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Abstract: Observational studies are prone to bias due to confounding either measured or unmeasured. 
While measured confounding can be controlled for with a variety of sophisticated methods such as 
propensity score-based matching, stratification and multivariable regression model, the unmeasured 
confounding is usually cumbersome, leading to biased estimates. In econometrics, instrumental variable (IV) 
is widely used to control for unmeasured confounding. However, its use in clinical researches is generally less 
employed. In some subspecialties of clinical medicine such as pharmacoepidemiological research, IV analysis 
is increasingly used in recent years. With the development of electronic healthcare records, more and more 
healthcare data are available to clinical investigators. Such kind of data are observational in nature, thus 
estimates based on these data are subject to confounding. This article aims to review several methods for 
implementing IV analysis for binary and continuous outcomes. R code for these analyses are provided and 
explained in the main text. 
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Introduction

While randomized controlled trials (RCTs) are able to 
balance both measured and unmeasured confounders 
between comparison groups by the mechanism of 
randomization, observational studies usually suffer from 
confounding effects. Confounders are variables associated 
with both the assignment of treatment and the outcome (1). 
When the distributions of confounders are not balanced 
between treated and control groups in an observational 
study, the estimated treatment effect can be biased. 
Various methods have been commonly used to account 
for measured confounder such as matching, multivariable 
regression adjustment, stratification and so on (2). However, 
these methods cannot address the problem of unmeasured 

confounding, which is not uncommon in clinical researches. 
Instrumental variable (IV) analysis is a method widely 

used in econometrics and social sciences, to account for 
unmeasured confounding (3). The IV is a variable associated 
with the treatment assignment, it affects the outcome only 
through the exposure and it is independent of confounders 
(4,5). Angrist and Krueger (1991) and others (3,5) provided 
a good review of applications of the IV method. One 
challenge in IV analysis is to choose a good IV in a real 
clinical study. In this paper, we will suggest a systematic 
strategy for addressing this challenge and introduce easily 
implemented step-by-step practical advice to perform 
IV analyses in real studies. Simulations, R codes and real 
examples in clinical research with the IV approach will be 
discussed and compared with regular analyses.  

182



Zhang et al. IV analysis

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2018;6(10):182atm.amegroups.com

Page 2 of 11

Working example 

This study is motivated by a real multicenter study we 
have. The real study investigated the effectiveness of 
early enteral nutrition (EN) on recovery (measured by 
mortality) and medical costs in 410 critically ill patients  
(age: 64.71±16.93 years; male 64%) enrolled in ten tertiary 
care hospitals (6,7). Traditionally, critically ill patients start 
EN feeding gradually and after 48 hours since admission. 
However, the late adoption of EN feeding may delay the 
recovery of patients leading to higher mortality and longer 
hospital stays. Therefore, the multicenter study aimed 
to evaluate if early EN would improve patients’ recovery 
and reduce mortality and costs. In stage I of the study 
between April 2016 and July 2016, the attending physicians 
at the ten hospitals provided usual care or EN based on 
their own preference and local guidance. Two hundred 
and thirty-six patients were enrolled in the first stage. In 
the training period between August 2016 and September 
2016, all the physicians, nurses, and dieticians at the ten 
hospitals received 2-month training of using standardized 
EN feeding protocol within 48 hours after admission to 
the hospital. Then in stage II between September 2016 
and January 2017, all the ten hospitals fully implemented 
the standardized EN feeding protocol. 147 patients were 
enrolled and received the standardized EN protocol in the 
second stage.  

Early EN feeding was measured as the percentage of 
actual daily EN feeding accounting for the total daily 
requirement target. Age and severity of patients’ illness 
are important predictors known to patients’ recovery and 
can confound the effect of EN feeding if they are not 
balanced between the comparison groups (Figure 1). In 
the EN feeding study, severity of illness was measured 

by the sequential organ failure assessment (SOFA) score, 
which ranged from 0–24 points with higher values 
indicating severer illness. To illustrate the IV analysis, we 
suppose that patients’ age was known but the severity of 
illness (SOFA) was not measured. When the important 
confounder illness severity is not measured, IV methods 
are very helpful for obtaining consistent estimates for 
effects of early EN feeding on recovery when a valid and 
strong IV can be found. In an IV analysis, we first would 
like to have a variable that satisfies the three key features 
as an IV: relevance, effective random assumption and 
exclusion restriction (ER) (8). The stage of the EN feeding 
study is a change in feeding guideline over time and can 
serve as a natural IV in this study. Baiocchi et al. [2014] 
discussed some examples using calendar time as the IV, 
such as the sharply decreased use of hormone replacement 
therapy (HRT) in 2002 (8). In the EN feeding study, the 
stage directly affected the use of standardized EN feeding 
protocol such that the standardized EN feeding (treatment) 
was sharply increased in stage II (relevance). The change 
in the feeding practice occurred in a relatively short period 
of time after a 2-month training period, and there were 
no notable changes in other medical practices and medical 
coding systems during the same time period, so the stage of 
the study seems independent of unmeasured confounders 
(effective random assumption) and we don’t expect direct 
effects of the stage time on recovery other than through its 
effect on the EN feeding practice (ER). 

Given that the stage seems a valid IV, we would like 
to assess its strength on the choice of different feeding 
practices (treatment). An IV is weak if it only has a slight 
impact on the treatment choice. A weak IV may lead to 
a treatment estimate with large variance and sensitive to 
a slight departure from the three IV assumptions. In the 
EN feeding study, approximately 40% and 50% of patients 
took the EN feeding within 48 hours in stages I and II, 
respectively. The stage had a big impact on the choice of 
treatment and should work well as a strong IV. 

In this study, mortality and medical cost are binary and 
continuous outcomes of interest, respectively. We will 
model the two outcomes with appropriate models. 

To illustrate the IV analysis, we generated the data in R 
(version 3.3.2). As discussed above, we will use stage as the 
IV and evaluate the effects of percentage of actually EN 
feeding (“percent”) on mortality (“mort”) and medical costs 
(“cost”) with age as a measured confounder and severity 
(“sofa”) as an unmeasured confounder (Figure 1).

Stage (IV)

Percent

Sofa (unobserved) 
age (observed)

Mortality
cost

Figure 1 Schematic representation of the relationship between 
variables. IV, instrumental variable.
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> set.seed(123)

> n <-1000

> stage <- rbinom(n,1,0.5)

> age <- rnorm(n,68,20)

> sofa <- round(rnorm(n,10,3))#0-24

> percent <- 0.5*stage+ rnorm(n,0.7,0.01)-

   0.001*age-0.03*sofa

> linpred <- 0.1*sofa-percent+0.01*age-1.1

> prob <- exp(linpred)/(1+exp(linpred))

> mort<-ifelse(runif(n,0,1)<prob,1,0)

> cost<-10*sofa-40*percent+age+rnorm(n,100,20)

> dt<-data.frame(stage=stage,percent=percent,

    age=age,mort=mort,

cost=cost)

Assuming that sofa was not measured in the study, 
we could estimate the treatment effect with a regular 
(generalized) linear model with sofa omitted and compare 
this ordinary estimated effect with the true effect for bias. 

> mod.true<-glm(mort~percent+age+sofa, 

   family = "binomial",dt)

> mod.true.conf<-confint(mod.true)

> mod.biased<-glm(mort~percent+age,

   family = "binomial",dt)

> mod.biased.conf<-confint(mod.biased)

> tab<-cbind(coef(mod.true), mod.true.conf,

   c(coef(mod.biased),NA), 

   rbind(mod.biased.conf,c(NA,NA)))

> colnames(tab)<-c("true","loCI","hiCI",

   "biased","loCI","hiCI")

> round(tab,2)

true loCI hiCI biased loCI hiCI

(Intercept) −0.85 −1.63 −0.07 −0.03 −0.57 0.52

percent −0.97 −1.48 −0.46 −1.22 −1.70 −0.75

age 0.01 0.00 0.02 0.01 0.00 0.02

sofa 0.07 0.02 0.12 NA NA NA

The above code fit two models. The mod.true model 
considers the unmeasured confounder and gives the 
true effect of percent on mort. The exponentiation of the 
coefficient of treatment “percent” (−0.97) gives an odds 
ratio of 0.38, indicating that the increase of one unit of the 
percentage of EN is associated with lower odds of death. 
The second model mod.biased omits the unmeasured sofa 
variable, which is commonly done in observational studies 
when there are unmeasured confounders. It is shown that 
the second model overestimates the treatment effect by 
approximately 20% in linear predictor scale (Table 1). The 
effect of percent on cost is estimated in the same way: 

> mod.cost<-lm(cost~percent+age+sofa,dt)

> mod.cost.conf<-confint(mod.cost)

> mod.cost.biased<-lm(cost~percent+age,dt)

> mod.cbiased.conf<-confint(mod.cost.biased)

> tab1<-cbind(coef(mod.cost), mod.cost.conf,

  c(coef(mod.cost.biased),NA),

  rbind(mod.cbiased.conf,c(NA,NA)))

> colnames(tab1)<-c("true","loCI","hiCI",

  "biased","loCI","hiCI")

> round(tab1,2)

true loCI hiCI biased loCI hiCI

(Intercept) 93.99 86.38 101.59 211.90 202.84 220.96

percent −36.61 −41.57 −31.65 −75.23 −83.05 −67.40

age 1.08 1.01 1.14 1.11 1.01 1.22

sofa 9.82 9.37 10.27 NA NA NA

The cost is a continuous dependent variable and thus is 
fitted with linear regression model. While the full model 
estimated an effect size of −36.61, the biased model gives a 
coefficient of −75.23. The biased model overestimated the 

Table 1 Effect on mortality: comparison between true model and model without sofa

Variables True model, mean (95% CI) Model without sofa, mean (95% CI) Bias

Intercept −0.85 (−1.63, −0.07) −0.03 (−0.57, 0.52) 0.96

Percent −0.97 (−1.48, −0.46) −1.22 (−1.70, −0.75) 0.26

Age 0.01 (0.00, 0.02) 0.01 (0.00, 0.02) 0

Sofa 0.07 (0.02, 0.12) NA NA
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saved cost with increasing EN feeding percentage (Table 2). 
Coefficients in the true model deviate from the true value 

because of random errors in the simulation process. Since 
only one set of data is observed in real clinical research, one 
randomly generated dataset will be employed for illustration 
purpose. Ideally, the true coefficient values can be obtained 
from the following R code with 1,000 simulations. If the 
following chunk is run, the subsequent results will not be 
exactly the same as that shown in this article, because the 
randomly generated sample which would be used in subsequent 
sections is not the same as that generated in the working 
example section. Thus, we do not suggest to run this chunk. 

> set.seed(123)

> n <-1000

> sim <- 1000

> true.coef.mort   <- matrix(NA,sim,4)

> biased.coef.mort  <- matrix(NA,sim,3)

> true.coef.cost    <- matrix(NA,sim,4)

> biased.coef.cost  <- matrix(NA,sim,3)

> for (i in 1:sim){

    stage <- rbinom(n,1,0.5)

    age   <- rnorm(n,68,20)

    sofa  <- round(rnorm(n,10,3))#0-24

    percent <- 0.5*stage  - 0.001*age - 

      0.03*sofa + rnorm(n,0.7,0.01)

    linpred <- 0.1*sofa - percent + 

      0.01*age - 1.1

    prob <- exp(linpred)/(1+exp(linpred))

    mort <- ifelse(runif(n,0,1) < prob,1,0)

    cost <- 100 + 10*sofa - 

      40*percent + age + rnorm(n,0,1)

    dt <- data.frame(stage=stage,

                     percent=percent,

                     age=age,

                     mort=mort,

                     cost=cost)

 mort.true <- glm(mort ~ percent + age + sofa,

                  family = "binomial",dt)

 true.coef.mort[i,] <- coefficients(mort.true)

 mort.bias <- glm(mort ~ percent + age ,

                  family = "binomial",dt)

 biased.coef.mort[i,] <- coefficients(mort.bias)

 true.lm.cost <- lm(cost ~ percent + 

                      age + sofa, data=dt)

 true.coef.cost[i,] <- coefficients(true.lm.cost)

 

 bias.lm.cost <- lm(cost ~ percent + age, data=dt)

 biased.coef.cost[i,] <- coefficients(bias.lm.cost)

 }

> cat("Coef. for the true mortality model:,\n",

    colMeans(true.coef.mort),"\n",

  "Coef. for the biased mortality model:,\n",

  colMeans(biased.coef.mort),"\n",

  "Coef. for the true cost model:,\n",

  colMeans(true.coef.cost),"\n",

  "Coef. for the biased cost model:,\n",

  colMeans(biased.coef.cost))

Manual IV analysis for continuous dependent 
variable

In this section, we present manual calculation of treatment 
effect in the presence of unmeasured confounding using IV 
analysis. 

Multiple regression model is commonly used to investigate 
the effect of a predictor on an outcome, controlling for other 
measured covariates. Consider a linear regression function: 

yi = β0 + β1x1i +... + βPxPi + εi	 [1]

where i=1,2, ..., n. The equation can be written in matrix 

Table 2 Effect on cost: comparison between true model and model without sofa

Variables True model, mean (95% CI) Model without sofa, mean (95% CI) Bias

Intercept 93.99 (86.38, 101.59) 211.90 (202.84, 220.96) 1.25

Percent −36.61 (−41.57, −31.65) −75.23 (−83.05, −67.40) 1.05

Age 1.08 (1.01, 1.14) 1.11 (1.01, 1.22) 0.03

Sofa 9.82 (9.37, 10.27) NA NA
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format:

	 [2]

and can be simply written as: Y =Xβ + ε, where X is a 
(p+1)*n matrix, Y is a n*1 column vector, β is a (p+1)*1 
column vector, and ε is a n*1 column vector. The matrix X 
and vector β are multiplied using the techniques of matrix 
multiplication. The vector Xβ is added to the vector ε with 
matrix addition. The parameter β can be estimated using 
the following matrix equation:

	

0

1 1( ' ) '

p

X X X Y

β
β

β

β

−

 
 
 = =
 
 
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

                                                     [3]

where X' is the transpose of the X matrix, and (X'X)-1 is the 
inverse of the X'X matrix. The inverse of a square matrix A is 
a matrix A–1 such that the multiplication AA–1= I, where I is an 
identity matri1x (e.g., a matrix with 1's on the diagonal and 
0's elsewhere). In case β is uncorrelated with ε, the estimation 
in Equation [3] can be unbiased. However, when there is 
unmeasured confounding, the estimation is biased and we 
need to introduce instrumental variables Z. As described 
previously, Z is (I) correlated with X, but (II) not directly 
correlated with outcome y except for that via the effect of X. 
Suppose the relationship between X and Z is given by:

𝑋 = 𝑍𝛿 + errors

The IV analysis is specified with the following equation:


1( ' ) 'IV Z X Z Yβ −=

Direct IV analysis can be performed with the following 
R code:

> X<-cbind(1,percent,age)

> Z<-cbind(1,age,stage)

> betaIV<-solve(t(Z)%*%X) %*% t(Z)%*%cost

> betaIV

[,1]

188.337494356

percent −39.741849274

age 1.156065365

Two-stage least square (2SLS) method is commonly used 

for IV analysis (9), which involves two stages. The first stage 
regress X on Z: 𝑋 = 𝑍𝛿 + errors . The estimated coefficients  


1( ' ) 'Z Z Z Xδ −= , and the predicted value is estimated as: 





1( ' ) ' ZX Z Z Z Z Z X P Xδ −= = = .
 	 [4]

The second stage is to regress Y on the predicted values 
from the first stage:  errorsY Xβ= + . The estimated 2SLS 
coefficient can be computed as: 

  

1 1
2 ( ' ) ' ( ' ' ) ' 'SLS Z Z ZX X X Y P X P X P X Yβ − −= = ,	 [5]

Note that PZ is a symmetric and idempotent matrix that 
PZPZ' =PZPZ = PZ. Equation [5] can be written as:


1 1 1 1
2 ( ' ) ' [ ' ( ' ) ' ] ' ( ' ) 'SLS Z ZX P X X P Y X Z Z Z Z X X Z Z Z Z Yβ − − − −= =

In the artificial example, X = [age, percent] and Z = [stage, 
age]. Recall that confounders other than the IV should be 
included in the first stage model on treatment in addition 
to the IV, so the covariate age was included in the vector 
Z in the first stage model. The 2SLS estimation can be 
performed using the following R code:

> X<-cbind(1,percent,age)

> Z<-cbind(1,age,stage)

> beta2sls<-solve(t(X)%*%Z %*%

   solve(t(Z)%*%Z) %*%

      t(Z)%*%X)   %*%   

      t(X)%*%Z %*%

      solve(t(Z)%*%Z) %*%

      t(Z)%*%cost

> beta2sls

[,1]

188.337494356

percent −39.741849274

age 1.156065365

The solve() function is used to solve an equation a %*% 
x = b for x, where b can be either a vector or a matrix. The 
inverse of a matrix is to solve an equation with b = identity 
matrix. In the solve() function, b is taken to be an identity 
matrix by default (e.g., b argument is missing), which is 
the case in the above example. The result shows that the 
coefficient for percent is −39.7, which approximates the true 
effect size of −36.6. In case the number of instruments is equal 
to the number of endogenous predictors (e.g., an endogenous 
variable is correlated with both the independent variable in 
the model, and with the error term), direct IV estimation is 
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equivalent to the 2SLS method (the model is just identified).

Analysis with ivreg() function

IV analysis with continuous outcome can be easily 
performed using the ivreg() function in the AER package 
(version 1.2-5) (10). 

> library(ivpack)

> ivmod<-ivreg(cost~percent+

  age|stage+age,

  data=dt,x=T)

> sum.stats<-summary(ivmod,vcov = sandwich, 

        diagnostics = TRUE)

The ivreg() function fits IV regression by using 2SLS, 
which is equivalent to direct IV estimation when the 
number of instruments is equal to the number of predictors. 
The first argument specifies a formula with the regression 
relationship and the instruments. The formula has three 
parts in the form of y ~ x1 + x2 | z1 + z2 + z3, where y is 
the outcome variable, xs are endogenous variables and zs 
are instruments. Exogenous variables (e.g., a variable which 
is unaffected by other variables within an model) such as 
“age” in our example should be included in both sides of 
“|” symbol. The returned values can be extracted with the 
summary() function. Diagnostics of the model is returned 
by setting diagnostics = TRUE. 

> round(sum.stats$coefficients,3)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 188.337 4.918 38.294 0

percent −39.742 4.386 −9.061 0

age 1.156 0.055 21.043 0

The results show that the coefficient for the variable 
percent is −39.7, which is exactly the same with that 
obtained by manual calculation. 

> sum.stats$ diagnostics

df1 df2 Statistic P value

Weak instruments 1 997 8055.882818 0.000000000e+00

Wu-Hausman 1 996 1714.383775 9.676714954e-219

Sargan 0 NA NA NA

The diagnostic statistics of IV analysis are shown in the 

above output. The strength of the IV can be evaluated with 
the partial first-stage F statistic. An IV is considered as a 
weak IV if the partial F statistic is less than 10 in the first 
stage model, that is, its impact on the choice of treatment 
is weak. A weak IV could lead to a larger variance in the 
coefficient, and severe finite-sample bias (11). The partial 
first-stage F statistic of 8056 indicates that stage is a strong 
IV in the study. Durbin-Wu-Hausman test compares the 
ordinary least square (OLS) estimate versus the IV estimate of 
the treatment effect assuming homogeneous treatment effects, 
that is, the treatment effect is the same at different levels of 
covariates (12,13). The rejection of the null hypothesis can be 
due to unmeasured confounding or heterogeneous treatment 
effects. Alternatively, Guo et al. [2014] proposed a test with 
an IV for unmeasured confounding, which distinguishes 
from treatment effect heterogeneity (14). There was no 
evidence of unmeasured confounding in the EN feeding study 
(P<0.001 for Durbin-Wu-Hausman test). Sargan is a test 
of instrument exogeneity using overidentifying restrictions, 
called the J-statistic in Stock and Watson. In case when there 
are more instruments than endogenous variables, the model 
is overidentified, and we have some excess information. To 
have consistent treatment estimates, all the IV should be valid. 
The test examines if all the IVs are in fact exogenous, that is, 
uncorrelated with the model residuals. The rejection of the 
null hypothesis of this global test indicates that at least one IV 
is invalid (15). Sargan test works when there are more IVs than 
endogenous variables, thus it is not applicable in our example.

Logistic regression for binary outcome 

In case when the outcome variable is binary, IV analysis can 
be performed by fitting generalized model to the binary 
outcome. Probit and Logistic regression models are most 
commonly used (16). In this section, we will introduce the 
logistic regression model approach and probit model will 
be introduced in the next section. In analogy with the 2SLS 
method, two-stage predictor substitution (2SPS) method 
can be applied when the outcome is a binary variable (17). 
2SPS works by first regressing the treatment X on the IV Z 
and observed exogenous covariates Xe, obtaining predicted 
X  and then fit a logistic regression of Y on X  and Xe. R 
code for performing the procedure is as follows:

> s1<-lm(percent~stage+age,data = dt)

> phat<-predict(s1)

> s2.2sps<-glm(mort~phat+age,#2SPS
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    data=dt,

    family = "binomial")

The first line regresses variable “percent on stage” (Z) 
and “age” (exogenous covariate Xe). Then the predict 
function is employed to estimate the predicted percent ( X ). 
In the second stage, the binary variable “mort” is regressed 
on the predicted “percent” and “age” in a logistic model. 
By default, the logit link function is used for binomial 
distribution outcome. 

> round(summary(s2.2sps)$coefficients,4)

Estimate Std. Error z value Pr(>|z|)

(Intercept) −0.1831 0.2825 −0.6481 0.5169

phat −0.9726 0.2549 −3.8161 0.0001

age 0.0112 0.0033 3.4455 0.0006

The variable “phat” in the above table is the predicted 
value of “percent” by the model s1. The results show that the 
coefficient of percent is −0.97, which is consistent with the 
true value of −0.97. However, this method is biased due to 
the non-collapsibility of the logistic regression (18). 

Alternatively, the two-stage residual inclusion (2SRI) 
method can be used to estimate the true effect of an 
endogenous treatment. The first stage is the same as that 
in 2SPS. The second stage fits a logistic regression model 
for Y on Xe, X and the residual from the first stage. The 
estimated coefficient for X in second stage is the estimate of 
treatment effect. 

> s2.2sri<-glm(mort~percent+#2SRI

        age+residuals.lm(s1),

        data=dt,

        family = "binomial")

> round(summary(s2.2sri)$coefficients,4)

Estimate Std. Error z value Pr(>|z|)

(Intercept) −0.1865 0.2854 −0.6537 0.5133

percent −0.9915 0.2575 −3.8503 0.0001

age 0.0115 0.0033 3.4762 0.0005

residuals.lm(s1) −2.2468 0.7793 −2.8833 0.0039

The residual of the first stage linear regression is 
obtained using the residuals.lm() function. The results show 
that the effect of treatment deviates a little from the true 
effect (−0.99 vs. −0.97), but is much better than the naïve 
logistic regression model (−1.22). Similar to 2SPS, 2SRI has 

been shown to be asymptotically biased except when there 
is no unmeasured confounding (18). 

Control function approach for binary outcome

Blundell and Powell proposed a control function approach 
to deal with endogeneity (19). Similar to the 2SRI method, 
the first step of the control function approach regresses 
treatment X on the IV Z and observed exogenous covariates 
Xe, then collects the residuals v



. The second step estimates 
the probit model of interest, by including the first stage 
residuals v



 as an additional regressor. This method is 
termed the control function approach, as the inclusion of v



controls for the correlation between v and ε, where ε is the 
structural error term in the Y = Xβ + ε equation.

Average structural function (ASF) is the probability of 
response variable given values of regressors, in the absence 
of endogeneity. 

 

1

1( | , ) ( )
N

i
i

P y X v ASF X v
N

φ β ρ
=

= = +∑ 

Where X  is the mean of a vector of covariates including 
the treatment variable, 



β  is the estimated coefficient in the 
second stage, ρ  is the estimated coefficient for v



 in the 
second stage. iv



 is the residual obtained from the first stage 
for each patient (i). Φ() is a function that transforms the linear 
predictor into probability scale. Then, ASF is the average of 
predicted probability. In the example, the treatment variable 
is allowed to vary across a range so that its effect on the 
probability of response variable can be shown. Suppose the 
variable “sofa” is known, then the true ASF can be obtained.

> dat <- data.frame(cbind(mean(age),

      mean(sofa),                  

      seq(min(percent),

      max(percent),length.out=50)))

> names(dat) <- c("age","sofa","percent")

> lprd<- -1.1 + 0.01*dat$age - 

  dat$percent+0.1*dat$sofa

> dat$asf <- exp(lprd)/(1+exp(lprd))

The above code holds covariates at their mean values and 
the treatment variable “percent” is allowed to vary between 
maximum and minimum values. A total of 50 values were 
generated. The coefficients used for data generating are 
used here to compute linear predictor (lprd). The linear 
predictor is then transformed into probability with logit 
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transformation. Suppose the “sofa” is not known in the 
study, and we perform naïve probit regression model. The 
estimated ASF can be obtained with the following code. 

> r1 <- glm(mort~percent+age,

   binomial(link="probit"))

> dat1 <- data.frame(cbind(mean(age),

  seq(min(percent),

  max(percent),length.out=50)))

> names(dat1) <- c("age","percent")

> asf1 <- cbind(dat1$percent,

        predict(r1,dat1,

        type = "response"))

The above computation is the same as the estimation of 
the true ASF, except that the variable “sofa” is unknown. 
The “percent” varies in the same range. 

Then we proceed to estimate treatment effect with the 
two-step control function approach.

> s1<-lm(percent~stage+age,data = dt)

> v1 <- (residuals(s1))/

  sd(residuals(s1))

> r2 <- glm(mort~age+percent+v1,

binomial(link="probit"))

The two-stage control function approach is similar 
to 2SRI method except that the residual is scaled in the 
example. The following code is to estimate ASF:

> asf2 <- cbind(seq(min(percent),

      max(percent),length.out = 50),NA)

> for(i in 1:dim(asf2)[1]){

  dat2 <- data.frame(cbind(mean(age),asf2[i,1],v1))

  names(dat2) <- c("age","percent","v1")

  asf2[i,2] <- mean(predict(r2,dat2,

          type = "response"))

}

The for() function is used to loop through all 50 values of 
percent. Within each loop, there is 1,000 v1 values and thus 
1,000 predicted response values. We need to take the mean 
of these response values to obtain the mean probability for 
each given value of “percent”. 

> plotdat <- data.frame(rbind(cbind(dat$percent,

   dat$asf,"TRUE ASF"),

   cbind(dat$percent,asf1[,2],"PROBIT"),

   cbind(dat$percent,asf2[,2],"2 STEP PROBIT")))

> names(plotdat) <- c("percent","mort","Estimator")

> plotdat$percent <- as.numeric(as.character(plotdat$percent))

> plotdat$mort <- as.numeric(as.character(plotdat$mort))

> library(ggplot2)

> ggplot(plotdat, aes(x=percent, y=mort, 

  colour = Estimator, group=Estimator)) + 

  geom_line(size=0.8) + geom_point()+

  scale_x_continuous('percent') +

  scale_y_continuous('P(mort)') +

  theme_bw() +

  labs(title = "Average Structural Function Comparison")

Figure 2 plots the probability of mortality against 
“percent”. The result showed that while the two-step probit 
model is consistent with the true model, the naïve probit 
model is biased. Also note the three lines are straight, which 
is attributable to the range of percent is restricted between 0 
and 1. If the range of percent is extended, between −10 and 

Average structural function comparison

Estimator

2 STEP PROBIT 

TRUE ASF

Percent

PROBIT

P
 (m

or
t)

0.6

0.5

0.4

0.0 0.3 0.6 0.9

Figure 2 The probability of mortality against “percent” obtained 
with three methods. The result shows that while the two-step 
probit model is consistent with the true model, the naïve probit 
model is biased. ASF, average structural function.
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10, for example, the shape of these curves will be sigmoid. 

Local average response function (LARF)

Theoretical basis of the LARF method was developed by 
Abadie (20). The method involves two steps: the first step 
constructs pseudo-weights according to the probability of 
receiving the treatment instrument; and the second step 
involves the computation of LARF conditional on covariates 
and treatment by using pseudo-weights. Mathematical 
details of the LARF is not reviewed here and readers can 
consult the references (20,21). In this section, we focus on 
how to implement the LARF method to estimate treatment 
effect in the presence of endogeneity. The LARF package 
(version: 1.4) is employed for this purpose (21).  

> library(LARF)

> mod.cont<-larf(cost~age,treatment = dt$percent,

    instrument = dt$stage,data = dt)

> summary(mod.cont)$coefficients

Estimate SE P

Treatment −75.225913 3.70236834 4.54361e-77

(Intercept) 211.899912 4.54796896 1.59897e-252

age 1.111813 0.05371983 1.91816e-79

The result is not as expected. The value −75.2 is the 
estimate consistent with the naïve biased estimate. Since the 
LARF requires treatment variable to be binary, we simulate 
the sample in another way. 

> set.seed(123)

> trtstar<-4*stage-

  0.01*age-0.2*sofa+

  rnorm(n,0.6,0.01)

> dt$trt<-rbinom(n,1,pnorm(trtstar))

> mortstar <-0.2*sofa-

  4*dt$trt+

  0.01*age-rnorm(n,0.7,0.1)

> dt$mort.trt<-rbinom(n,1,pnorm(mortstar))    

> dt$cost.trt<-30*sofa-

  40*dt$trt+age+

  rnorm(n,100,2)

> lm.trtT<-lm(cost.trt~age+trt+sofa,dt)

> lm.trtB<-lm(cost.trt~age+trt,dt)

> tab.trt<-cbind(coef(lm.trtT),

c(coef(lm.trtB),NA))

> tab.trt

[,1] [,2]

(Intercept) 100.2314586 392.725127

age 0.9982993 1.234915

trt −40.0556142 −59.944512

sofa 29.9892341 NA

> mod.cont<-larf(cost.trt+trt~age|stage,

    data = dt)

> summary(mod.cont)$coefficients

Estimate SE P

Treatment −45.288400 6.1535971 3.850071e-13

(Intercept) 392.687192 11.2744649 1.553136e-174

age 1.077041 0.1577494 1.498830e-11

 
The use of LARF method appears to adjust some of 

the biases induced by ignoring a confounding factor sofa. 
The true effect is −40.5, the naïve biased estimate is −59.9, 
and the LARF result is −45.3. The result is reasonable for 
continuous outcome cost.trt. However, it is not the case for 
binary outcome mort.trt.

> glmT<-glm(mort.trt~trt+age+sofa,
    data=dt,
    family = 'binomial'(link = "probit"))
> glmB<-glm(mort.trt~trt+age,
      data=dt,
      family = 'binomial'(link = "probit"))
> tabmort<-cbind(coef(glmT),
               c(coef(glmB),NA))
> tabmort

[,1] [,2]
(Intercept) 0.160385237 1.42456752
trt −4.063437158 −3.82182534
age 0.006896202 0.00775861
sofa 0.146833455 NA

> mod.bi<-larf(mort.trt~age,treatment = dt$trt,

   instrument = dt$stage,data = dt)

> round(summary(mod.bi)$coefficients,4)

Estimate SE P MEM M E M -

SE

MEM-P

Treatment −3.7122 0.1630 0.0000 −0.9365 0.0116 0.0000
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(Intercept) 1.5689 0.2057 0.0000 0.4530 0.0436 0.0000

age 0.0045 0.0021 0.0381 0.0018 0.0009 0.0385

The results of LARF method seems to bias the effect size 
more than the naïve regression model. Possibly, estimation 
with one random dataset may cause bias and simulation with 
1000 or more times may be necessary in order to obtain the 
true estimates.

Discussion

In this article, we discussed some methods for IV analysis 
and showed R code for the performance of them. The 
manual analysis is complex and requires some knowledges 
on matrix manipulation. This is not suitable for research 
practice but can help to understand how IV analysis works. 
2SLS method is commonly used for IV analysis. It is a 
natural starting point of IV analysis, and the estimate is 
asymptotically unbiased. However, 2SLS estimate can be 
biased in binary cases or in the case of non-linear models. 
2SPS can be applied when the outcome is a binary variable. 
However, 2SPS in non-linear model does not always yield 
consistent exposure effects on the outcome, and parameter 
estimation process is more difficult than 2SLS. 2SPS may 
not provide causal OR under a logistic regression model. 
2SRI is able to yield consistent estimates for both linear 
and non-linear models. It performs better than 2SPS. 2SPS 
is suitable in the case of a binary exposure with a binary or 
count outcome. LARF is suitable for estimating treatment 
effect when both the treatment and its instrument are 
binary. 
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