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Abstract

Background—Approximately 30% of patients with schizophrenia experience auditory 

hallucinations that are refractory to antipsychotic medications. Here, we evaluated the feasibility 

and efficacy of transcranial alternating current stimulation (tACS) that we hypothesized would 

improve auditory hallucination symptoms by enhancing synchronization between the frontal and 

temporo-parietal areas of the left hemisphere.

Method—22 participants were randomized to one of three arms and received twice daily, 20 

minute sessions of sham, 10 Hz 2 mA peak-to-peak tACS, or 2 mA tDCS over the course of 5 

consecutive days. Symptom improvement was assessed using the Auditory Hallucination Rating 

Scale (AHRS) as the primary outcome measure. The Positive and Negative Syndrome Scale 

(PANSS) and the Brief Assessment of Cognition in Schizophrenia (BACS) were secondary 

outcomes.
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Results—Primary and secondary behavioral outcomes were not significantly different between 

the three arms. However, effect size analyses show that tACS had the greatest effect based on the 

auditory hallucinations scale for the week of stimulation (1.31 for tACS; 1.06 and 0.17, for sham 

and tDCS, respectively). Effect size analysis for the secondary outcomes revealed heterogeneous 

results across measures and stimulation conditions.

Conclusions—To our knowledge, this is the first clinical trial of tACS for the treatment of 

symptoms of a psychiatric condition. Further studies with larger sample sizes are needed to better 

understand the effect of tACS on auditory hallucinations.
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Introduction

Approximately 30% of patients diagnosed with schizophrenia experience auditory 

hallucinations (AH) that are resistant to treatment with antipsychotic medication and are 

associated with a significant decrease in the quality of life (1). Non-invasive brain 

stimulation may provide a viable treatment option for this patient population. For example, 

transcranial magnetic stimulation (TMS) has reduced AH in some, but not all, clinical trials 

(2). The reason for this heterogeneity in outcomes remains unknown. In addition, TMS is 

expensive and needs to be performed in the clinic. In contrast, transcranial current 

stimulation applies a weak electric current to the scalp and represents a potentially attractive 

alternative due to the low-cost and portability of the technology (3). Transcranial direct 

current stimulation (tDCS) significantly reduced AH symptoms measured by the Auditory 

Hallucination Rating Scale (AHRS) in a double-blind, sham controlled study (4). In this 

study the anode (assumed to increase neural activity) and the cathode (assumed to decrease 

neural activity) were placed over the dorso-lateral prefrontal cortex (dl-PFC) to target 

hypoactivity and the temporo-parietal junction (TPJ) to target hyperactivity, respectively. 

However, in a recent study from our group with a similar design, active tDCS did not 

separate from sham on the AHRS score, due at least in part to a substantial placebo response 

to sham stimulation (5). The reasons for this discrepancy are uncertain but it is notable that 

the outcomes of these two studies differ primarily in the magnitude of the placebo response. 

Other studies examining the efficacy of tDCS for the treatment of psychiatric disorders have 

found mixed results (6, 7).

Here, we pursued a novel approach and asked if targeting aberrant temporal organization of 

brain activity can modulate medication-refractory AH in schizophrenia patients. This 

approach was motivated by previous magnetoencephalography (MEG) and 

electroencephalography (EEG) studies that have noted changes in cortical oscillation 

patterns and functional connectivity specifically during AH (8–13). Transcranial alternating 

current stimulation (tACS) employs a weak electric current for non-invasive brain 

stimulation similar to tDCS. However, the stimulation current assumes a sine-wave 

waveform to target brain oscillations in a frequency-specific manner that engages and 

enhances naturally occurring cortical oscillations at the applied frequency (14–16). It is 

hypothesized that alpha oscillations (8–12Hz) are generated by thalamo-cortical and intra-
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cortical circuits (17, 18) making this frequency band susceptible to cortical brain 

stimulation. For example, a study conducted by Herrmann et al. (19) successfully 

demonstrated the enhancement of alpha band oscillations using tACS and simultaneous EEG 

in healthy human participants.

In this study tACS was used to target alpha oscillations, given the deficits in resting state 

alpha band power in patients with chronic schizophrenia and first episode psychosis(20, 21). 

To our knowledge, this represents the first study of tACS in psychiatric patients. This was a 

double-blind, sham controlled pilot study that compared tDCS, tACS, and sham stimulation 

in an across-participant design in patients with schizophrenia and persistent AH. Due to the 

novelty of tACS in schizophrenia, we performed this pilot feasibility study for which we 

formulated outcomes based on raw effect sizes. We hypothesized that tACS outperforms 

both tDCS and sham stimulation in terms of reduction of AHRS scores.

Methods

Participants

This study was conducted at the University of North Carolina at Chapel Hill 

(ClinicalTrials.gov NCT02360228) and was approved by the UNC Chapel Hill Institutional 

Review Board. Participants were recruited from local clinics both affiliated and unaffiliated 

to the university.

Inclusion criteria: participants were diagnosed with schizophrenia or schizoaffective disorder 

(confirmed by the Structured Clinical Interview for DSM-IV Axis I Disorders); experience 

at least three AH per week (as determined by the frequency item in the AHRS); clinical 

stability as demonstrated by no hospitalizations for the past 3 months; stable dosing of 

antipsychotic medications (no changes in medication or doses for 1 month prior to 

enrollment); verified by chart review and/or discussion with the treating clinician to have 

treatment-persistent AH, defined as having ongoing AH during trials of at least 2 

antipsychotic agents of adequate dose and duration; stable AH as demonstrated by having 

less than or equal to 20% change in AHRS scores across a 2 week interval during the 

screening period; ability to provide written informed consent.

Exclusion criteria: no concurrent anticonvulsant medications or daily treatment with 

benzodiazepines (limited as-needed use that was discontinued more than 48 hours prior to a 

study session was allowed); no DSM-IV diagnosis of alcohol or substance abuse within the 

past month or DSM-IV diagnosis of alcohol or substance dependence within the past 6 

months; no history of significant head injury or traumatic brain injury, prior brain surgery or 

any brain devices/implants, history of seizures, unstable medical illness, or pregnancy.

This study used a Data Safety Monitoring Board (DSMB), through the North Carolina 

Translational & Clinical Sciences Institute to ensure participant safety. Bi-annual reviews of 

blinded data and adverse events were submitted to the DSMB.
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Study Design

This study was a double blind, randomized, sham controlled pilot clinical trial, with three 

study arms (10Hz 2mA tACS, 2mA tDCS, sham 10Hz, Figure 1A). The CONSORT diagram 

is included in the Supplementary Materials. Participants were assigned to a code in 

chronological order based on the date of enrollment. Randomization was blocked such that 

all three groups had 8 participants. All authors and members of the research team were 

unaware of the group assignments until completion of the entire study. To administer 

stimulation in a double-blind fashion, we developed a custom built Matlab (Mathworks, 

Natick, MA) interface that controlled two Neuroconn DC Plus stimulators (Neuroconn Ltd., 

Ilmenau, Germany) via the “remote in” feature. This setup provided stimulation linked to the 

study code and recorded the applied waveform for subsequent verification by a group 

member not associated with this study.

Electrode Montage

All three study arms used the same electrode montage to ensure blinding of the research 

personnel to the stimulation condition. Three electrodes with ten20 paste (Bio-Medical 

Instruments, Clinton Township, Michigan) were applied to the scalp. One 5x5cm electrode 

was placed between F3 and Fp1 (left dl-PFC) and one 5x5cm electrode was placed between 

T3 and P3 (left TPJ). A third “return/reference” electrode (5×7cm) was placed over Cz. The 

resulting electric field distribution is shown in Figure 1C. These figures were created using 

the Soterix Medical HD-Targets™ software (Soterix, New York, NY). After specifying the 

brain region and stimulation electrode location, the resulting simulation depicted the current 

flow through the head. The location of the stimulation electrodes was determined using the 

10–20 placement system. The choice of location for the stimulation electrodes was 

motivated by previous tDCS studies for auditory hallucinations in schizophrenia (4, 5). In 

order to maintain the double blind nature of the study, the location of the tACS electrodes 

had to necessarily be the same. The stimulation amplitudes for the tACS condition were 

chosen in a way that the peak amplitude at third electrode at Cz never exceeded 2 mA.

Stimulation Paradigms

Each participant completed twice-daily 20 minute stimulation sessions, separated by 3 

hours, over 5 consecutive days. The 10Hz tACS stimulation waveform was a sine-wave with 

a peak-to-peak amplitude of 2 mA. Both stimulators delivered a 2 mA peak-to-peak 

amplitude current between the frontal site and Cz and between the temporo-parietal site and 

Cz, respectively. For tDCS, the stimulation paradigm was +2 mA at the frontal site (F3/Fp1) 

and −2 mA at the temporo-parietal site (T3/P3). Sham stimulation included 10 seconds of 

ramp-in to 20 seconds of 10 Hz tACS, with a ramp-out of 10 seconds for a total of 40 

seconds of stimulation. Ramping up and down the stimulation amplitude is a common 

approach for transcranial current stimulation to reduce skin sensation at stimulation onset. 

All three conditions used this procedure. The brief stimulation delivered as part of the sham 

stimulation is unlikely to be biologically active, since duration of tACS appears to be an 

important variable in terms of the modulation of brain activity after discontinuation of 

stimulation. Recently, brief periods of tACS were shown to be ineffective in modulating 

alpha oscillations in healthy human participants (22).
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During stimulation, all participants were kept in the same relaxed state. Each participant was 

seated comfortably upright with their eyes open and asked to focus on the ReefScapes video 

(Undersea Productions, Queensland, Australia) directly in front of them. This video also 

served the purpose of helping to disguise the phosphenes induced by tACS.

Assessment of Side Effects

We administered an adverse effects stimulation questionnaire at the end of each 20 minute 

stimulation session. This assessment was a Likert Scale and measured patient-reported 

headache, neck pain, scalp pain, tingling, itching, ringing/buzzing noise, burning sensation, 

local redness, sleepiness, trouble concentrating, improved mood, worsening of mood, 

dizziness, and flickering lights on a scale from 1 (absent) to 4 (severe). After the final 

stimulation session, participants were asked whether they thought they had received 

stimulation over the past week, and whether they thought their symptoms (AH) had 

improved.

Screening Procedures

At the initial session, data was collected for each participant regarding demographics, 

handedness, their belief in the treatment (to understand susceptibility to placebo effect), and 

current medications which was verified with medical records or treatment providers. All 

available information from participants, medical records and providers was used to assess 

whether the AH met study criteria for medication-refractory. All assessments were 

administered by a researcher blind to the group assignment.

Analysis

For analysis, custom written scripts in R (R Foundation for Statistical Computing, Vienna, 

Austria) and SPSS software version 24.0 (IBM, Armonk, NY) were used. Libraries used in 

R included lme4 (23) and pbkrtest (24). Differences in demographics and characteristics of 

the three study arms and the severity of adverse effects were assessed with a one-way 

ANOVA. Pearson’s Correlation was used to assess possible susceptibility to placebo 

response using the Hunter Beliefs About Treatment Questionnaire, (used with the 

permission of the UCLA Laboratory of Brain, Behavior and Pharmacology, © 2005, 2017 

UC Regents). Pearson’s Correlation was also used to examine correlation between age of 

participant and amount of symptom improvement. We used a linear mixed model analysis 

with fixed factors of “session” (baseline at day 1 of stimulation, day 5 of stimulation, 1 week 

follow up, and 1 month follow up) and “condition” (10Hz tACS, tDCS, active sham 10Hz), 

with random factor “participant” to account for repeat measures within participants. The 

interaction between “session” and “condition” is defined as the effects of “session” on 

“condition”. Kenward-Roger approximations were used to calculate P-values and perform F-

tests for each factor and their interaction in the mixed model. Post-hoc analyses included 

paired t-tests to compare the four sessions, with a Bonferroni correction to account for 

multiple comparisons.
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Outcome Measures

The primary outcome measure was defined as the change in AH severity measured by the 

Auditory Hallucination Rating Scale (AHRS) from baseline (day 1 of stimulation) to day 5 

of stimulation. The AHRS was administered before the 1st stimulation session on day 1 of 

stimulation and after the 10th stimulation on day 5 of stimulation. The AHRS was also 

administered at the one-week and the one-month follow up. We also included changes in the 

oscillatory structure of the resting state EEG data which was collected at 4 time points 

throughout the study (day 1, day 5, one week follow up and one month follow up). The EEG 

data will be reported in a separate manuscript.

Secondary outcomes included change in overall symptoms as measured by the Positive and 

Negative Syndrome Scale (PANSS) and changes in cognitive function as assessed by the 

Brief Assessment of Cognition in Schizophrenia (BACS) from baseline (day 1 of 

stimulation) to day 5 of stimulation. Both the PANSS and the BACS were administered 

before the 1st session of stimulation, after the 10th session of stimulation, and the one month 

follow up. Data was also collected to determine whether participants believed their 

symptoms (AH) had improved after the 5 days of stimulation with a self-rating 

questionnaire. Participants were asked at day 5 of stimulation, the one week and one month 

follow up. During the stimulation week, questionnaires were administered immediately after 

stimulation, typically with a brief delay of less than 10 minutes to give the participant the 

chance to rinse out electrode paste from their hair.

Results

Study Sample

Twenty-five clinically stable participants with a diagnosis of schizophrenia or 

schizoaffective disorder were randomized to one of three treatment arms (tACS, tDCS, or 

active sham). One participant randomized to the tACS group withdrew due to unrelated 

health concerns (instability of diabetes related symptoms not well controlled by the 

medication regimen during their participation in the study), a total of 24 participants 

completed the study (schizophrenia: 15, schizoaffective disorder: 7; 15 men, 7 women). Two 

participant datasets were not included in analysis due to instability of AH symptoms at 

baseline and non-adherence to antipsychotic medication during study participation that was 

unknown to the study team at the time of stimulation. In this paper, we present the analysis 

of the remaining 22 participants.

Safety and Tolerability

Participants in all treatment arms tolerated stimulation well (Table 1). Mild tingling, itching 

and burning was reported by some participants. Some participants in both tACS and sham 

treatment groups reported the appearance of flashing lights, likely related to phosphenes that 

result from retinal stimulation or, potentially, stimulation of visual cortex by tACS. Group-

averaged side-effect scores did not exceed a value of 2 (on a scale from 1 to 4) and there 

were no statistically significant differences between groups for the averaged total score 

(p=0.31). There were no significant adverse events reported throughout the entirety of the 

study. All participants who completed the study were able to sit through all 10 stimulation 
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sessions during the treatment week. Participants who decided not to continue with their 

participation in the study withdrew for reasons unrelated to the stimulation itself, as reported 

to study personnel.

Effect size calculations of baseline to day 5 of stimulation resulted in the largest effect size 

for tACS (1.31), followed by the sham and the tDCS arms (1.06 and 0.17, respectively, 

Supplementary Table 1). The tACS group displayed a mean improvement of 15% (mean: 

−3.75 points, SD 2.87), the tDCS group displayed a mean improvement of 5% (mean: −1.14 

points SD 6.15), and the sham group had a mean improvement of 10% (mean: −2.29 points 

SD 2.14) after 5 consecutive days of twice daily stimulation (Figure 2, Table 2; individual 

trajectories in Figure 3). An exploratory F-test with Kenward-Roger approximation analysis 

was conducted examining factors “session”"condition” and the interaction between 

“session” and “condition”. These factors were compared across time points “baseline”, “day 

5 of stimulation”, “1 week” and “1 month”. The interaction analysis examined whether there 

was an impact of “session” on “condition” for the AHRS scores. Factor “session” was found 

to be significant (F3,63=5.05, P<0.01). Analyses conducted with a Bonferroni correction 

resulted in a difference between “baseline” and “1 month”. Factors “condition” and the 

interaction were not significant (Table 3).

Positive and Negative Syndrome Scale (PANSS)

Effect size calculations of baseline to day 5 of stimulation show the largest effect size for 

tDCS (1.13), with tACS and sham having a small effect size (0.42 and 0.39, respectively, 

Supplementary Table 2). Effect size calculations were also conducted for the PANSS 

Hallucinations question. Results of this analysis showed that tACS had the largest effect size 

at baseline to day 5 of stimulation (0.48), while tDCS also had a small effect size (0.30) and 

sham had no effect size (0.00, Supplementary Table 3). An exploratory analysis of the 

PANSS total scores with a linear mixed model showed that factor “session” was significant 

(F-test with Kenward-Roger approximation with time points “baseline”, “1 week”, and “1 

month”; F2,42=4.95, P=0.01). We found no significant effects for the factor “condition” or 

the interaction for the PANSS total score. No significant effect was found for factors 

“session”"condition”, or the interaction for the positive symptom subscale. No significant 

effect was found for “condition” or the interaction for the negative symptom subscale. 

However there was a significant effect found for factor “session” (F2,42=6.87, P=0.003) for 

the negative symptom subscale. No significant effect was found for the factors 

“session”"condition”, or the interaction for the general psychopathology subscale. No 

significant effect was found for the factors “session”"condition”, or the interaction for the 

hallucination question in the positive symptom subscale. Results are presented in Table 2.

Brief Assessment of Cognition in Schizophrenia (BACS)

Effect size calculations of baseline to day 5 of stimulation show the largest effect size for 

tDCS (1.50), with sham having a medium effect size (0.57) and tACS having a small effect 

size (0.26, Supplementary Table 4). In an exploratory analysis of the BACS total scores with 

a mixed linear model, we found a significant effect for factor “session” (F-test with 

Kenward-Roger approximation with the time points “baseline”, “1 week”, and “1 month”; 
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F2,42=4.31, P=0.02). No significant effect was found for factor “condition” or the 

interaction. Results can be seen in Table 2.

*Results from Participant Demographics, Participant Expectation of Outcomes, Self-Rating 
of Improvement, and Participant Age and AHRS Improvement can be found in 

Supplementary Materials, along with the corresponding tables and figures.

Discussion

tDCS Efficacy

Although several studies have examined tDCS, conclusive results have not emerged as to 

whether it represents an effective treatment of AH. Studies examining once daily tDCS, 

either over 5 consecutive days (5) or 3 consecutive weeks (15 total stimulation sessions) 

(25), did not find significant changes in severity of AH. Studies conducted by Brunelin et al. 

(4) and Mondino et al. (26) looked at twice daily tDCS for the treatment of AH in patients 

with schizophrenia, both of which had positive results. In fact, one study found that the 

improvement in AH remained apparent through the 3 month follow up (4).

Interestingly, although the treatment duration used in our current study mirrored the 

treatment duration in (4), there were no sustained improvement in AH past the one week 

follow up in our study. Although the current trial was smaller, each study was double 

blinded and randomized, with similar study inclusion/exclusion criteria. It is not clear why 

these studies differ substantially in response to tDCS in the same population. These 

inconsistent findings indicate that the benefits of tDCS for persistent AH remain uncertain 

and will require further study.

tACS Dosage

Although the stimulation paradigm mirrored the twice daily treatment in the Brunelin study 

(4) which found improvement in AH symptoms up to 3 months after the week of 

stimulation, the present study did not find benefits of tACS past the one week follow up in 

terms of raw effect sizes when compared to sham stimulation. The tACS and sham arms had 

similar effect sizes for the difference from “Day 1” to “1 Week Follow-Up”, while the sham 

arm had the largest effect size for difference from “Day 1” to “1 Month”. It is possible that 

the duration of treatment may need to be extended past the five day mark in order to sustain 

symptom improvement. Early TMS studies for depression administered stimulation in short 

periods for a total of two weeks (27), while it has become common practice for treatments to 

last in durations of four to six weeks (28). Future studies may consider increasing the 

frequency or duration of treatment.

Effect Sizes

Due to the small sample size used in this study, statistically significant results were not 

expected. Raw effect sizes were used to understand the effect that tACS, tDCS and sham had 

on AH symptoms. As shown, tACS had the largest effect size for the AHRS. However, tDCS 

had the largest effect sizes for the PANSS and BACS assessments. The divergence of 

improvement on these different scales may be explained by the multifaceted nature of the 
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disease. Just as not all antipsychotics produce the same improvement in a specific symptom, 

the different stimulation paradigms may not affect the same symptom clusters. The large 

effect of for the BACS in the tDCS group is intriguing given the emerging literature of 

anodal tDCS applied to left prefrontal cortex for remediating cognitive deficits in patients 

with schizophrenia (7, 29). We performed an exploratory analysis to understand to what 

extent this effect on cognition was a result of the significantly different mean ages across the 

three groups. Across all participants, we found no significant correlation between age and 

the difference in BACS scores from day 1 to day 5 (r=0.004, n=22, p=0.78). This suggests 

that the effect of tDCS on cognition is not uniquely an artefact of the uneven age distribution 

across the three study arms.

Blinding

In contrast to tDCS, tACS can induce the appearance of flashing lights, or phosphenes, that 

are caused by stimulation of the optical nerve (30). Several steps were taken in this study to 

ensure the participants were unable to distinguish whether they had been assigned to the 

tACS, tDCS or sham group. The sham was designed to mimic the skin sensations of the 

tACS group in order to blind participants assigned to this group (sometimes referred to as 

“active”). All participants were asked to sit still with their eyes open while a ReefScapes 

video was played on a projector screen in front of them which displayed underwater 

sceneries with tropical fish. The shifting sunlight of the water and the flashing colors of the 

fish served as a method of disguising the phosphenes induced by tACS and the sham. The 

blinding of this study was successful, with only one participant believing that they had not 

received stimulation.

Electric Field Distribution

We emphasize that the two groups that received active stimulation differed in the waveform 

of the stimulation used and also in terms of the spatial targeting. In designing this study, we 

prioritized the full blinding of study participants and researchers to the assigned stimulation 

condition. In this decision, we have accepted this limitation of the study.

Limitations

There are several limitations to this study that should be addressed. This was an exploratory 

study with a low number of participants. Due to this small sample size and 3 separate arms, 

the study was only powered to detect very large effect size changes. Future studies should 

examine tACS with a fully powered sample size. As this was a randomized treatment study 

with no blocking for age, the average age of the tACS treatment arm was significantly higher 

than the tDCS and the sham group. It is possible that the age of the tACS group diminished 

the effects of the stimulation, as neuroplasticity can decrease with age (31, 32). As a result, 

our study may underestimate the effect of tACS. Future studies should examine whether a 

younger population may demonstrate enhanced effects with tACS. The choice of tACS was 

motivated by targeting long-range functional interactions between the targeted cortical sites. 

Future analysis of the EEG data and subsequent studies with more targeted neuroimaging to 

examine changes in structural and functional connectivity will be needed to delineate to 

what extent clinical improvement is indeed driven by connectivity changes. Lastly, we 

decided to position the electrodes on the same scalp locations for all groups to allow for 
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successful blinding of the research personnel. As a result, the spatial electric field 

distribution for the tACS and tDCS group is not exactly identical.

Conclusions

In this first study to examine the effects of tACS on persistent auditory hallucinations in 

patients with schizophrenia, the results indicate a difference in symptom response between 

tACS and tDCS. Further research is needed with a larger sample size and longer treatment 

duration to better understand the treatment possibilities with tACS and the effects on 

auditory hallucinations in patients with schizophrenia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A Symbolic representation of tACS (left) and tDCS (right) stimulation waveforms. B 
Location of electrodes on scalp. C Electric field simulation: 2D (top) and 3D (bottom) 

representation. Two stimulators were used, one connected to the electrode located over F3/

Fp1, one connected to the electrode over T3/P3 and both connected to the Cz electrode.
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Figure 2. 
Normalized AHRS scores for tACS, tDCS and sham groups at baseline (before first 

stimulation), Day 5 (after the last stimulation), at the one week follow up (F1), and at the 

one month follow up (F2).
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Figure 3. 
Change in Auditory Hallucination Rating Scale (AHRS) score for each participant in 

transcranial alternating current stimulation (tACS) arm, transcranial direct current 

stimulation (tDCS) arm, or sham arm. AHRS scores were collected at baseline (before first 

stimulation), after stimulation (after last stimulation, at the one week follow up (F1), and the 

one month follow up (F2).
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