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Abstract

About 7,000 rare, or orphan, diseases affect more than 350 million people worldwide. Although 

these conditions collectively pose significant health care problems, drug companies seldom 

develop drugs for orphan diseases due to extremely limited individual markets. Consequently, 

developing new treatments for often life-threatening orphan diseases is primarily contingent on 

financial incentives from governments, special research grants, and private philanthropy. 

Computer-aided drug repositioning is a cheaper and faster alternative to traditional drug discovery 

offering a promising venue for orphan drug research. Here, we present eRepo-ORP, a 

comprehensive resource constructed by a large-scale repositioning of existing drugs to orphan 

diseases with a collection of structural bioinformatics tools, including eThread, eFindSite and 

eMatchSite. Specifically, a systematic exploration of 320,856 possible links between known drugs 

in DrugBank and orphan proteins obtained from Orphanet reveals as many as 18,145 candidates 

for repurposing. In order to illustrate how potential therapeutics for rare diseases can be identified 

with eRepo-ORP, we discuss the repositioning of a kinase inhibitor for Ras-associated 

autoimmune leukoproliferative disease. The eRepo-ORP dataset is available through the Open 

Science Framework at https://osf.io/qdjup/.
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Introduction

Rare diseases are conditions afflicting a small subset of people in a population, where 

“small” is uniquely defined by each country. For example, the United States denotes 

disorders affecting fewer than 200,000 patients as rare diseases, also referred to as orphan 

diseases. Although each of approximately 7,000 orphan conditions has a tiny number of 

patients, they amount to 30 million patients in the U.S., 30 million in Europe, and around 

350 million globally [1]. Because pharmaceutical companies seldom develop drugs for 

orphan diseases due to the lack of consumers, special attention needs to be placed on 

treating these conditions. After the success of the Orphan Drug Act signed into law in the 

U.S. by President Reagan in 1983, other governments adopted similar mechanisms to 

facilitate orphan drug development, mostly by granting market exclusivity and reducing 

research and development costs [2]. These actions allow for not only sufficient financial 

incentives for pharmaceutical companies, but also manageable costs for non-profits. Fewer 

financial difficulties, various governmental inducements, increasing public awareness, 

together with advances in research techniques have stimulated a global interest in orphan 

drug development and rare disease research [3].

Certainly, without the support of quality datasets and resources, the progress in orphan drug 

research might not be as consistent as it has been. For instance, Orphanet, the de facto rare 

disease reference source, contributes quality, robust data on rare diseases as well as reliable 

clinical practice guidelines [4]. Most importantly, Orphanet enables researchers to share 

common language and information to undergo controlled scientific analysis and, ultimately, 

orphan drug discovery. Similar to Orphanet, the Genetic and Rare Diseases Information 

Center (GARD) at the National Institutes of Health provides comprehensive information 

regarding rare diseases and orphan drugs [5]. Last but not least, the Developing Products for 

Rare Diseases & Conditions section of the U.S. Food and Drug Administration (FDA) 

website hosts freely accessible official legal documentation regarding orphan drug 

development and regulations [6]. These rich resources on orphan diseases available to 

researchers worldwide facilitate the development of new treatments for rare conditions. For 

instance, a systems-level approach to find connections between existing drug products and 

orphan diseases, known as drug repositioning, holds a significant promise to greatly expand 

the repertoire of orphan drugs.

As an alternative strategy to drug discovery, compound repositioning finds new indications 

for existing drugs. This approach can dramatically improve the success rates by shortening 

the time of drug development to about 3–12 years at the reduced safety and pharmacokinetic 

uncertainty [7]. Repurposing of already-approved drugs would most likely bypass initial 

clinical trials, especially if the corresponding dosage does not exceed the maximum 

approved by a regulatory agency. Although efficacy tests for the new treatment are still 
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required, an existing drug is likely to have well characterized long-term toxicity and off-

target effects. Further, the magnitude of side effects may be an important determinant to 

repurpose a drug. For example, a drug with a high risk of significant side effects might not 

be appropriate when the primary goal is to maintain the quality of life of a patient, however, 

repurposing the same drug to treat a life-threatening disease may be acceptable.

Despite the fact that time- and cost-effective rational drug repositioning is expected to play a 

major role in the development of treatments for rare conditions [8], it is not trivial and poses 

a number of onerous challenges. It is, therefore, not surprising that most of the repositioned 

drugs currently on the market are the result of serendipity. Perhaps the most recognizable 

example is sildenafil; originally intended to treat hypertension and angina pectoris in the 

1980s, it was later repurposed to erectile dysfunction as well as pulmonary arterial 

hypertension [9]. Another instance is memantine [10], synthesized in the 1960s as a 

potential agent to treat diabetes, although it was found ineffective at lowering blood sugar. 

Its activity against the N-methyl-D-aspartate (NMDA) receptor was discovered in the 1980s 

and presently, memantine is used to treat Alzheimer’s disease, vascular dementia and 

Parkinson’s disease [11]. These examples show that even though drug repositioning is 

regarded as one of the most promising strategies for translational medicine, many new 

indications for existing drugs have been found serendipitously. Therefore, there is a clear 

need to establish rational, preferably computer-guided routines for drug repositioning.

In this communication, we describe eRepo-ORP, a new resource for orphan drug research. 

eRepo-ORP is a drug repositioning dataset that builds on the results of a large-scale pocket 

matching between target sites for known drugs and those binding pockets identified in 

proteins linked to rare diseases. Known drugs and their macromolecular targets are extracted 

from DrugBank, a unique bioinformatics and cheminformatics resource providing detailed 

chemical, pharmacological, and structural data on drug-target associations [12], whereas 

proteins connected to orphan diseases are obtained from Orphanet [4]. Further, we designed 

a sophisticated protocol incorporating several state-of-the-art algorithms to find potential 

candidates for repositioning by modeling the high-quality structures of drug targets with 

eThread [13], comprehensively annotating their binding sites with eFindSite [14, 15], and 

effectively detecting similar drug-binding pockets with eMatchSite [16, 17]. In general, this 

approach builds on ligand-binding homology, a technique previously employed in computer-

aided drug development to detect binding sites [18] and to discover potential leads through 

virtual screening [19, 20]. Ras-associated autoimmune leukoproliferative disease is 

discussed as a representative example illustrating how eRepo-ORP can be used to identify 

therapeutics for orphan diseases. eRepo-ORP is a large collection of knowledge-based 

predictions to initiate more extensive basic and clinical research focused on investigating 

potentially new indications for existing drugs. The complete dataset is freely available to the 

research community through the Open Science Framework at https://osf.io/qdjup/.

Results and Discussion

Protocol for template-based drug repositioning

eRepo-ORP is constructed based on a large-scale drug repositioning conducted with 

accurate, template-based techniques according to a protocol presented in Figure 1. The first 
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phase is to generate structural data for FDA-approved drugs and their molecular targets 

based on information extracted from the DrugBank database (Figure 1A). Structure models 

of drug targets are constructed by eThread and annotated with drug-binding sites and 

residues by eFindSite (Figure 1B). Next, for each drug-target pair, we identify in the Protein 

Data Bank (PDB) [21] a globally similar template binding a ligand that is chemically similar 

to the DrugBank compound (Figure 1C). This holo-template is structurally superposed onto 

the DrugBank target (Figure 1D) and then the DrugBank compound is aligned onto the 

template-bound ligand (Figure 1E). This procedure produces 2,012 atomic models of drug-

target complexes involving 348 unique proteins and 715 drugs (Figure 1F). The second 

phase is to model proteins associated with orphan diseases obtained from the Orphanet 

database (Figure 1G). Structure models of 922 Orphanet proteins with predicted drug-

binding sites and residues (Figure 1H) are generated by a similar protocol to that used for 

DrugBank targets. The last phase is to identify similar binding sites in DrugBank and 

Orphanet models in order to reposition existing drugs. This task is accomplished by 

employing eMatchSite to construct local alignments for 320,856 possible pairs of DrugBank 

and Orphanet proteins (Figure 1I). For 18,145 pairs producing a statistically significant local 

alignment, a drug molecule bound to the DrugBank protein is transferred to the Orphanet 

target and the complex model is subjected to all-atom refinement (Figure 1J). Refined 

structure models are included in the eRepo-ORP database.

Quality of structural data generated for DrugBank and Orphanet

Structure models are generated for the DrugBank and Orphanet datasets with eThread, a 

meta-threading approach employing state-of-the-art fold recognition. Initial models 

constructed by Modeller from eThread alignments are refined with ModRefiner, which 

performs atomic-level energy minimization in a composite physics- and knowledge-based 

force field improving side-chain positions and hydrogen-bonding networks. An independent 

assessment of the quality of protein models is carried out with ModelEvaluator utilizing the 

predicted secondary structure, relative solvent accessibility, residue contact map, and beta 

sheet structure. Statistics reported in Supplementary Table S1 show that the template-based 

modeling protocol employed in this study produces highly confident structure models, 

whose mean estimated Global Distance Test (GDT)-score [22] values are 0.71 and 0.68 for 

DrugBank and Orphanet proteins, respectively. In addition, the mean confidence for the top-

ranked binding sites predicted in these models by eFindSite is as high as 0.87 for DrugBank 

and 0.82 for Orphanet targets.

The structure models of DrugBank complexes are constructed by aligning the protein and 

the drug onto a holo-template selected from the PDB. Supplementary Table S1 reports the 

mean Tanimoto coefficient (TC) [23] between the DrugBank compound and the template-

bound ligand of 0.49 and the mean Template Modeling (TM)-score [24] between receptor 

proteins of 0.65. Note that both TC and TM-score are even higher when only those cases 

producing statistically significant pocket alignments are considered. These numbers clearly 

indicate that globally similar templates binding chemically similar ligands are selected for 

the majority of drug-protein pairs from DrugBank to produce highly confident complex 

models. Supplementary Table S1 also provides statistics for DrugBank→Orphanet pairs. 

Both TM-score and eMS-score values are very low for all data, basically showing that 
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randomly selected pairs of proteins share neither global nor local structure similarity. 

However, considering the subset of 18,145 pairs producing statistically significant local 

alignments, the mean eMS-score is as high as 0.91, even though the mean TM-score is still 

only 0.27. These results demonstrate that the vast majority of similar binding sites included 

in eRepo-ORP are identified by eMatchSite in DrugBank and Orphanet proteins having 

unrelated global structures.

Matching DrugBank drugs to Orphanet proteins

The results of a large-scale pocket matching between DrugBank and Orphanet proteins are 

presented as a heat map in Figure 2. Pocket similarity is measured with eMS-score reported 

by eMatchSite. eMS-score ranges from 0 to 1 with values of ≥0.56 indicating statistically 

significant local alignments. Further, binding sites predicted by eFindSite in DrugBank and 

Orphanet proteins are subjected to ligand-based virtual screening employing molecular 

fingerprints extracted from template-bound ligands. Protein targets in each dataset in Figure 

2 are clustered with respect to the chemical similarity of the top-ranked compounds selected 

by virtual screening. Five distinct groups of proteins marked by rounded boxes bind 

compounds containing nitrogen bases, carbohydrates, amino acids, fatty acids, and other 

molecules. Only 5.6% of 320,856 local alignments between DrugBank and Orphanet 

proteins are statistically significant at an eMS-score of 0.56, indicating that these pairs of 

pockets bind similar molecules. Although the majority of similar pockets, marked by dark 

spots in Figure 2, are detected between proteins binding the same type of ligands, e.g. those 

compounds containing nitrogen bases, similarities are detected between different groups as 

well. Because some DrugBank proteins bind multiple drugs, more than one drug can be 

repositioned to the Orphan target based on a single alignment of a pair of pockets. 

Specifically, eRepo-ORP comprises 31,142 unique putative complexes between DrugBank 

compounds and Orphanet proteins, modeled from 18,145 pairs of pockets producing 

statistically significant local alignments. The database can be searched with the disorder 

name and identification according to Orphanet, as well as the DrugBank identifier. In the 

following section, we discuss a representative case selected from eRepo-ORP showing a 

DrugBank compound that can potentially be repositioned to an Orphanet protein associated 

with a rare disease.

Ras-associated autoimmune leukoproliferative disease and vandetanib

Ras-associated autoimmune leukoproliferative disorder (RALD, ORPHA:268114) is a 

chronic, non-malignant condition characterized by monocytosis and often associated with 

leukocytosis, lymphoproliferation, and autoimmune phenomena [25]. RALD is linked to 

certain mutations in GTPase KRas (KRAS), which plays an important role in the regulation 

of cell proliferation promoting oncogenic events, thus it is considered a major target in 

anticancer drug discovery [26]. Specifically, amino acid substitutions in codons 12 and 13 of 

KRAS in RALD patients cause the constitutive binding of GTP and the activation of the 

KRAS protein inducing the Raf-MEK-ERK signaling pathway [25]. According to eRepo-

ORP, KRAS produces a highly significant local alignment with protein-tyrosine kinase 6 

(PTK6) implicated in the regulation of a variety of signaling pathways that control the 

differentiation and maintenance of normal epithelia, as well as tumor growth [27]. PTK6 is a 

target for vandetanib, an oral kinase inhibitor of tumor angiogenesis and tumor cell 
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proliferation approved by the FDA to treat non-resectable, locally advanced or metastatic 

medullary thyroid cancer in adult patients [28].

Figure 3 presents structure models of PTK6 (purple) and KRAS (gold). The model of PTK6 

constructed with eThread from tyrosine-protein kinase HCK (PDB-ID: 1qcf, chain A, 42.6% 

sequence identity) [29] is assigned a high estimated GDT-score of 0.74. Further, vandetanib 

(DrugBank-ID: DB05294) was transferred to PTK6 according to the global structure 

alignment with cyclin-dependent kinase 6 bound to this inhibitor (PDB-ID: 2ivu, chain A, 

TM-score of 0.54) [30]. The final model of the vandetanib-PTK6 complex is shown in 

Figure 3A as solid ribbons and sticks. We selected this particular case because the 

vandetanib-PTK6 model was generated using the October 2016 version of the PDB and, in 

January 2017, a crystal structure of PTK6 kinase domain complexed with another inhibitor, 

dasatinib, was released (PDB-ID: 5h2u, chain A) [31]. This experimental structure 

superposed onto the vandetanib-PTK6 model is shown in Figure 3A as transparent ribbons 

and sticks. A TM-score between the PTK6 model and the experimental structure is as high 

as 0.92 with a Cα-RMSD of 2.3 Å. Further, the root-mean-square deviation (RMSD) 

calculated over dasatinib-binding residues is only 0.7 Å demonstrating that not only the 

backbone, but also the binding pocket is modeled with a very high accuracy. Although 

vandetanib and dasatinib have a low chemical similarity with a TC of only 0.15, both 

inhibitors have a similar shape and the modeled binding pose of vandetanib resembles the 

experimental conformation of dasatinib. Moreover, the top-ranked binding site predicted 

with 99.7% confidence by eFindSite in the PTK6 model substantially overlaps with the 

dasatinib-binding pocket in the experimental complex structure. The Matthews correlation 

coefficient (MCC) [32] between predicted and dasatinib-binding residues reported by 

Ligand-Protein Contacts (LPC) software is 0.62.

The model of KRAS was constructed from Ras-related protein Rap-1b (PDB-ID: 4m8n, 

chain G, 58.4% sequence identity) and assigned a high estimated GDT-score of 0.85. 

Although several inhibitors of KRAS are available, these compounds target the secondary 

binding site [33]. In Figure 3B, a GDP-bound KRAS (transparent) is superposed onto the 

model structure (solid). This superposition yields a high TM-score of 0.93 and a low Cα-

RMSD of 1.4 Å; furthermore, the RMSD calculated over GDP-binding residues is only 1.1 

Å. The top-ranked drug-binding site comprising 27 residues, annotated by eFindSite with 

95.7% confidence, has an MCC against GDP-binding residues of 0.61. Despite a very low 

global sequence identity of 12.9% and a structure similarity with a TM-score of 0.32 

between PTK6 and KRAS, eMatchSite reports a significant local similarity of their binding 

sites with an eMS-score of 0.99. Figure 3C shows the conformation of vandetanib 

repositioned from PTK6 to KRAS according to the sequence order-independent pocket 

alignment by eMatchSite, which results in 4.3 Å Cα-RMSD over 25 aligned residues. 

Repositioned vandetanib fits well into a deep cavity in the KRAS structure forming 

hydrogen bonds with A18, N116 and K117, aromatic interactions with F28, and 

hydrophobic contacts with V8 and V9. The interaction energy between vandetanib and 

KRAS calculated by DFIRE is −441.5, which is only slightly higher than −485.6 obtained 

for the vandetanib-PTK6 model. Altogether, these results suggest that the nucleotide-binding 

pocket of KRAS may be a suitable target for vandetanib. If so, we anticipate that the 
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competitive binding of vandetanib to KRAS may subdue its gain-of-function caused by 

activating mutations, leading to the mitigation of RALD conditions.

Conclusions

In this study, we employ a collection of state-of-the-art algorithms to match, at an 

unprecedented scale, binding sites for known drugs with those pockets identified in proteins 

associated with rare diseases. Based on these data, we created eRepo-ORP, a new resource 

for orphan drug research. eRepo-ORP comprises 31,142 putative complexes between 

DrugBank compounds and Orphanet proteins exposing vast opportunities to reposition 

existing drugs to rare diseases. In order to illustrate how potential therapeutics for orphan 

diseases can be identified with eRepo-ORP, we discuss a possibility to repurpose a kinase 

inhibitor for Ras-associated autoimmune leukoproliferative disease. Freely available through 

the Open Science Framework at https://osf.io/qdjup/, eRepo-ORP provides a list of pairs of 

DrugBank and Orphanet proteins sorted by the matching score, structure models of 

DrugBank and Orphanet proteins with predicted drug-binding sites, sequence and secondary 

structure profiles, structure models of DrugBank complexes annotated with energy scores, 

and complex models of DrugBank drugs repositioned to Orphanet proteins with the 

corresponding energy scores. We expect that eRepo-ORP will prove valuable to orphan 

disease research by providing a robust, rational drug repositioning component.

Materials and Methods

DrugBank dataset

FDA-approved drugs whose molecular weight is in the range of 150–550 Da and for which 

at least one target protein is known were selected from DrugBank [12]. Target structures 

composed of 50–999 amino acids were modeled with eThread, a template-based structure 

prediction algorithm [13]. eThread employs meta-threading with HH-suite [34], RaptorX 

[35], and SparksX [36] to select structure templates in the non-redundant and representative 

subset of the PDB. Comparative structure modeling in eThread is carried out with Modeller 

[37] based on the top-ranked template and incorporating secondary structure restraints from 

PSIPRED [38]. Initial models assembled by Modeller were refined with ModRefiner [39]. 

Finally, each model was assigned an estimated GDT-score by ModelEvaluator [40].

In the next step, drug-binding pockets were predicted by eFindSite [14] in confidently 

modeled target proteins whose estimated GDT-score is ≥0.4. Pockets assigned by eFindSite 

a high and moderate confidence were then subjected to fingerprint-based virtual screening 

[15]. Each target pocket was screened against a library containing drug molecules from 

DrugBank [12] and a background collection of 244,659 non-redundant compounds selected 

from the ZINC database [41]. Only those drug-target pairs for which the drug molecule was 

ranked within the top 10% of the screening library were retained. Further, we devised a two-

step alignment protocol to position drug compounds within the predicted binding pockets for 

each drug-target pair. First, holo-templates selected by eFindSite were structurally aligned 

onto the target protein with Fr-TM-align [42] and then the drug molecule was superposed 

onto the template-bound ligand according to the chemical alignment constructed by kcombu 

[43].
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Orphanet dataset

Genes associated with rare disorders were obtained from Orphanet [4] and the sequences of 

gene products were downloaded from UniProt [44]. Subsequently, for those protein 

sequences composed of 50–999 amino acids, we employed a protocol described above for 

the DrugBank dataset to conduct comparative structure modeling with eThread [13] 

followed by drug-binding pocket prediction by eFindSite [14]. Finally, only protein 

structures with an estimated GDT-score of ≥0.4 having binding sites predicted with a high 

and moderate confidence were retained.

Pocket matching with eMatchSite

All-against-all matching of drug-binding pockets in DrugBank and Orphanet proteins was 

conducted with eMatchSite [16, 17]. eMatchSite constructs sequence order-independent 

local alignments of pocket residues by solving the assignment problem with machine 

learning and the Hungarian algorithm [45]. Subsequently, the local alignment is assigned a 

similarity score, called the eMS-score, calculated based on the overlap of various 

physicochemical features and evolutionary profiles. eMS-score ranges from 0 for completely 

dissimilar pockets to 1 for identical pockets, with an optimized threshold of 0.56 accurately 

distinguishing between pockets binding similar and dissimilar molecules [16]. eMatchSite 

has been benchmarked against a number of established datasets; a comprehensive recap of 

its performance is presented in Supplementary Text S1. In addition to calculating the 

similarity score, eMatchSite superposes two pockets according to the constructed local 

alignments, so that a drug molecule bound to one pocket can be directly transferred to the 

other binding site. In this study, we use this feature of eMatchSite to transfer drugs bound to 

DrugBank target to binding sites in Orphanet proteins. In the last step, the constructed 

complexes of drugs repositioned to Orphanet proteins are rebuilt with Modeller in order to 

refine drug-target interactions and eliminate steric clashes. The quality of the final complex 

models is assessed by a knowledge-based statistical energy function for protein-ligand 

complexes with the Distance-scaled Finite Ideal-gas REference (DFIRE) potential [46]. 

Specific interactions between drugs and proteins, such as hydrogen bonds, hydrophobic and 

aromatic contacts, are identified by LPC [47], LigPlot+ [48] and eAromatic [49].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GARD Genetic and Rare Diseases Information Center

GDT Global Distance Test

KRAS GTPase KRas

LPC Ligand-Protein Contacts

MCC Matthews correlation coefficient

NMDA N-methyl-D-aspartate

PDB Protein Data Bank

PTK6 protein-tyrosine kinase 6

RALD Ras-associated autoimmune leukoproliferative disorder

RMSD root-mean-square deviation

TC Tanimoto coefficient

TM-score Template Modeling score
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Highlights

• Rational drug repositioning is expected to play a major role in the 

development of treatments for orphan diseases.

• eMatchSite is a new computer program to guide structure-based drug 

repurposing efforts.

• State-of-the-art algorithms, eThread, eFindSite and eMatchSite, are employed 

to construct eRepo-ORP, a new resource for orphan drug research.

• eRepo-ORP builds on 320,856 local alignments between target sites for 

known drugs from DrugBank and proteins associated with rare diseases from 

Orphanet.

• eRepo-ORP exposes a vast number of new opportunities to combat orphan 

diseases with existing drugs.
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Figure 1. 
Flowchart of the drug repositioning procedure employed to construct eRepo-ORP. This 

protocol utilizes data from three sources, DrugBank, Protein Data Bank (PDB), and 

Orphanet, shown in blue, red, and green, respectively. Databases are indicated by gray 

boxes. (A) For a given protein sequence from DrugBank, template-based structure modeling 

is conducted with eThread in order to construct (B) a 3D model subsequently annotated by 

eFindSite with drug-binding sites and residues represented by little circles. (C) A globally 

similar template binding a ligand that is chemically similar to the DrugBank compound is 

selected from the PDB. (D) The template carrying its ligand is structurally aligned onto the 

DrugBank apo-structure. (E) The DrugBank compound is then aligned onto the template-

bound ligand generating (F) a 3D model of the drug-target complex. (G) For a given protein 

sequence from Orphanet, (H) a 3D model is constructed with eThread and annotated with 

eFindSite. (I) A local alignment is performed for a pair of binding sites in DrugBank and 

Orphanet models with eMatchSite. (J) The DrugBank compound is transferred to the 

Orphanet model when the similarity of binding pockets in DrugBank and Orphanet models 

is sufficiently high and the resulting complex is refined.
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Figure 2. 
Heat map visualizing all-against-all binding site matching between DrugBank and Orphanet 

proteins in eRepo-ORP. Binding pocket similarity is quantified with the eMS-score 

according to the color scale displayed in the top-left corner. DrugBank and Orphanet 

proteins are hierarchically clustered by the chemical similarity of their ligands with the 

resulting dendrograms shown on the left side and at the top of the heat map, respectively. 

Rounded rectangles identify distinct groups of proteins binding compounds containing 

nitrogen bases (NB, blue), carbohydrates (CH, red), amino acids (AA, yellow), fatty acids 

(FA, green), and other molecules (O, gray).
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Figure 3. 
Repositioning of vandetanib from protein-tyrosine kinase 6 (PTK6) to GTPase KRas 

(KRAS) according to eRepo-ORP. PTK6 and KRAS proteins are colored purple and gold, 

respectively, whereas ligands are colored by atom type (green/teal – carbon, blue – nitrogen, 

red – oxygen, yellow – sulfur, citron – chlorine, pink – fluorine, cyan – bromine). (A) 

Structure model of the complex between PTK6 (purple ribbons) and vandetanib (thick 

sticks) with predicted binding residues shown as spheres superposed onto the experimental 

structure of PTK6 (teal ribbons) bound to dasatinib (thin sticks). (B) Structure model of 

KRAS (gold ribbons) with predicted drug-binding residues shown as spheres superposed 

onto the experimental structure of KRAS (teal ribbons) bound to ADP (thin sticks). (C) 

Local superposition of PTK6 (purple ribbons) and KRAS (gold surface) according to the 

sequence order-independent pocket alignment by eMatchSite. Annotated binding residues in 

KRAS are solid, whereas the remaining surface is transparent. Vandetanib repositioned to 

KRAS is represented by thick sticks.
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