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TheGSTs is one of themost important multifunctional protein families which has been playing a crucial role in the different aspects
of plant growth. This extensive study about GSTs may establish a solid foundation for the brief functional analysis of BraGSTs in
future. In this study, a total of 75 genes were identified in B. rapa. Phylogenetic analysis characterized them into eight different
subclasses, while Tau and Phi subclasses were themost numerous.The exon-intron structure and themotif composition of BraGSTs
were exhibited accordingly to their subclasses. Notably, we also investigated 15 tandem paralogous pairs of genes, which highlighted
that all the pairs were purifying in nature as their synonymous values were lower than 1.00. Duplication analysis indicated that about
45.33% of genesmainly occurred through tandem duplication in B. rapa. Predominately, the tandem cluster of genes in subclass Tau
was greater than the other subclasses. Furthermore, among eight multiple hormonal treatments (ABA, GA, BR, ETH, IAA, IBA,
NPA, and JA), most number of BraGSTs was activated by NPA, BR, and ABA treatments.This analysis has provided comprehensive
information about GSTs family which may assist in elucidating their exact functions in B. rapa.

1. Introduction

The plant glutathione transferases, formally glutathione-s-
transferase (GSTs; EC 2.5.1.18), are known for their diversity,
being multifunctional proteins, and being widely distributed
in most of the organisms. To date, the role of GST proteins
was considered to be crucial in multiple plant functions such
as herbicide detoxification, plant developmental processes,
signal transduction, oxidative damage, heavy metals toxicity,
and other several key biotic and abiotic factors [1, 2]. It
has been reported that GSTs participated in the endogenous
developmental process, for example, in maize [3], petunia
[4], Arabidopsis [5], grapevine, and cyclamen [6]; they were
involved in flavonoid binding. The versatility of the GSTs
was further extended through previous studies, which have
proved their involvement in the regulation of genes. It
increases the transcript level through exposure to biotic
and abiotic factors including hormones, specifically auxins,

ethylene, salicylic acid (SA), abscisic acid (ABA), and methyl
jasmonate (MeJA) [7, 8].

The GSTs superfamily have shown variation in their
structure and sequences, although they share structural
homology based on considered codomain thioredoxin/
glutaredoxin-like N-terminal and a larger C-terminal. Thus,
variability in nature leads to different hydrophobic substrate
specificities in plant GSTs [9]. On the other hand, as com-
pared to mammals plant, GSTs possess a larger cleft for
co-substrate, as a result it accepted much more and larger
diverse substrates [10, 11]. The GSTs can be categorized into
eight different subclasses based on sequence similarities of
amino acid and genes structure such as Phi, Tau, Lambda,
Zeta, Theta, Lambda, dehydroascorbate reductase (DHAR),
𝛾-subunit of translation elongation factor (EF1G), and tetra-
chlorohydroquinone dehalogenase (TCHQD). Subclasses of
GSTs like Phi, Tau, Lambda, and DHAR are considered as
plant-specific [12] while Phi and Tau are the most numerous
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and highly functioning subclasses for their involvement
in the detoxification of xenobiotics [13]. Predominantly,
most of the GSTs were characterized and investigated in
several plant species belonging to Phi and Tau subclass.
The overexpression of different genes member of Phi and
Tau subclass has been reported to increase the herbicide
tolerance [14]; salinity and oxidative stress [15, 16]; and
chilling stress [17]. Meanwhile, in Sorghum, 62.5% of genes
from subclass Tau have shown significant responses against
multiple abiotic factors such as cold, drought, and salinity
stresses [7]. However, others subclasses of GSTs such as
Lambda and DHAR are mainly involved in redox and thiol
transfer reactions rather than xenobiotics [18, 19]. DHAR
subclass plays important role in stress resistance and is
involved in the ascorbate-GSH recycling reactions [20–22].
Although, two subclasses theta and zeta mainly helps in the
function as GSH-dependent peroxidase, isomerase, and act
as counterparts in the mammalian system [23, 24]. The EFIG
class is basically based on two domains, a typical GST and
EF1G domain, which mainly function as GSH peroxidase
[25]. GSTs stimulate the scavenging pathways and help them
to reduce the effect of toxic material in plant tissues [26].
In addition, glutathione is a specific tripeptide, produced
by the combination of glutamic acid, cysteine, and glycine,
and referred to as gamma-glutamyl-cysteinylglycine [27]. It
is present in body fluid (blood) and cells [28]. On the other
hand, it is also located in cytosol and other cell organelles
such as endoplasmic reticulum, nucleus, and mitochondria
[29, 30]. In particular, glutathione plays a key role in various
metabolic pathways that focused on improving the quality of
nutrients. Its functions are also linked with the controlling
the gene expression patterns, signal transduction, synthesis
of DNA, and protein [28]. It has been reported recently that
allyl isothiocyanate elevated the expression of GST genes by
inducing the oxidative stress in A. thaliana [31]. The above
studies have provided a brief background of GSTs and their
importance in plant cell structure and function. However,
their associated endogenous role has still need to be identified
in B. rapa, against such multiple hormone treatments, and
thus is largely obscure.

The B. rapa genome (Chiifu-401-42) has recently been
sequenced and assembled [32], which elucidated its close
relationships with A. thaliana and after its divergence, it
has experienced a whole genome triplication event (WGT)
[33, 34]. In this study, a total of 75 GSTs family members
were identified in B. rapa genome. Here, we conducted a
systematic study of GST genes family in B. rapa, to identify
the characterization and phylogenetic relationships with A.
thaliana and rice along with collinear correlation between B.
rapa and A. thaliana. Interaction networks and expression
divergence of BraGSTs under multiple hormonal treatments
were also investigated. As a result, this study provides a
foundation in understanding the mechanism of GSTs family
in B. rapa and valuable information for further investigation
of hormonal stress responsive genes.

2. Materials and Methods

2.1. Identification of the GSTGenes in Brassica rapa. From the
Brassica database (BRAD; http://brassicadb.org/brad/) [34],

all the genome sequence datasets were downloaded. The A.
thalianaGST sequences were retrieved from the Arabidopsis I
nformationResource database (http://www.arabidopsis.org/).
The gene information of rice were obtained from http://
rice.plantbiology.msu.edu/ [35], based on the previous
reported study [36]. The A. thaliana and rice were used
as queries by performing BLASTP search to identify the
putative GST proteins with best domain e-value cut-off
1.0. For validation, these potential sequences SMART
(http://smart.embl-heidelberg.de/) and the National Center
for Biotechnology Information (NCBI) database (http://www
.ncbi.nlm.nih.gov/) sever were used. Finally, the physico-
chemical properties of the BraGSTs were analyzed through
Expasy protparam (http://web.expasy.org/protparam/) and
the subcellular localization was predicted by WoLF PSORT
(https://www.genscript.com/wolf-psort.html).

2.2. Phylogenetic Analysis and Genomic Organizations Pre-
diction. The full length protein sequences of BraGSTs were
aligned through MUSCLE with default parameters [37]. For
each analysis, Maximum Likelihood Method was used for
constructing phylogenetic tree with JTTmodel (Jones-Taylor
andThornton amino acid substitution), using MEGA 7 [38].
The nucleotide divergence for all the GSTs was also analyzed
through MEGA 7 with Jukes-Cantor model (1000 bootstrap
values).

The coding sequences and the corresponding genomic
sequences of BraGSTs were predicted by online tool
(http://gsds.cbi.pku.edu.cn/) [39], for exon-intron structure.
For the identification of conserved motifs of the GSTs
in B. rapa, MEME (Multiple Expectation-Maximization
for Motif Elicitation program) online server was used
(Program version 4.12.0) [39]. The following parameters
were implemented, maximum number of motifs 12 and
optimum motif widths 12 and 120, while other parameters
were set as default.

2.3.𝐾𝑠 and𝐾𝑎 Calculation. The synonymous (𝐾𝑠) and non-
synonymous (𝐾𝑎) substitution rates among the tandem pairs
of BraGST genes were calculated with the help of MEGA 7
software, based on the coding sequences alignment following
the Nei and Gojobori model implemented in MEGA 7 [38].

Additionally, the divergence time was calculated through
the following formula: 𝑇 = 𝐾𝑠/2𝑟 in which 𝑟 was taken 1.5 ×
10−8 (synonymous substitution/year) by showing the rate of
divergence [40].

2.4. Promoter Analysis and Proteins Interaction Network
Prediction. We explored a GFF (generic file format) from the
B. rapa genome for all the GST promoter sequences (15,00 bp
upstream). For each gene, we identified the cis-regulatory
element by Plant CARE database (http://bioinformatics.psb
.ugent.be/webtools/plantcare/html/). Additionally, with the
help of STRING software (https://string-db.org/), we con-
structed an interaction network among BraGST proteins.

2.5. Chromosomal Localization and the Syntenic Paralog Pairs
of BraGSTs. All the BraGST genes were mapped on the ten
B. rapa chromosomes based on their respective position in
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genome annotation with the random distribution patterns.
The images for all the BraGSTswere drawn throughMapchart
[41]. The syntenic relationship between A. thaliana and B.
rapa was explored by searching the term “syntenic genes”
in the B. rapa database [42]. To present the syntenic rela-
tionship on their chromosomes, Circos program [43] was
applied.

2.6. Pearson Correlation (PCC) Analysis. The PCC values for
RNA-seq data and expression patterns among the tandem
pairs of BraGSTs were performed on excel sheet 2013.

2.7. RNA Isolation and Expression Pattern Analysis for
BraGSTs in Five Tissues. The total RNAs were isolated from
young leaves using an RNA kit (TaKaRa, Dalian, China). The
RNAs were reverse-transcribed into cDNA with a Prime-
Script RT reagent kit (TaKaRa, Dalian, China). For qRT-PCR,
gene specific primers were designed through Becan designer
7 software and for internal control the B. rapa actin gene
(Bra028615) was used (Supplementary, Table 1). Step one plus
real-time PCR system (Applied Biosystems, Carlsbad, CA)
was used for the reactions. The following PCR parameters
were used: 94∘C for 30 s, 40 cycles at 94∘C for 05 s, 60∘C for
15 s, and 72∘C for 10 s, following by melting curve analysis
(61 cycles at 65∘C for 10 s). The relative gene expressions were
further calculated by the comparative Ct value method [44].
For expression analysis of GSTs in B. rapa, we utilized the
five accession of Chifu-401-42 (root, stem, leaf, flower, and
silique) and the RNA-seq data were generated from previous
reports [32]. Hence, the gene expression values were analyzed
for each tissue and the fragments per kilobase of transcript
per Million fragments mapped (FPKM) were quantified first
and then heat maps were generated by using online tools
(http://www.omicshare.com/).

2.8. Plant Materials and Hormone Treatments. The typical
Chinese cabbage cultivar Chiffu-401-42 was used in our
experiment, as this cultivar being prominently used for
research studies due to the completion of its whole genome-
sequencing. Seeds were first treated with sodium hypochlo-
rite (14%) and thenwere raised on 0.5MS agar plates (0.7%) in
dark for three-day interval at 23∘C. After that, the germinated
seeds were raised in a controlled environment using small
pots with 3 : 1 (soil : vermiculite mixture); growth chamber
was programmed with temperature of 27∘C; for photoperiod,
the duration of light was 16 h and dark 8 h with 60%
relative humidity in the greenhouse of Nanjing Agricultural
University. One-month old seedlings were transplanted at
five leaf-stage into 1/2 Hoagland’s solution in small plastic
pots with a pH at 6.5. After ten days of acclimatization,
seedling of Chinese cabbage was grown with following 8
multiple treatments: (1) ABA 100 𝜇M; (2) GA 100 𝜇M; (3)
BR 50 𝜇M; (4) ETH 50𝜇M; (5) IAA 80 𝜇M; (6) IBA 80𝜇M;
(7) NPA 100 𝜇M; (8) JA 100 𝜇M. We sampled at continuous
intervals of 1, 6, and 12 h with three biological triplicates
for each sample. The young leaf samples were immediately
frozen in liquid nitrogen and stored at −70∘C for further
analysis.

3. Results

3.1. Identification of GST Proteins and Their Classification
Pattern. We identified all the putative GST genes in B.
rapa through systemic BLASTP search against the B. rapa
database, using the query sequences of A. thaliana (55) and
rice (77). This search resulted in the identification of 75 GST
proteins. Subsequently, all these protein sequences were sub-
jected to SMART and NCBI for further verification analyses,
and bothGSTN- andC-terminal domains were confirmed in
B. rapa genome. To reveal the subclasses of GSTs in B. rapa,
the results were based on conserved domains in the context
of proposed nomenclature for GSTs [45, 46]; it can be further
divided into eight different subgroups as Phi, Tau, Zeta,
Theta, Lambda, DHAR, EF1G, and TCHQD. The BraGSTs
according to the subclasses were designated as BraGST. The
genes of subclasses were named as BraGSTF, BraGSTU,
BraGSTZ, BraGSTT, BraGSTL, BraDHAR, BraEF1G, and
BraTCHQD, respectively, and corresponding number for
each gene was, for example, BraGSTF1. From the predicted
protein sequences of all the BraGSTs, we have collected all
the basic description about their length, molecular weight
(MW), isoelectric points (pI), grand average of hydropathic-
ity (GRAVY), exon number, aliphatic index, subcellular pre-
diction, and others which are briefly described (Supplemen-
tary, Table 2). In general, the amino acids for all the BraGSTs
were varied 167–566 and the MW ranged 18.85–64.24 kDa,
while the highest MW and length were recorded for subclass
of EFIG with an average of 52.37 kDa and 464. The pI values
were ranged 4.9–9.73, which speculated that different BraGST
proteins may function in different microenvironments as
described in Figure 1(a) and Supplementary Table 2, while
the number of exons ranged 1–10 for all the subclasses of
BraGSTs (Figure 1(b) and Supplementary Table 2). Though,
the GRAVY from the subclass of BraGSTZ with only one
protein were hydrophobic in nature, whereas the rest of
them showed hydrophilic properties (Figure 1(c) and Sup-
plementary, Table 2). To understand plant functions, protein
localization is particularly important. In our study, most
of the subclasses of BraGSTs were predicted to be located
in mitochondria, chloroplast, and cytoplasm, while only a
small number of proteinswere involved in plasmamembrane,
vacuole, and nucleus.

3.2. Expansion and Structural Characteristics of BraGSTGenes
in Brassica rapa. To validate the GST genes relationship
among B. rapa, A. thaliana, and rice, all the putative
sequences were aligned with MUSCLE in MEGA 7, to
generate unrooted tree with Maximum Likelihood Method
(Figure 2(a)). All the classes belonging to the eight groups
of BraGSTs were in clusters with their counterparts of
A. thaliana and rice. It also verified the reliability of our
classification of BraGSTs, based on the conserved domain
with completely matched results. The classification patterns
of number BraGST genes for each subclasses are described in
Table 1, while, for the comparative analysis with A. thaliana
and rice, the results are shown in Figure 2(b). We also
presented a phylogenetic tree with all the BraGST genes
to verify the extent and lineage-expansion; eight subclasses
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Figure 1: (a) Indicating the pI values among different subclasses of BraGSTs. (b) The number of exons among subclasses of BraGSTs. (c)
Showing the grand average of hydropathicity (GRAVY) among subclasses of BraGSTs.

were marked with different color (Figure 2(c)). As described
in Figure 2(c), subclass Tau (BraGSTU) has contained the
largest (37) number of genes followed by Phi (22). Our results
were in accordance with previously reported studies [7, 36,
47]. We also investigated the sequence features of BraGSTs
through MEME program, which are used for predicting
the conserved motifs; at least 12 motifs were identified and

named as motifs 1–12. Through MEME, we also obtained
the LOGO of these motifs and presented them along with
their motifs (Figure 2(c)). The BraGSTs were mainly dis-
tributed with similar patterns of motifs according to the eight
subclasses. However, motifs 1-2 were found almost among
all the BraGSTs, suggesting their highly conserved domain.
Besides the common patterns, subclass EFIG has contained
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Figure 2: Continued.
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Figure 2: Continued.
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Figure 2: (a) Phylogenetic relationship of BraGSTs among three speciesB. rapa, A. thaliana, and rice.Thephylogenetic treewas constructed by
MEGA 7 using the Maximum Likelihood Method (1000 bootstraps). Genes of different species are marked with different colors. (b) Relative
classification patterns of BraGSTs family based on number of genes between subclasses of BraGSTs among three species. (c) Phylogenetic
tree, motif structure, and LOGO. (A) The phylogenetic tree was constructed by MEGA 7 using the Maximum Likelihood Method (1000
bootstraps). (B) The conserved motif of BraGSTs was elucidated by MEME. Different motifs and their positions are represented by different
colors, respectively, numbered 1–12 at the bottom. (C)The consensus sequence of conserved motifs of BraGSTs and predicted length (amino
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boxes, respectively. At the bottom of the figure the relative position is proportionally displayed based on the kilobase scale.
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Table 1:The BraGST genes of Brassica rapawere classified based on
their domain and phylogenetic relationships.

Subfamilies Identified genes
Phi 22
Tau 37
Zeta 3
Theta 2
Lambda 3
DHAR 4
EF1G 3
TCHQD 1
Total 75

higher number of motifs than any other subclass of BraGSTs.
Noticeably, motif 8 was found to have higher number (88)
of consensus sequences while motifs 9, 10, and 12 contained
fewer (16) number of consensus sequences. In addition, we
also compared the genomic and cDNA sequences; we found
that all the subclasses showed higher than one intron, while
specifically subclass Lambda was found to contain the high
(14) number of intron (Figure 2(d)). However, the structure
of Lambda was varied in nature in other genes, while DHAR
and Phi showed uniformity in their structure. Notably, the
gene structure of all the BraGSTs was consistent according to
the subclasses.

3.3. Copy Number Variation/Gene Retention and Collinearity
Analysis of BraGSTs. To determine the copy number of varia-
tion during specific whole genome triplication event (WGT),
we investigated the BraGST genes in A. thaliana and B. rapa
and the collinear relationships are shown in (Figure 3(a)).
Surprisingly, we found up to six numbers of copy variation
between two different subclasses of BraGSTs, i.e., Phi and
Tau, due to high tandem array of genes (Figure 3(b)). In
subclass Tau, we explored five and four copies of genes,
whereas single copy of genes was also found in subclass
Tau. Our findings also demonstrated different retention of
genes in the subclasses of BraGSTs, such as Phi 21/21, Tau
36/38, Zeta 3/3, Theta 2/2, Lambda 3/3, DHAR 4/4, EF1G
3/3, and TCHQD 1/1, respectively, and these results revealed
high number of retention genes among all the subclasses
of BraGSTs (Supplementary Table 3 and Figure 3(c)). The
B. rapa contains three genomes, as based on the degree
of fractionation, namely, least fractionation (LF), medium
fractionated (MF1), and most fractionated (MF2). During
this study, we presented the ratio of all the BraGSTs in the
three subgenomes, LF genome showed the highest 40.54%
of genes, and noticeably MF2 showed 32.43%, which were
higher than MF1 27.03% (Figure 3(d)). On the other hand,
we also highlighted the ratio of these three subgenomes with
nonsynteny genes of BraGSTs; interestingly the nonsynteny
ortholog and LF subgenome share 28.38% each and MF1 and
MF2 share an equal of 21.62% as shown in (Figure 3(e)).

3.4. Chromosomal Localization and Tandem Array Selective
Pressure Analysis of the BraGSTs in B. rapa. All the BraGSTs
were positioned on the ten B. rapa chromosomes (A01–A10)

with a random distribution. Chromosome A09 contained
the most BraGST genes (18.92%), followed by A07 with
(17.57%), whereas chromosome A01 contained the fewest
genes (1.35%). Furthermore, the duplication type (tandem
array) was identified through MCScanX program; about
34 genes were identified with a random distribution on
A01–A10 chromosomes and were marked with red color.
Specifically, we observed that most of the tandem arrays
were clustered in the region of chromosome. For example, 9
tandem array genes were clustered on A07 chromosome, all
of them belonged to subclass Tau, and the only gene which
was on scaffold also belonged to subclass Tau (Figure 4(a)).
Additionally, we also presented a relationship of the syntenic
region of BraGSTs along with A. thaliana using Circos
software and the tandem array of BraGST genes was marked
with red color (Figure 4(b)).

A total of 15 pairs of tandem array were analyzed for
selective pressure using Mega 7 and the divergence time of
the duplicated genes was estimated by calculating the num-
ber of synonymous substitutions (𝐾𝑠) and nonsynonymous
substitution rates (𝐾𝑎). All of the tandem pairs showed less
than 1.00𝐾𝑎/𝐾𝑠 ratio, which suggest the purifying selection
of the genes.The values were varied 0.13–0.77 with an average
divergence of 29.80 MYA (Table 2). These results speculated
that the slow evolving nature of the tandem array of BraGSTs
with a variation patterns in plant functions. The purifying
nature of BraGSTs suggested the maintenance function in B.
rapa.

3.5. Expression Pattern of BraGSTs in Different Tissues and the
Corelation Networking Analysis of Tandem Pairs. To investi-
gate putative roles of BraGST genes in B. rapa growth and
development, we analyzed the expression patterns across five
tissues (roots, stems, leaves, flowers, and siliques) using RNA-
seq data [32]. Most of the BraGSTs demonstrated a high alter-
ation in expression level in tissues-specific patterns as shown
in (Figure 5(a)). For example, BraGTF18 and BraGSTF19,
belonging to subclass Phi, exhibited higher expression in stem
and root as compared to any other tissues, indicating that
they may function in stem and root development. Mean-
while, some of the genes like from subclasses Phi, Tau, and
DHAR such as BraGSTF10 and BraGST22; BraGSTU8 and
BraGSTU32; and BraDHAR1 showed no expression, while
BraGST11, BraGSTF17, BraGSTU3, BraGSTU19, BraGSTU33,
and GSTZ3 have slight expression in any tissue (Figure 5(a)
and Supplementary Table 4). We also presented tissue-
specific genes; interestingly 2 genes were found in root
and 1 was in silique, which highlighted the tissue-specific
developmental role (Figure 5(b)).

We also investigated trends of expression patterns among
15 pairs of tandem array and their Pearson correlation.
Notably, our results demonstrated that most of the tan-
dem pairs exhibited a high expression pattern across five
tissues. Intriguingly, two tandem pairs from subclass of
Phi, such as (BraGSTF19 BraGSTF20), showed a higher
expression peak in root and stem, which could be specu-
lated that these pairs due to the similarity in high expres-
sion may be involved on the same pathway for root and
stem development. Meanwhile, the correlation between
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Figure 4: (a) Chromosome location of the BraGSTs was obtained from the GFF file and displayed by using Mapchart. The duplication type
tandem array was displayed with red color. (b) Syntenic relationship between B. rapa and A. thaliana was displayed through Circos program,
while tandem array was marked with red color.
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Figure 5: (a) Heatmap of expression profiles (in log2-based FPKM) for BraGSTs in the five tissues of stem, root, leaf, flower, and silique. The
expression levels are exhibited by the color bar. (b) Venn diagram analysis of the tissue-expression of BraGSTs.

Table 2: 𝐾𝑎/𝐾𝑠 calculation of the paralog pairs (tandem array) of BraGSTs in B. rapa.

Genes 𝐾𝑠 𝐾𝑎 𝐾𝑎/𝐾𝑠 Selection pressure Duplication time (MYA)
BraGSTF16 BraGSTF2 1.89 0.34 0.18 Tandem array 63.13
BraGSTF13 BraGSTF22 0.14 0.11 0.77 Tandem array 4.74
BraGSTF4 BraGSTF5 0.23 0.06 0.27 Tandem array 7.81
BraGSTF6 BraGSTF7 0.12 0.08 0.68 Tandem array 3.89
BraGSTF19 BraGSTF20 1.18 0.47 0.39 Tandem array 39.44
BraGSTU6 BraGSTU3 1.07 0.33 0.31 Tandem array 35.78
BraGSTU4 BraGSTU5 0.66 0.15 0.22 Tandem array 21.83
BraGSTU2 BraGSTU8 0.80 0.24 0.30 Tandem array 26.57
BraGSTU11 BraGSTU23 0.64 0.15 0.24 Tandem array 21.26
BraGSTU12 BraGSTU14 0.26 0.10 0.39 Tandem array 8.77
BraGSTU13 BraGSTU20 0.99 0.16 0.16 Tandem array 33.00
BraGSTU21 BraGSTU34 1.45 0.26 0.18 Tandem array 48.17
BraGSTU26 BraGSTU32 1.01 0.24 0.24 Tandem array 33.63
BraGSTU27 BraGSTU28 0.72 0.11 0.16 Tandem array 23.90
BraGSTU30 BraGSTU33 2.25 0.30 0.13 Tandem array 75.10

these two pairs was recorded (0.742818), which also shed
light on their close relationship (Figure 6(a) and Supple-
mentary Table 5). However, two pairs from subclasses of
Phi and Tau were detected (BraGSTF13 BraGSTF22 and
BraGSTU33 BraGSTU33), showing selective expression in

specific tissues. Moreover, most of the pairs showed a
high correlation among each other, while two pairs were
found with negative values like BraGSTU6 BraGSTU3 and
BraGSTU12 BraGSTU14 and three pairs had no PCC values,
the reason for that is these pairs might lose function by
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Figure 6: (a) Heatmap of expression profiles for BraGSTs 15 tandem paralogous pairs in the five tissues of stem, root, leaf, flower, and silique.
The Pearson correlation coefficients (PCC) are also displayed in bracket while NA indicates no available results for PCC. (b) Venn diagram
analysis of the tissue-expression of BraGSTs.

pseudogenization. In tissue-specific clustering, we observed
only one specific gene located in root and silique each,
suggesting their possible role in function of root and stem
development (Figure 6(b)).

To elucidate the coregulatory network among BraGSTs,
we presented a protein-protein interaction structure, in
which their functional and physical properties were exam-
ined by using STRING server (Figure 7).Most of the BraGSTs
showed a highly interacting network with other proteins,
except BraGSTF14. The protein interaction is not necessary
to have a similar relation among the same subclasses but
can also exist among different subclasses of a gene family.
Predominately,most of the proteinswere located in the center
of the network were Phi, Zeta, Theta, and EF1G, suggesting
that these proteins with other BraGSTs have a more complex
interaction relationship.

3.6. Expression Profiling and Coregulatory Networks of
BraGST Genes in Response to Multiple Hormone Treatments.
During recent times,many researchers primarily are focusing
on how to understand plant functions under various stim-
ulation. GSTs are to be involved in various biotic, abiotic,
and hormone stresses such as auxins, ABA, and ethylene as
reported in previous studies [48]. Keeping in view the impor-
tance of GSTs, we explored PlantCARE (plant cis-acting
regulatory element database) for the identification of motifs
only existing for hormonal stresses (Supplementary Table 6).
The results demonstrated thatmost of the BraGST genes were
involved in methyl jasmonate (32.88%), gibberellin (19.32%),
abscisic acid (15.93%), salicylic acid (13.22%), and auxin
(11.19%) and fewest genes were found in ethylene (7.46%)
(Figure 8). Consequently, these results speculated that MeJA,
GA, ABA, SA, auxin, and ethylene could affect the expression

level of BraGSTs. For the functional dissection of GSTs under
response to hormone stresses, mainly cis-element provided
indirect evidences.However, little is known about its function
in B. rapa response to hormonal stresses. To access the
changes and the diversity of BraGSTs, further experimental
validation step is required in future.

To understand the expression profiles of BraGST genes
under eight different hormonal treatments, the expression
patterns for 15 paralogous pairs of tandem array were stud-
ied using qRT-PCR experiment. Heatmap was generated
in response to multiple hormone treatments for transcript
expression fold change as shown in (Figure 9(a) and Sup-
plementary Table 7). Most of the BraGSTs showed a high
striking expression patterns during various hormone treat-
ments (namely, ABA, GA, BR, ETH, IAA, IBA, NPA, and
JA). More genes were particularly induced by NPA than
any other hormones and expressed a higher proportion of
upregulation (66%) and relatively lower downregulated level
(34%), followed by BR (61%) and (39%), ABA (60%), and
(40%).Meanwhile, JA were found to be sensitive to treatment
as most of the genes were downregulated up to 74% and
only 24% were upregulated (Figure 9(b)). To understand the
correlation and coregulatory network among the tandem
pairs, we also calculated the PCC values based on their
relative expression values. For the correlation network, we
have arranged them into three categories with respect to PCC
values, such as greater than 0.6 (High), less than 0.5 but
greater than 0 (Medium), and negative values with (Negative)
correlation (Figure 10(a) and Supplementary Table 8). BR and
IBA showed a higher and closer relationship among each
other with 10 PCC values each, while ETH were found with
a high number of 10 negative PCC values, suggesting its
contrasting nature among the tandem pairs of genes.
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Figure 7: The coregulatory network for BraGSTs was presented by STRING sever.

4. Discussion

4.1. Identification, Phylogeny, and Gene Duplication of
BraGSTs. In the present study, a total of 75 BraGST
genes were identified in B. rapa, through genome-wide

identification. Based on the domain information and
phylogenetic analysis of the GSTs, they were categorized
into eight subclasses in which Tau subclass was the most
numerous with 37 number of genes and Phi with 22. Our
analysis was further validated from previous findings with
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dominant number of genes and the variation of copy number
in plants [36, 49–52]. However, other subclasses have
contained smaller number of genes with 1–4 members of
GSTs. Furthermore, the results of our findings also showed a
higher copy number of genes involved in the two subclasses
Phi and Tau, which suggested that, after following whole
genome duplication (WGD) event, it had a high degree of
genes retention. As a result, our findings proved the gene
dosage hypothesis for keeping network stability, following
polyploidy, and underrepresented in copy variants the genes
encoding members were preferentially retained [53, 54]. In
the evolutionary process, gene duplications are necessary
for new biological functions and widespread expansion
of gene family [55]. To understand duplication events,
here we analyzed the expansion mechanism of BraGSTs
family by MCScanX program. A large number (54.67%) of
segmental type duplications were identified compared to
tandem (45.33%). These analyses suggested that segmental
duplication contributed in the expansion of BraGSTs
family. Moreover, gene duplications played a major role in
diversification by altering the genetic setup to assist them in
adaptation to environmental stresses [56]. Chinese cabbage
showed more close evolutionary resemblance to model plant
A. thaliana [57]. They also shared the identical genomic
composition but their sizes differ from each other which
is ∼120Mb in Arabidopsis [58, 59]. Meanwhile, genome
of B. rapa exceeds to 529Mb, which is five times larger
than that of Arabidopsis [60, 61]. On the other hand, the
modern diploid Brassica genome carried complexity among
their three subgenomes, which are indicated in some of the
preliminary studies [62–64]. In addition, we also found the
divergence of GSTs with an average of 29.80 MYA, which
has suggested a low selective pressure on BraGSTs that made
them duplicate late, further demonstrated the contrasting
nature with different function in subclasses of GSTs as
discussed earlier. Moreover, on our results’ basis, significant
variation in rate of divergence reflected the similarities of
BraGST sequences possibly matched with A. thaliana and
rice [65, 66]. Additionally, all the selected tandem pairs
showed lower than 1.00 synonymous values, which lie in
purifying selection nature and help in the maintenance of

BraGST gene functions.The results were further validated by
the synonymous values which did not show any significant
differences among three subgenomes of B. rapa (LF, MF1,
and MF2). The comparative analysis, phylogenetic tree, and
gene structure of GSTs revealed the exon-intron accordingly
to their subclasses. The similarities in genes structure and
the similar patterns of exon-intron were further proved
by analyzing the protein highly conserved sequences with
MEME. The regulation patterns for conserved motif were
tight specifically linked with motifs 1 and 2, as these were
determined the most prominent in the BraGSTs family.

4.2. Expression Divergence and Regulatory Network of
BraGSTs. To validate our results, we also identified cis-
regulatory elements in the promoter regions of BraGSTs
specific to hormonal stress. We observed that the majority
of GSTs were involved in the activity of methyl jasmonate.
Therefore, we can speculate that the function ofBraGST genes
was involved in the regulatory phenomena of hormones.
In addition, the expansion of this larger gene family and
the duplicated genes in both models (neofunctionalization
or subfunctionalization) was more associated with process
of tissue-expression divergence [67–69]. We also examined
the tissue-expression patterns of the BraGST genes; most of
them were expressed across five tissues or several at least.
Three genes were tissue-specific (two in roots and one in
silique) while some of them showed similar patterns. That
might suggested their common importance in the regulation
of plant developments. The tissue-specific genes along with
the tandem pairs might be contributing to plant development
by acquiring new functions. Based on the results of RNA-
seq data for various tissues and the response of prompter
sequence analysis for cis-elements, their involvement in B.
rapa response to different stresses was speculated. Thus, an
opportunity to study the expression profile of BraGST genes
was provided as to understand gene functions; the expression
profiling can provide valuable clues [70]. Furthermore, the
expression profile for 15 paralogous pairs was analyzed
by qRT-PCR after application of eight multiple hormonal
treatments (namely, ABA, GA, BR, ETH, IAA, IBA, NPA,
and JA). In general, most of the plant growth hormones
act as components of abiotic stress signaling, for instance,
ABA, GA, Auxin, BR, cytokinin, and JA [71]. A large variety
of cellular processes are regulated by phytohormones,
although these are produced in minute concertation. To
communicate cellular activities in higher plants, they work
as chemical messengers [72]. The ratio for majority of
treatments was upregulated in our study, such as for NPA
stress (66%) and BR (61%); however JA was more sensitive
as a large number (74%) of genes were downregulated. These
results show that BraGSTs may also function in response
to multiple hormone treatments, although most of their
genes functions are still unknown. However, our analysis
for phylogenetics, cis-elements, and expression profiling
provides a foundation for future studies on BraGST gene
functions. Although, based on PCC values, BR and IBA stress
were among the highest with 10 PCC values each (>0.6)
which signify a close relationship. Here, we speculated that
the function of gene was enhanced and expanded through
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Figure 9: (a) Expression analysis of the BraGST genes under eight multiple hormonal treatments in B. rapa (A–H). Heatmap representation
of the BraGST genes under eight multiple treatments, namely, ABA, GA, BR, ETH, IAA, IBA, NPA, and JA. For each pair of BraGSTs their
PCC values are also displayed. (b) Showing the up- and downregulated genes in response to multiple treatments.
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gene duplications. During the process of evolution after
duplications, the divergence in the expression profile of the
tandem pairs revealed that it may acquire new functions;
however functional analysis will confirm and determine the
pivotal role of BraGSTs. To understand regulatory network,
protein-protein interactions were elucidated and most of
the genes presented a close relationship among subclasses,
except for few genes. All the BraGST genes displayed a very
complicated correlation, suggesting that these genes are
involved in several fundamental mechanisms and are further
regulated by many down-/upstream genes. Taken together
our results, this study may provide novel insight into the
unique features and specifically the role of the BraGSTs
family in eukaryotic organisms.

5. Conclusion

In this study, we identified 75 BraGST genes from B. rapa and
focused on those involved in response to multiple hormonal
treatments as GSTs are playing a crucial role in plants. The
classification, phylogenetic relationship, structural compo-
sition, evolutionary characteristics, and conserved protein
motif analyses were investigated. Our study has provided a
deep understanding of the BraGSTs in B. rapa. The differ-
ential expression patterns of BraGSTs in various tissues and
the visible tissue-specific patterns showed that these genes are
playing a key role in the developmental aspects of B. rapa.
Expression analysis highlighted the involvement of BraGST
genes in response to multiple hormone treatments. Further-
more, a highly interacting network and the correlation among
various treatments demonstrated the importance of our

study. These results will lead to novel insight by facilitating
into functional divergence and will provide an assessment for
further studies to understand the physiological function of
GSTs in response to multiple hormone treatments in B. rapa.
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