87 commonly altered DEGs were identified (33 down-
regulated and 54 upregulated). Some genes are commonly
recognized as GCB or ABC-specific markers. For instance,
the expressions of MYBL1, MME, LRMP, and LMO2 are
related to GCB subtypes, and the expression of FOXP1, IRF4,
IGHM, TNGRSF13B, PIM2, CCND2, and LIMD1 can be
commonly biomarkers of ABC subtype [3, 4, 16, 17]. Their
expression level can be utilized as differentiation and prog-
nostic indicators. The up- and downregulated DEGs were
classified into three groups (biological processes, molecular
functions, and cellular components) according to GO terms,
and KEGG pathway enrichment analysis was conducted
using the DAVID website. The upregulated DEGs were
mainly involved in functions related to the transcription
process, B- or T-cell signaling pathways, cellular components,
and various types of binding, while the downregulated DEGs
were not found to be significantly enriched in this study.
The most enriched pathways pertained to transcriptional
misregulation in cancer, the intestinal immune network for
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Figure 3: GO analysis and significantly enrichedGO terms for DEGs inDLBCL.GO analysis classified theDEGs into three groups (molecular
function, biological process, and cellular component). Significantly enriched GO terms and KEGG pathways for DEGs in DLBCL based on
their functions.

IgA production, the hematopoietic cell lineage, and the
NF-𝜅B signaling pathway. In the PPI networkmodule, down-
regulatedMMEandupregulatedCD44, IRF4, STAT3, IL2RA,
ETV6, CCND2, and CFLAR were identified as the crucial
hub genes based on five hub gene calculation algorithms.
These genes were mainly enriched in cytokine signaling or
biological processes and the JAK-STAT and FOXO signaling
pathways. For further investigation, we expanded the net-
work of interactions to show other genes linked with the
DEGs, to validate the GO and pathway enrichment of these
DEGs. Finally, themost significantmodule, containing all the
hub genes, was filtered, and most of the corresponding genes
were associated with the regulation of biological processes,
protein binding, and the JAK-STAT and FOXO signaling
pathways, similar to the other analyses.

DLBCL is a heterogeneous disease from several points
of view, including its morphology, immunophenotype, and
molecular features, which is also reflected by its pathogenetic
mechanisms [1, 16]. In a previous study, it was confirmed
that the expression of the BCL2 protein and the ABC sub-
type significantly increase with age, which are both adverse
prognostic features [17–19]. Another study showed that MYC
protein expression is associatedwith age and thatMYC/BCL2
and MYC/BCL6 double expression might be enriched in
older age groups, although this remains to be validated in
future studies [20]. Moreover, while Bcl-6 protein expression
is a marker of germinal center derivation, it has also been
identified as one of the strongest predictors of DLBCL
outcomes with a favorable prognosis [21]. The important role
of changes in the NF-𝜅B family is emphasized by evidence
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Figure 4: DEGPPI network complex andmodular analysis. (a) Using the STRINGonline database, 28 of 87DEGs (21 ABC-upregulated genes
in green, 7 downregulated genes in purple; hub genes are indicated with round shapes) were filtered into the DEG PPI network complex. (b)
According to the abovemethod, other networks with nomore than 50 interactors were also analyzed.The hub genes are shown in orange, and
the other genes linked to the DEGs are shown in blue.The highlighted circled areas are the most significant modules. (c)This module consists
of 34 nodes and 222 edges (ABC-upregulated genes in green; downregulated gene in red; hub genes are indicated with diamond shapes and
DEGs are indicated with rectangle shapes; and other linked genes are in orange and with round shapes), which are mainly associated with
the regulation of biological processes, cellular components, and protein binding.

Table 5: GO analysis and pathway enrichment for hub gene functions.

Term Description Count False discovery rate Genes
Biological Process
GO.0071345 cellular response to cytokine stimulus 5 0.00579 CD44, IL2RA, IRF4,MME, STAT3
GO.0014842 regulation of satellite cell proliferation 2 0.0218 CFLAR, STAT3
GO.0019221 cytokine-mediated signaling pathway 4 0.0218 CD44, IL2RA, IRF4,STAT3
Pathway
4640 Hematopoietic cell lineage 3 0.0011 CD44, IL2RA, MME
4630 JAK-STAT signaling pathway 3 0.00164 CCND2, IL2RA,STAT3
5162 Measles 3 0.00164 CCND2, IL2RA,STAT3
5206 MicroRNAs in cancer 3 0.00164 CCND2,CD44,STAT3
4917 Prolactin signaling pathway 2 0.0178 CCND2,STAT3
4068 FOXO signaling pathway 2 0.0447 CCND2,STAT3



BioMed Research International 9

Table 6: Enriched GO terms for the functions of the genes in the module.

#Pathway ID Pathway description Observed gene count False discovery rate
GO.0050789 regulation of biological process 26 0.000803
GO.0048522 positive regulation of cellular process 25 2.51E-09
GO.0007165 signal transduction 25 9.18E-09
GO.0050794 regulation of cellular process 25 0.00158
GO.0044700 single organism signaling 24 1.99E-07
GO.0007154 cell communication 24 2.87E-07
GO.0051716 cellular response to stimulus 24 4.96E-06
GO.0010604 positive regulation of macromolecule metabolic process 22 2.02E-10
GO.0031325 positive regulation of cellular metabolic process 22 6.15E-10
GO.0050896 response to stimulus 22 0.00107
GO.0005829 cytosol 18 5.20E-05
GO.0005886 plasma membrane 17 0.0135
GO.0071944 cell periphery 17 0.0145
GO.0044459 plasma membrane part 13 0.00282
GO.0098552 side of membrane 11 2.81E-08
GO.0098589 membrane region 9 0.00338
GO.0045121 membrane raft 8 2.13E-06
GO.0009986 cell surface 8 0.00185
GO.0009897 external side of plasma membrane 7 2.37E-05
GO.1902494 catalytic complex 7 0.035
GO.0005515 protein binding 29 6.77E-12
GO.0005488 binding 28 0.0053
GO.0019899 enzyme binding 15 7.63E-07
GO.0005102 receptor binding 10 0.00191
GO.0060089 molecular transducer activity 10 0.0262
GO.0004672 protein kinase activity 7 0.00611
GO.0019904 protein domain specific binding 6 0.00546
GO.0019902 phosphatase binding 5 0.000899
GO.0019207 kinase regulator activity 5 0.00168
GO.0005126 cytokine receptor binding 5 0.00546

showing that NF-𝜅B induces resistance to apoptosis [22].The
aims of this study were to analyze new markers in DLBCL
biology and contribute to the development of potential new
treatment options.

Using integrated bioinformatics, we identified 8 hub
genes, among which only one was upregulated in the GCB
subtype, while the others were upregulated in the ABC sub-
type. MME, the only hub gene upregulated in the GCB sub-
type, is a membrane metalloendopeptidase that is involved
in cellular responses to cytokine stimuli and hematopoietic
cell lineages. IRF4 plays an important role in the cytokine-
mediated signaling pathway, is normally expressed during
lymphocyte activation, and has been shown to be an impor-
tant component of proliferative stimulation [23]. There is a
great deal of overlap between CCND2, G1/S-specific cyclin
D2, and STAT3, including the prolactin and FOXO signaling
pathways, which are inactivated by major oncogenic signals
such as the PI3K and MAPK pathways, and their expression
is also repressed by microRNAs in multiple cancer types
[24]. Furthermore, the JAK-STAT signaling pathway has been
demonstrated to be linked to the transcriptional regulation

of genes related to development and innate immunity and
to an intracellular signaling pathway regulating cytokine
signaling [25–28]. Additionally, IL2RA (CD25), which is
vital in leukemogenesis and may stabilize oncogenic tyrosine
kinase signaling by mediating negative feedback pathways
in leukemic cells, is involved in the JAK-STAT signaling
pathway with CCND2 and STAT3 [29–31]. This intercon-
nection may therefore make IL2RA an attractive target for
further studies on the DLBCL ABC subtype. Interestingly,
these three hub genes are also enriched in measles; thus, it is
important that further research be conducted in this arena.
In a previous study, CD44 expression was associated with
the non-GC phenotype and should therefore be studied as a
promising candidate for biological marker screening in sys-
temic DLBCL patients [32].The high expression of CFLAR in
the ABC subtype may facilitate cell proliferation and reduce
TRAIL-induced apoptosis [33]; this previous hypothesis was
verified in our analysis by the enrichment of CFLAR in
the regulation of satellite cell proliferation. Although the
translocations or deletions of ETV6 gene are reported in a
variety of hematologic neoplasms, including acute myeloid
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Figure 5: Employing an online resource, we used five intersecting
algorithms to generate a Venn plot to identify significant hub genes.
Areas with different colors correspond to different algorithms. The
cross areas indicate the commonly accumulatedDEGs.The elements
in concurrent areas are the 8 hub genes (MME, CD44, IRF4, STAT3,
IL2RA, ETV6, CCND2, and CFLAR).

and lymphoblastic leukemia, myelodysplastic syndrome, and
myeloproliferative disorders, it is rarely reported in DLBCL
[34, 35]. A mutational analysis of primary central nervous
system lymphoma also revealed that ETV6 might be an
underlying target for this kind of lymphoma treatment [36].
In recent study [37], ETV6 and other 149 genes are identified
as driver genes of DLBCL. However, the functional role
and transcriptional regulation pathway of ETV6 in DLBCL
are still deficient, which can be a novel biomarker in basic
research later.

In a previous study, the most important hallmark of
the ABC subtype was found to be upregulation of BCR
signaling by the NF-𝜅B proliferative pathway [38, 39]. In
this analysis, CFLAR, BLNK, and BCL2A1 were enriched
in this signaling pathway; thus, these three genes might be
investigated as new therapeutic targets in future research.
BLNK is a B-cell linker that bridges B-cell receptor-associated
kinases with a multitude of signaling pathways and may
regulate the biological outcomes of B-cell function and
development [40]. An intestinal immune network for IgA
production might provide new markers in enteric DLBCL,
such as CCR10, TNFRSF13B, AICDA, and HLA-DOB, as
well as genes involved in transcriptional misregulation in
cancer (NFKBIZ, FUT8, LMO2, CCND2, BCL2A1, ETV6,
and CDK14). In the present study, we further interrogated
other networks with no more than 50 interactors to obtain
more useful information. It was found that a significant
module or cluster consisting of 34 genes, including all the
hub genes andmanyABC-upregulated genes, was enriched in
biological processes, protein binding, and pathways including

cytokine-cytokine receptor interaction and the JAK-STAT
and FOXO signaling pathways. Therefore, these GO func-
tions and KEGG pathways will be highly significant when
defining our next steps. In addition to the enrichment of
the JAK-STAT and FOXO signaling pathways in the module,
Th17 cell differentiation,Th1 andTh2 cell differentiation, and
hepatitis B and measles were also enriched in this module.
Previous studies have demonstrated that NHL is closely
related toTh17 cells and associated cytokines, whose levels are
significantly lower in peripheral blood from DLBCL patients
but are increased in relapse patients [41, 42]. Moreover,
changes in the Th1/Th2 ratio are usually highlighted in
NHL [43], and newly diagnosed aggressive B-cell NHL is
associated with the Th1/Th2 balance [44]. Hence, the genes
involved in these pathways might provide a new direction of
research on the original basis.

Considering our results, we interrogated the Oncomine
database to perform a comparative analysis with 7 datasets,
to verify the differential expression of the hub genes. The
results were strongly in line with our preceding expectations,
showing that MME was upregulated in the GCB subtype,
while the other genes were upregulated in the ABC subtype
in the 7 datasets established through our predecessors’ efforts.
These genes were also imported into the cBioportal online
tool to analyze their expression in TCGA database for
clinical research, which focuses on genetic alterations and
overall survival curves. It was revealed that 58% (28/48) of
cases displayed genetic alterations, including amplification,
severe depletion, mRNA upregulation, and various muta-
tions. For the overall survival of cases with alterations in these
mentioned genes, only IRF4 showed statistical significance;
nevertheless, this result remains exciting in relation to the
assessment of the prognosis of patients with changes in these
genes. However, it does not mean that other analyses are
not useful for prognostic evaluation; they only require more
thoughtful study. More importantly, cBioportal provided
the probable mutual exclusivity or cooccurrence of these
hub genes and showed that ETV6 exhibited a significant
cooccurrence tendency with CCND2 and CFLAR, similar
to IRF4 and IL2RA. CFLAR is enriched for the same GO
terms and pathways, although ETV6 does not show the
same enrichment as CCND2 and CFLAR. This means that
ETV6 could participate in the same biological processes and
pathways as CCND2 and CFLAR. However, ETV6 has been
highly discussed in relation to adult acute leukemia [45],
which is associatedwith juvenile cells, whileDLBCL ismainly
linked to mature cells. Thus, these results deserve further
study in our follow-up work. Comparison of the results of
GSEA and the previous pathway analysis showed that the
JAK-STAT signaling pathway was our key pathway and that
it is important to determine how the genes related to the
network regulate this pathway in DLBCL.

Consistent with our results, previous studies have also
identifiedDEGs inDLBCL. For example, T.Dandekar’s group
analyzed patients classified into GCB and ABC groups to
identify molecular markers using tedious methods. Some of
the genes identified by those authors showed involvement
in our analysis as well, such as MME, CCND2, and IRF4.
In contrast to our predecessor’s work, we accumulated three
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Figure 8: GSEA analysis revealed that ABC-upregulated genes were
enriched in the JAK-STAT signaling pathway (ES = -0.41, NOM p
value = 0.006, FDR = 0.208, and FWER p value = 0.775). A positive
enrichment score (ES) indicated correlation with the first group
(GCB) and anegative ES indicated correlationwith the second group
(ABC).

large datasets containing 500 samples and utilized GO term
analysis and Cytoscape software to obtain more reasonable
results and visualize the results. Databases such as Oncomine
and cBioportal were interrogated to verify the DEGs. Other
studies based on one of the databases (GSE31312) selected
in the present study have focused more on therapeutic and
prognostic value, based on R-CHOP or the NF-𝜅B signaling
pathway.

DLBCL is a group of histologically and molecularly het-
erogeneous diseases characterized by different sets of genetic
and epigenetic alterations involved in multiple functional
signaling pathways that are modulated by genetic events,
leading the alterations in transcriptional and/or translational
levels. Thus, factors such as gene mutations, hypo- or hyper-
methylation,microRNAs, and lncRNAs should be considered
as well. This is one deficiency of this study in drawing
the specific conclusion that it is changes in these mRNAs
that cause the transformation of these signaling pathways.
Another limitation of this study is the lack of validation
experiments, which will be conducted in our future work.

5. Conclusions

Taken together, the results obtained using multiple cohort
profile datasets and integrated analysis led to the identifi-
cation of 87 DEG candidate genes and 28 gene nodes in
a PPI network and, thus, the elucidation of the 8 most
connected hub genes (MME, CD44, IRF4, STAT3, IL2RA,
ETV6, CCND2, and CFLAR). These genes were signifi-
cantly enriched in several different biological processes and

signaling pathways, mainly associated with transcription and
cytokine-mediated processes, apoptosis, the hematopoietic
cell lineage, and certain vital pathways, including the JAK-
STAT, FOXO, and NF-𝜅B signaling pathways. These find-
ings could significantly improve our understanding of the
differences in the GCB and ABC subtypes as well as the
process of tumorigenesis and underlying molecular events.
These candidate hub genes and key pathways could be the
therapeutic targets for the precise treatment of these two
subtypes with different prognoses.
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