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Abstract

HIV-1 subtype B virus is the most prevalent subtype in Puerto Rico (PR), accounting for about 90% of infection
in the island. Recently, other subtypes and circulating recombinant forms (CRFs), including F(12_BF), A
(01_BF), and CRF-39 BF-like, have been identified. The purpose of this study is to assess the distribution of
drug resistance mutations and subtypes in PR. A total of 846 nucleotide sequences from the period comprising
2013 through 2017 were obtained from our ‘‘HIV Genotyping’’ test file. Phylogenetic and molecular epide-
miology analyses were performed to evaluate the evolutionary dynamics and prevalence of drug resistance
mutations. According to our results, we detected a decrease in the prevalence of protease inhibitor, nucleoside
reverse transcriptase inhibitor (NRTI), and non-NRTI (NNRTI) resistance mutations over time. In addition, we
also detected recombinant forms and, for the first time, identified subtypes C, D, and CRF-24BG in PR. Recent
studies suggest that non-subtypes B are associated with a high risk of treatment failure and disease progression.
The constant monitoring of viral evolution and drug resistance mutation dynamics is important to establish
appropriate efforts for controlling viral expansion.
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Introduction

HIV-1 is a highly variable virus and drug-resistant
mutants readily become predominant under antiretroviral

therapies.1,2 HIV heterogeneity is a result of the virus rapid rate
of evolution, short generation time, and low fidelity of its re-
verse transcriptase.3–5 HIV-1 genetic variability is used to
classify the virus into four distinct groups: M, N, O and P; group
M (for major) has nine subtypes (A1, A2, A3, A4, A5, A6, B, C,
D, F1, F2, G, H, J, and K).6–14 Nevertheless, recombination is
the major determinant of viral genetic diversity, which occurs
during reverse transcription of co-packaged viral RNA.15,16 A
possible source of recombination is the co-infection between
two different strains.17–19 In addition, current molecular data
suggest that recombination can introduce or eliminate drug
resistance mutations, which could jeopardize antiretroviral
treatment (ART).20 The remarkable genetic variability of HIV-
1 influences its infectivity, progression, transmissibility and
patient’s response to antiretroviral treatment.21,22

HIV-1 epidemics in the Caribbean region seem to be me-
diated by clade B.23,24 Puerto Rico (PR), which is a com-

monwealth of the United States, has one of the highest
prevalence rates of HIV-1 in the United States and the Ca-
ribbean.25 In 2014, the prevalence of infection rate in PR was
twice that of the average rate of the combined states and
territories of the United States, ranking number 6 (567.3 per
100,000 population).26 In the case of males, the most prev-
alent route of transmission is through heterosexual and male-
to-male sexual contact. Among females, heterosexual contact
is the most frequent mode of HIV transmission.27 According
to Los Alamos database, HIV-1 B is the most common var-
iant and represents 99.7% of the virus subtypes in the infected
population.28 Recently, other subtypes and circulating re-
combinant forms (CRFs), including F(12-BF), A (01-BF),
and CRF-39 BF-like, have been identified in the island.29

Because of the high levels of migration to and immigration
from the continental United States, it is important for the
citizens of both areas to understand how the virus evolves.
The purpose of this study was to assess the distribution of
drug resistance mutations and subtypes in PR. Surveillance of
HIV-1 genetic diversity is necessary to initiate public health
efforts.30
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Materials and Methods

Ethics statement

The protocol was approved by the Institutional Review
Board of Ponce Medical School Foundation.

Data source and variables

We analyzed 846 nucleotide sequences obtained from our
secured ‘‘HIV Genotyping’’ test database, which contains de-
identified sequence data from the years 2013–2017. The se-
quences were obtained from samples collected in PR between
2013–2017 and were amplified and analyzed as described in
the subsequent sections. Descriptive statistics were used for
demographic parameters.

Viral RNA extraction, reverse transcription polymerase
chain reaction and sequencing

HIV-1 viral RNA was extracted using the QIAamp viral
RNA kit (QIAGEN), following the manufacturer’s instruc-
tions. Purified RNA was amplified by reverse transcription
polymerase chain reaction (RT-PCR) using Titan OneStep
RT-PCR kit (Roche). Briefly, first-round RT-PCR conditions
were as follows: reverse transcription at 50�C for 10 min,
inactivation at 94�C for 2 min, 35 cycles of 94�C for 10 s,
53�C for 30 s, and 68�C for 1 min; after the first 10 cycles, 5 s
were added to the elongation step of each cycle, with a final
extension at 68�C for 7 min. The first-round amplicon (2 lL)
was reamplified using the Roche Fast Start PCR Mastermix.
Second-round PCR conditions were as follows: 95�C for
15 min followed by 35 cycles of (94�C for 30 s, 53�C for 30 s,
and 72�C for 2 min) and a final elongation at 72�C for 10 min.
The sequences of the primers used for amplification and se-
quencing were as described in the World Health Organization
(WHO) manual for HIV drug resistance testing using dried
blood specimens. First-round primers: forward protease: 5¢-
TGAARGAITGYACTGARAGRCAGGCTAAT-3¢; reverse
protease: 5¢-AYCTIATYCCTGGTGTYTCATTRTT-3¢; for-
ward RT: 5¢-TTTYAGRGARCTYAATAARAGAACT
CA-3¢; reverse RT: 5¢-CCTCITTYTTGCATAYTTYCCTG
TT-3¢. Second-round primers: forward protease: 5¢-YTCA
GRCAGRCCRGARCCAACAGC-3¢; reverse protease: 5¢-
CTGGTGTYTCATTRTTKRTACTAGGT-3¢; forward RT:
5¢-TTYTGGGARGTYCARYTAGGRATACC-3¢; reverse RT:
5¢-GGYTCTTGRTAAATTTGRTATGTCCA-3¢. Confirmed
amplicons were directly sequenced using our WHO-
accredited HIV genotyping protocols. Sequences were de-
termined by using ABI 3730 XL. Sequences generated were
uploaded onto our secured ‘‘HIV Genotyping’’ test database.

Analysis of drug resistance mutations and viral
subtypes

Drug resistance mutations associated with protease in-
hibitors (PIs), nucleoside reverse transcriptase inhibitors
(NRTIs), and non-NRTIs (NNRTIs) were determined by
using Calibrated Population Resistance Tool (CPR) available
in Stanford HIV Database program (http://HIVDB.stanford.
edu).31 The sequences that covered part of the pol gene were
aligned using BioEdit (v.7.0.9). Viral subtypes were evalu-
ated using bootscanning methods available in REGA v3.0,
Context-based Modeling for Expeditious Typing (COMET)

HIV-1, and by the jumping profile hidden Markov model
(jpHMM) available at the jpHMM web server at GO-
BICS.32,33

Phylogenetic analysis

The phylogenetic tree was inferred using the maximum
likelihood (ML) method implemented by MEGA software
v6.34 We used bootstrap ML percentages to assess the ro-
bustness of each branch. Branches with bootstrap values above
.70 were considered robustly supported. A reference set of 87
sequences was downloaded from REGA v3 database. The
sequences were 1,030 bp long (nucleotides 2253–3452 relative
to the reference sequence HXB2) and covered pol gene.

Results

During the period of 2013 through 2017, data were collected
on 846 subjects. Demographic data show that the sample was
predominantly male (74%) and the mean ages for males and
females were 41 and 44 years, respectively (Table 1).

CPR available from the Stanford HIV Database program
was used to evaluate the percentage of expression of HIV-1
NRTI, NNRTI, and PI drug resistance mutations.31 We de-
tected a decrease in the prevalence of drug resistance muta-
tions over time. In a period of 5 years, from 2013 to 2017,
sequences with any PI, NRTI, and NNRTI SDRMs decreased
5%, 10.7%, and 6.6%, respectively (Fig. 1). However, each
year, more than 21% of sequences had one or more drug
resistance mutations (Fig. 1). Cross-class resistance, which
involves two or three classes of resistance mutations, was
observed in less than 10% of the samples. The drug resistance
mutations associated with NRTI and NNRTI were detected
more commonly than PI resistance mutations (Fig. 1). The
most frequently observed PI drug resistance mutations during
this period were L90 M and M46IL (*14% each), whereas
the most common NRTI and NNRTI drug resistance muta-
tions were M184VI (30%) and K103NS (50%), respectively
(Fig. 2).

Viral subtypes were assessed using the bootscanning
method available in REGA v3 and confirmed using the
COMET HIV-1 v2.2 and by jpHMM platforms.32 The ma-
jority of HIV infections are associated with subtype B
(n = 837; 98.9%). However, we detected other subtypes and
recombinant forms in the island as follows: recombinant B/D
(n = 1; 0.118%), F(12-BF) (n = 2; 0.236%), A(01-AE) (n = 2;
0.236%), A(A1) (n = 1; 0.118%), C (n = 1; 0.118%), D (n = 1;
0.118%), and CRF-24BG (n = 1; 0.118%) (Fig. 3). For the
cases in which we obtained discordant results between

Table 1. Demographic Characteristics

Parameter Sequences

Gender, n (%)
Male 627 (74.1)
Female 209 (24.7)
N/A 10 (1.2)

Age, mean
Male 41 (17–92)a

Female 44 (14–77)a

aAge data available in 94% (males) and 89% (females) of the
sequences, respectively.
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platforms, we relied on the results obtained with the COMET
platform for subtype assignment. Recent analyses suggest
that COMET HIV-1 v2.2 has shown superior specificity in
short sequences.32,35 Despite the fact that subtype and inter-
subtypes had been reported in PR [B/F, B/D, A1/B, A(A2),
A(01-AE), F(12-BF), and CRF39-BF] previously, this is the
first report of subtypes C, D, and CRF-24BG (Fig. 3).29,36 The
three cases were evaluated by using REGA v3, COMET HIV-1
v2.2, and by jpHMM available in jpHMM web server at

GOBICS, to confirm the results33,37 (Fig. 4). The breakpoint
interval in CRF-24BG obtained by using jpHMM is located
between the nucleotide positions 2498–2602 (based on HXB2
numbering). Subtype determination based on the pol se-
quences was visualized by using ML tree, generated using
MEGA v .6, under a General Time-Reversible nucleotide
substitution model (suggested by ModelTest) with a gamma-
distributed rate variation for each of these tree alignments and
a resampling process (100 bootstraps).38,39 We compared

FIG. 1. Prevalence of PI, NRTI, and NNRTI mutations over time. The prevalence of SDRM was evaluated using
Calibrate Population Resistance Tool (CRP), Stanford HIV Database program. NNRTI, non-nucleoside reverse transcriptase
inhibitor; PI, protease inhibitor; SDRM, surveillance drug resistance mutations.

FIG. 2. Frequency of spe-
cific HIV-1 drug resistance
mutations among sequences
analyzed during the period of
2013 through 2017. PI, NRTI,
and NNRTI drug resistance
mutations were evaluated using
Calibrate Population Re-
sistance Tool (CRP), Stanford
HIV Database program.
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samples processed in our site (n = 846) and reference se-
quences (n = 87, REGA v3 references samples). The three new
cases reported in the island clustered with related sequences
from around the world (Fig. 5).

Discussion

After a positive diagnosis of HIV-1 infection, three dif-
ferent classes of drugs (NRTI, NNRTI, and PI) are used in
different combination to treat patients. This treatment
markedly inhibited replication and reduced transmission
risk.40,41 However, high viral turnover, error rate of the re-
verse transcriptase enzyme, poor adherence to medications,
and selective pressure exerted by medications lead to genetic
variants with drug resistance mutations.42 The routine sur-
veillance of the genetic diversity of HIV-1 virus is necessary
to initiate public health efforts. The decline in PI, NRTI, and
NNRTI mutations in PR (2013–2017) is consistent with re-
cent studies that support that HIV-1 major drug resistance
mutations are declining in resource-rich settings.43,44 This
finding would reflect the improvement of treatment regimens,
leading to increases in treatment adherence.44–47 In addition,
prevention programs that provide health insurance, care, and
support to the HIV-1 infected patients have been established
effectively by local health departments and nongovernmental
organizations.

Our finding that M184VI and K103NS were the most
frequent reverse transcriptase mutations is in agreement with
results obtained by Sepulveda-Torres et al., who performed
an analysis on PR samples during the period of 2002–2011
with data generated using TRUGENE HIV-1 Genotyping Kit
and OpenGene DNA sequencing system.48 In their study,
M184VI and K103NS were also identified as the predomi-
nant drug resistance mutations. The M184VI resistance mu-
tation is an NRTI-resistance mutation associated with high
level of resistance to lamivudine and emtricitabine and cause
low level of resistance to abacavir and didanosine.49–51

However, treatment with lamivudine and emtricitabine in-
creases susceptibility to zidovudine, tenofovir, and stavudine
and is associated with reduced HIV-1 replication.52–58 The
K103N is an NNRTI resistance mutation associated with
reduced susceptibility to nevirapine and efavirenz; however,
K103S causes high-level resistance to nevirapine and inter-

mediate resistance to efavirenz.57,59–62 In addition, K103N
shows a viral fitness, which is the ability of the virus to adapt
and reproduce in the host, very close to levels comparable to
that of the wild-type virus.63 The highest PI mutations were
L90M and M46IL, which are associated with significant re-
ductions in fitness.63–66 The L90M is associated with re-
duction of susceptibility of PI medications, except tipranavir
and darunavir.67,68 The M46IL mutations occur alone or in
combination with others, which are associated with reduced
susceptibility to atazanavir, fosamprenavir, indinavir, lopi-
navir, and nelfinavir.69,70 The high prevalence of L90M and
M46IL mutations in our study is similar with the results
obtained in the INSIGHT Strategic Timing of ART trial.71

The finding that reverse transcriptase drug resistance muta-
tions were more commonly expressed than resistance muta-
tions to PI has been observed in other studies. The increase in
reverse transcriptase drug resistance mutations may be re-
lated to the elevated use of NNRTs/NNRTIs, and in the case
of NNRTI resistance mutations, to the increased transmission
in newly diagnosed patients, or to the interruption of a sup-
pressive NNRTI-based regimen.44,71–73 A limitation in this
study is unavailability of sequence data to assess integrase
strand inhibitor resistance mutations for all sequences under
the study period (2013–2017). Not all sequences analyzed in
this study included integrase gene sequences. Thus, addi-
tional studies are needed to evaluate the molecular evolution
of HIV-1 integrase at the interpatient level to assess the on-
going adaptation of the enzyme.

PR has one of the highest prevalence rates of HIV-1 in
United States, with male-to-male and heterosexual transmis-
sions as the major routes of the infection. While the HIV-1
epidemic affecting the Caribbean is largely mediated by B-
clade virus,74–76 only a small number of non-B-clade HIV-1
infections have thus far been identified in the region.29,36,76

Although a previous study demonstrated that HIV-1 isolates
from PR were closely associated with U.S. B-clade HIV-1
strains, the Caribbean B-clade HIV isolates are distinct from
the U.S. B-clade isolates.23,77 Cuba is an exception, with high
genetic diversity and circulation of several viral variants of
non B-clade.78 To gain information that may be useful for
developing strategies to prevent further spreading of HIV-1
epidemic in PR, it is important to focus our efforts on iden-
tifying the viruses circulating through the island.

FIG. 3. HIV-1 subtype assignment was
performed using the bootscanning method
within REGA v3 and confirmed using CO-
MET HIV-1 v2.2 and jpHMM. Results in-
dicate the percentage of a particular subtype
represented in the sample (n = 846 se-
quences). COMET, Context-based Modeling
for Expeditious Typing; jpHMM, jumping
profile hidden Markov model.
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FIG. 4. Detection of novel HIV-1 subtypes in Puerto Rico. (A) HIV-1 subtype C. (B) HIV-1 subtype D. (C) HIV-1 CRF-
24BG. (D) The three cases were evaluated by using REGA v3, COMET HIV-1 v2.2, and by jpHMM available in jpHMM web
server at GOBICS. The visualizations are the examples of the assignment by jpHMM. CRF, circulating recombinant form.
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Understanding of how the virus evolves is crucial due to high
levels of migration to and immigration from the continental
United States. In the Caribbean region, subtype C has been
previously reported in Cuba and Saint Lucia, while subtype D
and CRF-24BG have been reported only in Cuba.28,76,79,80

Our current report of the first cases of subtype C, D, and CRF-
24BG in PR highlights the importance of molecular moni-
toring of new subtypes spreading in the island.

The most relevant biological properties among each HIV
subtypes are their rate of adaptive evolution, neutral muta-
tions, tropism, and acquisition of antiretroviral resis-
tance.6,81–83 In addition, transmissibility of the virus and
patient’s response to antiretroviral treatment have been im-
plicated with the HIV-1 genetic subtype classification. Sub-
type C, which is the most prevalent subtype in the world
(nearly 50%), is very common in Southern Africa and India.7

This subtype has been associated with increased infectivity
during heterosexual intercourse and poorer ART outcomes,
and develops resistance to antiretroviral therapy faster than
other subtypes.84–87 Recent studies suggest that subtype D
may be associated with a faster virological rebound, CD4
decline, prevalence of CXCR4-using virus, and high rates of
disease progressions.88–91 The CRFs are increasing in the
past decade in various parts of the world.92,93 The CRF-24BG
was previously reported in Cuba and other recombinant BG
strains in Portugal, Spain, and Germany, which were asso-
ciated with intravenous drug users.94–96

The possible role of tourism in the spread of non B-clade
strains needs to be addressed. Recent studies have empha-
sized the important role of tourism in spreading the HIV-1
epidemic to and throughout the Caribbean.48,97–99 In addi-
tion, the migration of the HIV-1 at-risk population among the
different countries is undoubtedly related with the flow of the
epidemic.100–102 The establishment of local and regional
(Caribbean) programs to monitor how the virus evolves in our
countries can help us for developing strategies to prevent the
HIV-1 epidemic from spreading in the Caribbean region. An
example of unusual mutations in the Caribbean region is the
signature of threonine deletion (env gene) in Trinidad and
Tobago, which is predominantly associated with heterosex-
ual transmission.103 The circulation of HIV-1 non-B clade in
the island, which favors recombination, may have repercus-
sions in diagnostic and clinical management of HIV-infected
individuals.104–106 While epidemiological and clinical in-
formation about patients infected with these novel subtypes
were not available for this study, our current analysis provi-
des new data that will be useful for understanding how the
HIV-1 virus evolves in PR. This information can help us
develop strategies to prevent the impact of HIV-1 epidemic
spread in PR into a more complex epidemiological landscape.
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