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Abstract

We aim to diagnose scoliosis using a self contained ultrasound device that does not require 

significant training to operate. The device knows its angle relative to vertical using an embedded 

inertial measurement unit, and it estimates its angle relative to a vertebrae using a neural network 

analysis of its ultrasound images. The composition of those angles defines the angle of a vertebrae 

from vertical. The maximum difference between vertebrae angles collected from a scan of a spine 

yields the Cobb angle measure that is used to quantify scoliosis severity.

Index Terms

Point-of-Care Ultrasound; Computer Aided Diagnosis

1. INTRODUCTION

Scoliosis is a complex three-dimensional deformity characterized primarily by lateral 

curvature and rotational deviation of the spine. Different types of scoliosis exist, including 

congenital, neuromuscular, and syndromic; and the most common is idiopathic, which 

affects otherwise healthy children. The prevalence of idiopathic scoliosis ranges from 0.5% 

to 3% [1] with 2-4% of children ages 6 to 14 having pathologic spinal curves greater than 

20%. The most significant risk factor for curve progression is growth, with children entering 

their adolescent growth spurts at particular risk. While children and adults can live relatively 

symptom free with small scoliotic curves, as these curves increase in size, the risk of health 

problems increases concurrently. Surgery is typically recommended for curves over 50°. 

With curves over 75-80°, significant disability due to restrictive pulmonary and cardiac 

disease can occur [2]. ” Our system is targeting scoliosis screening the general population 

and quantitatively monitoring scoliosis progression in known cases. As such, our system is 

intended to be used in the field: at schools, in the offices of general practitioners, and in the 

offices of pediatric orthopedic surgeons.
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1.1. Screening

Many states in the USA mandate school screening for scoliosis. In general, a scoliometer is 

used to assess the rotational deformity of a child’s back. Children with scoliometer 

measurements greater than 5° are referred for further evaluation. X-ray imaging is then 

typically used. Unfortunately, a scoliometer is quite insensitive and non-specific. It has been 

reported that the positive predictive value of a scoliometer reading of 5° to detect real 

scoliosis is only 4% [3]. This results in a large number of unnecessary referrals to physicians 

and unneeded X-rays of developing children.

1.2. Monitoring

The most common method for monitoring scoliosis is to measure the spinal curvature using 

Cobb’s method [4] from posteroanterior (PA) X-Ray images. A minimum of 10° of Cobb 

angle is needed to differentiate scoliosis. However, radiographs are costly and expose 

children to potentially harmful ionizing radiation. It is estimates that children with scoliosis 

progression undergo three to seven x-ray images per year, and such radiation exposure 

increases the risk of leukemia, lung cancer, and breast cancer. [5]

There has been extensive research into replacing scoliometers and X-Ray imaging with 

computer-assisted ultrasound imaging systems to reduce costs, increase reliability, and 

eliminate the need for harmful radiation [6, 7, 8]. However, most of the ultrasound research 

systems (1) require the use of external tracking equipment, (2) rely on the operator or an 

advanced algorithm to precisely locate key landmarks in the ultrasound data, and/or (3) do 

not provide real-time guidance to the operator, so the operators must still be trained to 

capture usable scans. Great progress has been made to tackle each of these challenges, and 

promising results are being generated ([7, 8] have reported approximately 2° difference 

compared to radiographs), but we have chosen to explore a self-contained ultrasound-based 

solution that eliminates the need for external tracking, landmark identification, or extensive 

operator training.

Our system is based on ultrasound imaging, but an ultrasound image is never presented to 

the operator. The operator must be trained regarding how to apply sufficient acoustic gel and 

how to move the device so as to follow the spine of a child, but the embedded image analysis 

algorithms and the embedded graphic display provide simple feedback to the operator to 

ensure that sufficient acoustic gel has been used and that the probe remains over the spine as 

it is moved. After a sweep has been completed, the device displays the estimated Cobb 

angle.

The methods section describes the image analysis and deep learning methods employed by 

our device. The experiment section presents results using a spine phantom then indicate that 

our device can produce results that are more accurate than a scoliometer and nearly as 

accurate as X-ray imaging. This paper concludes with a discussion of future steps for device 

research, development, and validation.
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2. METHODS

Instead of requiring challenging intermediate steps (such as externally tracking an 

ultrasound probe using optical technologies, reconstructing an ultrasound volume from 

tracked 2D ultrasound images, determining the coordinates of key landmarks, or registering 

a volume to an atlas), our system directly estimates the angle between the spine and the 

ultrasound probe using a neural network. In combination with an internal inertial 

measurement unit (IMU) to report the angle between the ultrasound probe and vertical, our 

self-contained, hand-held unit bypasses the traditional intermediate steps and focuses on the 

measures to be made. The Cobb Angle is defined by the extrema of the estimated angles.

2.1. Data

The input training data comes from ultrasound image sequences taken of a model spine 

immersed in water. The ideal output for that input training data is the orientation of the 

ultrasound probe along each sequence, as measured using an optical tracker. All training 

data is accomplished with the model spine straightened, which is sufficient since the neural 

network only needs to estimate the angle between the ultrasound probe and the underlying 

vertebrae. The probe is swept up and down the spine while simultaneously being rotated 

along the coronal axis, to obtain 170,000 training images. The ultrasound data is passed to 

the neural network as B-mode images that have been scaled down to 100×100, and 

augmented by flipping across the vertical midline.

We are currently working to gather real world data, with IRB approval. For this paper, we 

attempted to identify over-fitting by capturing the test data in a separate ultrasound scanning 

session from the training data, instead of randomly sampling the testing data.

2.2. Network Architecture

Our system’s neural network consists of two parts. A convolutional network, modeled after 

VGG, processes each frame and is trained to predict a vertebral angle given a single frame. 

Then, this network has its last layer removed, and the exposed layer is used to represent each 

frame as a flat vector. Finally, a second fully connected network processes a sliding window 

of 41 such vectorized frames simultaneously to estimate the angle at the center of the 

window. Both networks are trained using Adam optimization.

Once the network has been trained, the vertebrae-to-probe angle given by the neural network 

is subtracted from the probe-to-vertical angle given by the accelerometer embedded in the 

ultrasound probe. The resulting vertebrae-to-vertical angle sequence is then smoothed with a 

median filter, and the difference between the maximum and minimum estimated vertebrae-

to-vertical angles is the computed Cobb angle.

3. EXPERIMENT AND RESULTS

As a preliminary validation, we tested our networks ability to deduce the angle of the 

ultrasound probe on images of a straight spine acquired while rotating the ultrasound probe 

as it moved down the spine. This testing data was captured after (i.e., completely separate 

from) the training data and consisted of 10,000 images. Sample results on this data are 
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shown in Fig. 2. For the smoothed data, the mean error is 2.0 degrees, the standard deviation 

is 3.7 degrees, and the 95th percentile error is 5.8 degrees.

4. AUTOMATED OPERATOR GUIDANCE

We anticipate that in order to function with no operator training, our system will need to 

guide the operator to keep the spinal column visible in the ultrasound image. To that end, we 

also trained a neural network to predict the lateral position of the probe with respect to the 

spine from the image data. This network used the same architecture as was used to predict 

the vertebral angles from a single image frame. In inference mode this network runs faster 

than real time and is sufficiently accurate to provide feedback to the operator such as ”Move 

Right,” ”Move Left,” or ”You are Centered.” We intend to display this guidance as arrows 

on the screen of the final product. Figure 3 shows the correlation between the network’s 

estimate of probe offset from center relative to the probes actual offset as measured via an 

external tracker. For the majority of the scans, the neural network estimates would correctly 

guide the user to keep the ultrasound probe within the 2.5cm margin needed to keep the 

spine fully within the ultrasound image’s field of view. The system also correctly identifies 

when the spine has move out of the required range for the majority of conditions.

5. DISCUSSION AND FUTURE WORK

The system design provides a self-contained ultrasound device that can estimate Cobb angle 

to screen and monitor scoliosis. One neural network is able to estimate the angle between an 

ultrasound probe and a vertebral body within 2°, while another neural network provides 

feedback to the user to keep the vertebral bodies centered within the ultrasound field of view.

For future work, we intend to include information from the guidance network when deciding 

which frames to take into account. Currently, testing frames where it is not possible to 

deduce the correct angle due to operator error count against our program. The finished 

system must be able to discard frames that it cannot interpret, instead of making a bad guess. 

If too many frames are unusable, the system should demand a re-sweep and refuse to 

estimate a Cobb Angle.

We also anticipate that a more structured neural network architecture could improve 

accuracy. In particular, it is unusual that post processing with a median filter improves 

results, given that a sufficiently complex network should be able to learn to smooth its 

output.

Finally, we anticipate that better training data could be obtained by annotating the position 

and angle of each vertebra in the phantom individually, instead of straightening a spine and 

then defining the global rotation of each vertebra to be 0. Any bend in the training spine 

becomes error that the network can never learn. Individual annotation would also allow us to 

include bent spines in the training data.

We aim to operate this software on our planned hand held, self contained ultrasound device. 

This device, which runs off of an Intel compute stick and windows 10, will enable an 

extremely simple and fast workflow, where the operator sweeps the device over the patients 
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back, following the onscreen arrows to keep centered on the spine, and then reads the cobb 

angle off of the screen. Because the device runs the same windows version as the computers 

we are currently running our research on, we do not anticipate any difficulty in porting to the 

new platform.
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Fig. 1. 
A sample frame, as passed to the network
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Fig. 2. 
Graph of estimated and actual ultrasound probe angle as the probe is moved and rotated 

along a spine, for testing data. Top graph: raw network predictions. Bottom graph: median 

filter applied to the predictions. The neural network estimates this angle using only the 

image data. At transitions between vertebrae and at time step 4300, the angle measures 

temporarily degrade, but otherwise, the estimated and actual angles are typically within +/

− 2°. The full system applies median filtering to these data to eliminate local irregularities.
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Fig. 3. 
A neural network infers whether the operator needs to move the probe to the left or right to 

stay centered on the spine
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Table 1

Convolutional Network

Type # Filters Stride Activation Rate

Convolution 32 3×3 ReLU

Max Pooling 2×2

Convolution 64 3×3 ReLU

Max Pooling 2×2

Convolution 64 3×3 ReLU

Max Pooling 2×2

Convolution 128 3×3 ReLU

Convolution 256 3×3 ReLU

Fully Connected 512 ReLU

Dropout 0.5

Fully Connected 512 ReLU

Dropout 0.5

Fully Connected 1 tanh
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Table 2

Sliding Window Network

Type # Filters Activation

Fully Connected 1024 ReLU

Fully Connected 1024 ReLU

Fully Connected 1 tanh
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