

# Antihypertensive efficacy of angiotensin receptor blockers as monotherapy as evaluated by ambulatory blood pressure monitoring: a meta-analysis

# Harikrishna Makani<sup>1</sup>, Sripal Bangalore<sup>2</sup>, Azhar Supariwala<sup>1</sup>, Jorge Romero<sup>3</sup>, Edgar Argulian<sup>1</sup>, and Franz H. Messerli<sup>1\*</sup>

<sup>1</sup>Division of Cardiology, St Luke's Roosevelt Hospital, Columbia University College of Physicians and Surgeons, 1000, 10th Avenue, Suite 3B-30, New York, NY 10019, USA; <sup>2</sup>New York University School of Medicine, New York, NY, USA; and <sup>3</sup>Albert Einstein College of Medicine/Montefiore Medical Center, New York, NY, USA

Received 16 February 2013; revised 19 June 2013; accepted 30 July 2013; online publish-ahead-of-print 21 August 2013

| Aims                   | Angiotensin receptor blockers (ARBs) are available in different dosages and it is common clinical practice to uptitrate if blood pressure goal is not achieved with the initial dose. Data on the incremental antihypertensive efficacy with uptitration are scarce. It is also unclear if antihypertensive efficacy of losartan is comparable with other ARBs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methods<br>and results | We systematically reviewed PubMed/EMBASE/Cochrane databases for all randomized clinical trials until December 2012 reporting 24 h ambulatory blood pressure (ABP) for most commonly available ARBs in patients with hypertension. Reduction in ABP with ARBs was evaluated at 25% of the maximum (max) dose, 50% of the max dose, and at the max dose. Comparison was made between 24 h BP-lowering effect of losartan 50 and 100 mg and other ARBs at 50% max dose and the max dose, respectively. Sixty-two studies enrolling 15 289 patients (mean age 56 years; 60% men) with a mean duration of 10 weeks were included in the analysis. Overall, the dose–response curve with ARBs was shallow with decrease of 10.3/6.7 (systolic/diastolic), 11.7/7.6, and 13.0/8.3 mmHg with 25% max dose, 50% max dose, and with the max dose of ARBs, respectively. Losartan in the dose of 50 mg lowered ABP less well than other ARBs at 50% max dose by 2.5 mmHg systolic ( $P < 0.0001$ ) and 1.8 mmHg diastolic ( $P = 0.0003$ ). Losartan 100 mg lowered ABP less well than other ARBs at max dose by 3.9 mm Hg systolic ( $P = 0.0002$ ) and 2.2 mmHg diastolic ( $P = 0.002$ ). |
| Conclusion             | In this comprehensive analysis of the antihypertensive efficacy of ARBs by 24 h ABP, we observed a shallow dose–<br>response curve, and uptitration marginally enhanced the antihypertensive efficacy. Blood pressure reduction with<br>losartan at starting dose and at max dose was consistently inferior to the other ARBs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Keywords               | Angiotensin receptor blockers • Ambulatory blood pressure monitoring • Hypertension • Meta-analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Introduction

Hypertension is an asymptomatic condition and should remain so when treated. Angiotensin receptor blockers (ARBs) are known to provide a good blood pressure reduction with little, if any, adverse effects.<sup>1</sup> The magnitude and duration of antihypertensive response of various ARBs is thought to vary due to differences in pharmacokinetic and pharmacodynamic properties.<sup>2</sup> Conflicting results have been reported in several reviews and meta-analyses regarding the antihypertensive

efficacy of various ARBs; some suggesting no difference within the class,<sup>1,3</sup> whereas others suggesting losartan being inferior.<sup>4,5</sup> Twenty-four hour ambulatory blood pressure (ABP) monitoring is considered as the most objective and accurate tool to assess antihypertensive efficacy and is shown to predict cardiovascular events even after adjusting for office blood pressure measurement.<sup>6</sup> Our objective was two-fold: (i) to evaluate the antihypertensive efficacy of ARBs as assessed by 24 h ABP at 25% maximum (max), 50% max, and max dose, and (ii) to evaluate ABP reduction with losartan compared with other ARBs.

<sup>\*</sup> Corresponding author. Tel: +1 212 523 7373, Email: messerli.f@gmail.com

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2013. For permissions please email: journals.permissions@oup.com

#### **Search strategy**

A systematic search was performed in PubMed, EMBASE, and Cochrane Central Register of Clinical Trials (Cochrane Library Issue 6, June 2012) using the key terms 'Angiotensin Receptor Blockers', 'ARBs', and names of all individual ARBs. We limited our search to randomized controlled trials in human subjects and in peer-reviewed journals until December 2012. No language restriction was applied. The reference lists of identified articles and bibliographies of original articles were also reviewed. Trials in the abstract form without a manuscript published were excluded for this analysis. Authors of the individual trials were contacted in case of inadequate data.

#### Selection criteria

To be included in the analysis, a trial had to fulfil the following criteria: (i) randomized clinical trials that assessed the antihypertensive efficacy by 24 h ABP comparing ARB with other antihypertensive drug classes

# Table IType of angiotensin receptor blockers with<br/>doses at 25% maximum, 50% maximum, and at<br/>maximum dose

| Type of<br>ARB | 25% max dose<br>(mg) | 50% max dose<br>(mg) | Max dose<br>(mg) |
|----------------|----------------------|----------------------|------------------|
| Azilsartan     | _                    | 40                   | 80               |
| Candesartan    | 8                    | 16                   | 32               |
| Irbesartan     | 75                   | 150                  | 300              |
| Losartan       | 25                   | 50                   | 100              |
| Olmesartan     | 5-10                 | 20                   | 40               |
| Telmisartan    | 20                   | 40                   | 80               |
| Valsartan      | 80                   | 160                  | 320              |

ARB, angiotensin receptor blocker; max, maximum.

#### Table 2 Baseline characteristics of the included trials

| Trial, year                                         | Number of patients | Men (%) | Age<br>(years) | Follow-up<br>(weeks) | Comparison group                                                                            |
|-----------------------------------------------------|--------------------|---------|----------------|----------------------|---------------------------------------------------------------------------------------------|
| Andersen et al., <sup>14</sup> 2000                 | 16                 | 63      | 42             | 8                    | Losartan 50 mg vs. losartan 100 mg vs. placebo                                              |
| Baguet et al., <sup>15</sup> 2006                   | 256                | 60      | 54             | 6                    | Candesartan 8 mg vs. losartan 50 mg vs. placebo                                             |
| Bakris et al., <sup>16</sup> 2001                   | 406                | 56      | 53             | 8                    | Losartan 100 mg vs. verapamil 360 mg vs. enalapril<br>20 mg vs. placebo                     |
| Brunner et al., <sup>17</sup> 2003                  | 635                | 57      | 52             | 8                    | Candesartan 8 mg vs. olmesartan 20 mg                                                       |
| Byyny, <sup>18</sup> 1996                           | 122                | 68      | 53             | 4                    | Losartan 50 mg vs. losartan 50 mg b.i.d. vs. losartan<br>100 mg vs. placebo                 |
| Chanudet and De<br>Champvallins, <sup>19</sup> 2001 | 277                | 51      | 59             | 12                   | Losartan 50 mg vs. perindopril 2 mg/indapamide 0.625 mg                                     |
| Chrysant et al., <sup>20</sup> 2003                 | 440                | 63      | 52             | 8                    | Olmesartan 20 mg vs. amlodipine 5 mg vs. placebo                                            |
| Chung et al., <sup>21</sup> 2000                    | 263                | 53      | 57             | 12                   | Losartan 50 mg vs. mibefradil 50 mg<br>Losartan 100 mg vs. mibefradil 100 mg                |
| Crowe et al., <sup>22</sup> 2003                    | 17                 | NR      | NR             | 8                    | Losartan 50 mg vs. losartan 100 mg                                                          |
| de Champlain et al., <sup>23</sup> 2007             | 47                 | 81      | 57             | 8                    | Valsartan 160 mg vs. amlodipine 10 mg                                                       |
| Destro et al., <sup>24</sup> 2005                   | 107                | 56      | NR             | 8                    | Olmesartan 20 mg vs. valsartan 160 mg                                                       |
| Ding et al., <sup>25</sup> 2004                     | 61                 | 77      | 61             | 6                    | Losartan 50 mg vs. telmisartan 40 mg                                                        |
| Duprez et al., <sup>26</sup> 2011                   | 108                | 54      | 78             | 4                    | Valsartan 160 mg vs. HCTZ 12.5 m vs.<br>valsartan/HCTZ 160/12.5                             |
| Düsing et al., <sup>27</sup> 2012                   | 822                | 53      | 56             | 12                   | Telmisartan 80 mg vs. aliskiren 300 mg                                                      |
| Fagard et al., <sup>28</sup> 2001                   | 9                  | NR      | 46             | 6                    | Losartan 50 mg vs. enalapril 20 mg vs. placebo                                              |
| Fogari et al., <sup>29</sup> 2006                   | 130                | 55      | 60             | 4                    | Olmesartan 20 mg vs. valsartan 160 mg                                                       |
| Fogari e <i>t al</i> ., <sup>30</sup> 2008          | 126                | 55      | 60             | 8                    | Olmesartan 20 mg vs. telmisartan 80 mg                                                      |
| Galzerano et al., <sup>31</sup> 2004                | 69                 | 55      | 54             | 52                   | Telmisartan 80 mg vs. HCTZ 25 mg                                                            |
| Galzerano et al., <sup>32</sup> 2005                | 82                 | 57      | 60             | 44                   | Telmisartan 80 mg vs. carvedilol 25 mg                                                      |
| Guasti et al., <sup>33</sup> 2002                   | 22                 | NR      | NR             | 8                    | Losartan 50 mg vs. enalapril 20 mg                                                          |
| Hermida et al., <sup>34</sup> 2005                  | 100                | 34      | 68             | 12                   | Valsartan 160 mg a.m. vs. valsartan 160 mg p.m.                                             |
| Hermida et al., <sup>35</sup> 2007                  | 215                | 53      | 46.4           | 12                   | Valsartan 80 mg a.m. vs. valsartan 80 mg p.m.                                               |
| Hermida et al., <sup>36</sup> 2009                  | 144                | 33      | 46.6           | 12                   | Olmesartan 20 mg a.m. vs. olmesartan 20 mg p.m.                                             |
| Kawano et al., <sup>37</sup> 2008                   | 79                 | 67      | 58.9           | 6                    | Irbesartan 100 mg vs. placebo                                                               |
| Kraiczi et al., <sup>38</sup> 2000                  | 40                 | 100     | 57             | 6                    | Losartan 50 mg vs. atenolol 50 mg vs. HCTZ 25 mg vs.<br>amlodipine 5 mg vs. enalapril 20 mg |

1733

### Table 2 Continued

| Trial, year                                            | Number of patients | Men (%) | Age<br>(years) | Follow-up<br>(weeks) | Comparison group                                                                                       |
|--------------------------------------------------------|--------------------|---------|----------------|----------------------|--------------------------------------------------------------------------------------------------------|
| Kuschnir et al., <sup>39</sup> 2004                    | 299                | 45      | 56             | 8                    | Losartan 50 mg vs. nifedipine 20 mg                                                                    |
| Lacourciere and Asmar, <sup>40</sup><br>1999           | 268                | 62      | 55             | 4                    | Losartan 50–100 mg vs. candesartan 8–16 mg vs. placebo                                                 |
| Lacourciere et al., <sup>41</sup> 2006                 | 812                | 67      | 53             | 14                   | Telmisartan 40–80 mg vs. ramipril 2.5–10 mg                                                            |
| Littlejohn et al., <sup>42</sup> 2000                  | 426                | 68      | 53             | 8                    | Telmisartan 80 mg vs. valsartan 80 mg                                                                  |
| London et al., <sup>43</sup> 2006                      | 576                | 49      | 59             | 12                   | Candesartan 8 mg vs. amlodipine 5 mg vs. indapamide 1.5 mg                                             |
| Mallion et al., <sup>44</sup> 1999                     | 223                | 67      | 56             | 6                    | Losartan 50 mg vs. telmisartan 40–80 mg vs. placebo                                                    |
| Matsumoto et al., <sup>45</sup> 2009                   | 35                 | 54      | 61             | 4                    | Olmesartan 10 mg vs. amlodipine 2.5 mg                                                                 |
| Meier et al., <sup>46</sup> 2011                       | 20                 | 50      | 53             | 20                   | Losartan 100 mg vs. losartan 200 mg vs.<br>losartan/lisinopril 100/20                                  |
| Morgan and Anderson, <sup>47</sup> 2002                | 31                 | 90      | 77             | 4                    | Candesartan 16 mg vs. felodipine 5 mg vs. placebo                                                      |
| Morgan et al., <sup>48</sup> 2004                      | 23                 | 96      | 75             | 4                    | Candesartan 16–32 mg vs. lisinopril 20–40 mg vs. placebo                                               |
| Munakata et al., <sup>49</sup> 2004                    | 41                 | 49      | 54             | 12                   | Valsartan 80 mg vs. nifedipine 20 mg                                                                   |
| Neutel et al., <sup>50</sup> 1997                      | 216                | 83      | 55             | 8                    | Valsartan 20 mg vs. valsartan 80 mg vs. valsartan 160 mg vs.<br>valsartan 320 mg vs. placebo           |
| Neutel et al., <sup>51</sup> 2002                      | 334                | 69      | 54             | 8                    | Olmesartan 5 mg vs. 2.5 mg b.i.d. vs. 20 mg vs.<br>10 mg b.i.d. vs. 40 mg b.i.d. vs. 80 mg vs. placebo |
| Neutel et al., <sup>52</sup> 2003                      | 714                | 57      | 55             | 6                    | Telmisartan 80 mg vs. losartan 50 mg/HCTZ 12.5 mg                                                      |
| Ogihara et al., <sup>53</sup> 2009                     | 862                | 68      | 57             | 12                   | Olmesartan 20 mg vs. azelnidipine 16 mg vs.<br>olmesartan + azelnidipine 10–20/8–16                    |
| Palatini et al., <sup>54</sup> 2010                    | 654                | 61      | 54             | 9                    | Irbesartan 300 mg vs. aliskiren 300 mg vs. ramipril 10 mg                                              |
| Parati et al., <sup>55</sup> 2010                      | 68                 | 60      | 54             | 12                   | Losartan 100 mg vs. barnidipine 10 mg/losartan 50 mg                                                   |
| Pechere-Bertschi et al., <sup>56</sup> 1998            | 20                 | 65      | 54             | 12                   | Irbesartan 100 mg vs. enalapril 20 mg                                                                  |
| Podzolkov et al., <sup>57</sup> 2003                   | 40                 | 68      | 51             | 8                    | Losartan 50 mg vs. losartan 50 mg/HCTZ 12.5 mg                                                         |
| Poirier et al., <sup>58</sup> 2004                     | 57                 | 70      | 59             | 8                    | Telmisartan 80 mg vs. amlodipine 10 mg vs. ramipril 10 mg                                              |
| Povedano and Garcia De La<br>Villa, <sup>59</sup> 2009 | 38                 | 42      | 54             | 16                   | Olmesartan 40 mg a.m. vs. olmesartan 40 mg p.m.                                                        |
| Ragot et <i>a</i> l., <sup>60</sup> 2000               | 229                | 56      | 56             | 6                    | Losartan 50 mg vs. trandolapril 2 mg                                                                   |
| Rajagopalan et al., <sup>61</sup> 2007                 | 404                | 53      | 64             | 12                   | Valsartan 160 mg vs. valsartan 160 mg/simvastatin 20 mg vs.<br>valsartan 160 mg/simvastatin 80 mg      |
| Sasso et al., <sup>62</sup> 2002                       | 64                 | NR      | 49             | 8                    | Irbesartan 150 mg b.i.d. vs. placebo                                                                   |
| Smith et al., <sup>63</sup> 2005                       | 588                | 61      | 52             | 8                    | Irbesartan 150 mg vs. olmesartan 20 mg vs. losartan 50 mg vs.<br>valsartan 80 mg                       |
| Stergiou et al., <sup>64</sup> 2002                    | 33                 | 49      | 47             | 10                   | Losartan 50 mg vs. lisinopril 20 mg                                                                    |
| Stergiou et al., <sup>65</sup> 2003                    | 36                 | 78      | 50             | 10                   | Telmisartan 80 mg vs. lisinopril 20 mg                                                                 |
| Suonsyrja et al., <sup>66</sup> 2008                   | 208                | 100     | 51             | 4                    | Losartan 50 mg vs. bisoprolol 5 mg vs. amlodipine 5 mg vs.<br>HCTZ 25 mg                               |
| Tedesco et al., <sup>67</sup> 1998                     | 77                 | 53      | 55             | 95                   | Losartan 50 mg vs. HCTZ 25 mg                                                                          |
| Ubaid-Girioli et al., <sup>68</sup> 2007               | 63                 | 46      | 49.3           | 12                   | Irbesartan 150 mg vs. quinapril 20 mg vs. HCTZ 25 mg                                                   |
| Weber et al., <sup>69</sup> 1995                       | 122                | 68      | 53             | 4                    | Losartan 50 mg vs. 100 mg vs. 50 mg b.i.d. vs. placebo                                                 |
| Weir et al., <sup>70</sup> 2011                        | 246                | 50      | 52             | 8                    | Olmesartan 40 mg vs. losartan 100 mg                                                                   |
| White <i>et al.</i> , <sup>71</sup> 2001               | 200                | 69      | 54             | 8                    | Eprosartan 600 mg vs. eprosartan 1200 mg vs. placebo                                                   |
| White et al., <sup>72</sup> 2004                       | 490                | 76      | 55             | 8                    | Telmisartan 80 mg vs. valsartan 160 mg                                                                 |
| White et al., <sup>73</sup> 2011                       | 1291               | 54      | 56             | 6                    | Azilsartan 40 mg vs. olmesartan 40 mg vs. azilsartan<br>80 mg vs. valsartan 320 mg vs. placebo         |
| Williams et al., <sup>74</sup> 2006                    | 801                | 60      | 54             | 14                   | Telmisartan 80 mg vs. ramipril 10 mg                                                                   |
| Yasuda et al., <sup>75</sup> 2005                      | 87                 | 41      | 62             | 12                   | Losartan 100 mg vs. amlodipine 10 mg                                                                   |

All studies had patient population with hypertension. b.i.d., twice daily; HCTZ, hydrochlorothiazide; mg, milligrams; NR, not reported.



(including other ARBs) or with placebo, (ii) patient population with hypertension, (iii) ARB used as monotherapy, (iv) no uptitration of ARB dose throughout the trial, and (v) trial duration of at least 4 weeks. Studies were excluded if ARB doses were uptitrated or if additional antihypertensive drugs were added to control the blood pressure. None of the included studies had patients with severe hypertension. Studies with tasosartan were excluded, since it was never marketed.

#### **Data extraction**

Two authors (H.M. and J.R.) searched the data independently and in duplicate. Disagreements were resolved by consensus. We extracted characteristics of each trial, duration of intervention and methods, baseline demographics, type of ARB used with the dose, 24 h ABP at baseline and after the intervention, for our analysis.

#### **Quality assessment**

The criteria used for quality assessment were sequence generation of allocation, allocation concealment, masking of participants, personnel, and outcome assessors, incomplete outcome data, selective outcome reporting, and other sources of bias, as recommended by the Cochrane Collaboration.<sup>7</sup>

#### **Statistical analysis**

The statistical analysis was done in line with recommendations from the Cochrane Collaboration and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines,<sup>8</sup> using Review Manager (RevMan), version 5.1.7, the Cochrane Collaboration, 2012. Heterogeneity was assessed using the  $l^2$  statistics.  $l^2$  is the proportion of total variation observed between the trials attributable to differences between trials rather than sampling error (chance) and we considered



**Figure 2** Antihypertensive efficacy of angiotensin receptor blockers at 25% maximum, 50% maximum, and the maximum dose. Error bars represent 95% confidence intervals. ABP, ambulatory blood pressure; *n*, number of patients; max, maximum.

 $l^2 < 25\%$  as low and  $l^2 > 75\%$  as high. Random-effects model of DerSimonian and Laird<sup>9</sup> was used to calculate the effect sizes if  $l^2 > 25\%$ . Analysis was performed on intention-to-treat basis. Data from changes in baseline blood pressure were combined using weighted mean difference method. For trials that did not provide complete information about variance for net change in BP, the information was obtained from confidence intervals (Cls), *P*-value, or from *t*-statistics. Variance was estimated from pre-test–post-test (parallel group and factorial design) and crossover designs as suggested by Follmann et al.<sup>10</sup> All the studies were stratified based on 25% max dose, 50% max dose, and the max dose of ARB as defined in hypertension guide-lines of the Joint National Committee<sup>11</sup> (*Table 1*). Separate head-to head comparison was performed between losartan and other ARBs when data were available. Publication bias was estimated visually by funnel plots, and/or using Begg's test and the weighted regression test

of Egger *et al.*<sup>12</sup> Sensitivity analyses was performed for BP reduction at 50% max and max dose of ARBs based on the quality of study, mean baseline blood pressure (above vs. below mean BP), number of patients in the study ( $\leq$ 100 vs. >100), and study duration ( $\leq$ 8 vs. >8 weeks). We estimated difference between subgroups according to the tests of interaction.<sup>13</sup>

## Results

## **Study characteristics**

We identified 2684 articles, out of which 146 abstracts were retrieved and reviewed for possible inclusion. Sixty-two

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pre-t                  | reatme                      | ent   | Post- | treatm | ent   |        | Mean difference      | Mean difference                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|-------|-------|--------|-------|--------|----------------------|---------------------------------------|
| Study or subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean                   | SD                          | Total | Mean  | SD     | Total | Weight | IV, random, 95% CI   | IV, random, 95% Cl                    |
| I.5.1 Losartan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                             |       |       |        |       |        |                      |                                       |
| Andersen <i>et al</i> . <sup>14</sup> (2000) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 147                    | 12                          | 16    | 137   | 16     | 16    | 0.7%   | 10.00 (0.20, 19.80)  |                                       |
| Baguet <i>et al.</i> <sup>15</sup> (2006) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140                    | 16                          | 89    | 131.8 | 16     | 89    | 1.9%   | 8.20 (3.50, 12.90)   |                                       |
| Byyny <i>et al.</i> <sup>18</sup> (1996) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150.9                  | 15.4                        | 29    | 141.7 | 17.3   | 29    | 0.9%   | 9.20 (0.77, 17.63)   |                                       |
| Chanudet and Dechampvallins <sup>19</sup> (2001) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 143.7                  | 14.2                        | 77    | 134.9 | 14.2   | 77    | 2.0%   | 8.80 (4.31, 13.29)   |                                       |
| Chung et al. <sup>21</sup> (2000) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 148.4                  | 12                          | 137   | 139.4 | 12     | 137   | 2.7%   | 9.00 (6.16, 11.84)   |                                       |
| Crowe et al.22 (2003) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 132.5                  | 15.5                        | 9     | 123   | 12     | 9     | 0.5%   | 9.50 (-3.31, 22.31)  |                                       |
| Ding <i>et al.</i> <sup>25</sup> (2004) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140.9                  | 13.7                        | 30    | 129.7 | 15.6   | 30    | 1.1%   | 11.20 (3.77' 18.63)  |                                       |
| Fagard et al.28 (2001) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 148.3                  | 13.7                        | 9     | 138.9 | 13.1   | 9     | 0.5%   | 9.40 (-2.98, 21.78)  |                                       |
| Guasti <sup>33</sup> (2002) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 144                    | 13                          | 22    | 133   | 14     | 22    | 1.0%   | 11.00 (3.02, 18.98)  | · · · · · · · · · · · · · · · · · · · |
| Kraiczi et al.38 (2000) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 147                    | 12.6                        | 16    | 140.1 | 12.6   | 16    | 0.9%   | 6.90 (-1.83, 15.63)  |                                       |
| Kuschnir et al.39 (2004) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 152.3                  | 15.7                        | 99    | 143.5 | 15.7   | 99    | 2.0%   | 8.80 (4.43, 13.17)   |                                       |
| acourciere and Asmar <sup>40</sup> (1999) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 153                    | 9.5                         | 115   | 145.3 | 9.5    | 115   | 2.9%   | 7.70 (5.24, 10.16)   |                                       |
| Mallion et al.44 (1999) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 148                    | 12                          | 57    | 140   | 12     | 57    | 2.0%   | 8.00 (3.59, 12.41)   |                                       |
| $Podzolkov et al^{57} (2003) (L = 50)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 142.1                  | 11.4                        | 20    | 132.4 | 8.7    | 20    | 1.4%   | 9.70 (3.42, 15.98)   |                                       |
| Bagot et al $60$ (2000) (I = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 138                    | 13                          | 82    | 130.6 | 14     | 82    | 2 1%   | 7 40 (3 26 11 54)    |                                       |
| Smith <i>et al</i> $^{63}$ (2005) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 152.3                  | 12.2                        | 150   | 143.3 | 12.2   | 150   | 2.7%   | 9.00 (6.24, 11.76)   |                                       |
| Stergiou et al. <sup>64</sup> (2002) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 137.2                  | 10.5                        | 33    | 130.7 | 12.8   | 33    | 1 5%   | 6 50 (0.85, 12, 15)  |                                       |
| Suonsvria et al $\frac{66}{2008}$ (2008) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 135                    | 10                          | 228   | 125.1 | 10     | 228   | 3 2%   | 9.90 (8.06 11 74)    |                                       |
| $Edesco et al^{67} (1998) (1 - 50)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 155                    | 0                           | 11    | 133   | 11     | 11    | 2 1%   | 22 00 (17 80 26 20)  |                                       |
| Nober et $a/\frac{69}{1005}$ (1995) (L = 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 150.0                  | 15 4                        | 20    | 141 7 | 15.4   | 20    | 1.0%   | 0.20 (1.27, 17, 12)  |                                       |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150.5                  | 13.4                        | 1291  | 141.7 | 13.4   | 1291  | 32 9%  | 9 59 (8 05 11 14)    | •                                     |
| Heterogeneity: $\tau^2 = 5.28$ ; $\chi^2 = 40.23$ , df = 19 ( <i>P</i> = 0)<br>Fest for overall effect: <i>Z</i> = 12.15 ( <i>P</i> < 0.00001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.003); / <sup>2</sup> | = 53%                       |       |       |        |       |        |                      |                                       |
| .5.2 Other ARBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                             |       |       |        |       |        |                      |                                       |
| Brunner et al. <sup>17</sup> (2003) (O = 20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 145.7                  | 11                          | 312   | 133   | 11     | 312   | 3.2%   | 12.70 (10.97, 14.43) | -                                     |
| Chrysant et al. <sup>20</sup> (2003) (O = 20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 153.9                  | 13.8                        | 188   | 141.7 | 13.8   | 188   | 2.7%   | 12.20 (9.41, 14.99)  |                                       |
| the Champlain et al $^{23}$ (2007) (V = 160)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 147                    | 14                          | 24    | 134   | 12     | 24    | 1.1%   | 13.00 (5.62, 20.38)  |                                       |
| Destro et al <sup>24</sup> (2005) ( $\Omega = 20$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146                    | 57                          | 52    | 131.4 | 5.8    | 52    | 3.0%   | 14.60 (12.39, 16.81) |                                       |
| Destro et al <sup>24</sup> (2005) (V = 160)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 146.4                  | 53                          | 55    | 130.7 | 5.1    | 55    | 3 1%   | 15 70 (13 76, 17 64) |                                       |
| Ding et al $^{25}$ (2004) (T = 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 143.9                  | 12.4                        | 31    | 129.3 | 14 1   | 31    | 1 3%   | 14 60 (7 99 21 21)   |                                       |
| $\frac{1}{2} \frac{1}{2} \frac{1}$ | 142.2                  | 10.6                        | 41    | 136.4 | 15.6   | 41    | 1.5%   | 5 80 (0 03 11 57)    |                                       |
| Example 2 et al. $(2011)(v = 100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 152.5                  | 0.8                         | 65    | 137.5 | 5.0    | 65    | 2 7%   | 15 00 (12 22 17 78)  |                                       |
| Example 1 al. $(2000) (0 = 20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 152.0                  | 10.4                        | 65    | 126.2 | 6.2    | 65    | 2.7 /0 | 16 40 (12 46 10 24)  |                                       |
| $\frac{1}{2} = \frac{1}{2} = \frac{1}$                                                                                                                                                                                                             | 152.0                  | 10.4                        | 60    | 130.2 | 7.0    | 60    | 2.1 %  | 12 00 (10 71 17 00)  |                                       |
| $\log (0 = 20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.1                  | 10.3                        | 50    | 139.2 | 1.0    | 50    | 2.5%   | 12.20 (10.71, 17.09) |                                       |
| dermide et $a/34$ (2005) (V = 160 a.m.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 139.0                  | 10.2                        | 50    | 127.4 | 9.5    | 50    | 2.2%   | 12.20 (0.37, 10.03)  |                                       |
| Hermida <i>et al.</i> <sup>34</sup> (2005) ( $V = 160 \text{ p.m.}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 138.4                  | 11.5                        | 50    | 123   | 11.6   | 50    | 1.9%   | 15.40 (10.87, 19.93) |                                       |
| Hermida <i>et al.</i> <sup>36</sup> (2009) ( $O = 20 \text{ a.m.}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 129.5                  | 8.7                         | 73    | 115.7 | 10.1   | 13    | 2.6%   | 13.80 (10.74, 16.86) |                                       |
| remida <i>et al.</i> (2009) ( $O = 20 \text{ p.m.}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130.4                  | 9.9                         | /1    | 110.5 | 12     | /1    | 2.3%   | 13.90 (10.28, 17.52) | 0                                     |
| Lacourciere and Asmar <sup>10</sup> (1999) (C = 16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 155.1                  | 10.5                        | 116   | 141.7 | 10.5   | 116   | 2.8%   | 13.40 (10.70, 16.10) |                                       |
| vialition $et al.$ <sup>47</sup> (1999) (1 = 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 151.5                  | 12.6                        | 57    | 140   | 12.6   | 57    | 1.9%   | 11.50 (6.87, 16.13)  |                                       |
| Morgan and Anderson <sup>47</sup> (2002) (C = 16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 162.9                  | 18.4                        | 31    | 150   | 20.6   | 31    | 0.7%   | 12.90 (3.18, 22.62)  |                                       |
| Morgan and Anderson <sup>40</sup> (2004) (C = 16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 159.4                  | 9.6                         | 23    | 146.6 | 10.1   | 23    | 1.5%   | 12.80 (7.11, 18.49)  |                                       |
| Neutel et al. <sup>50</sup> (1997) (V = 160)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 146.7                  | 13.3                        | 41    | 136.1 | 13.3   | 41    | 1.5%   | 10.60 (4.84, 16.36)  |                                       |
| Neutel et al. <sup>51</sup> (2002) (O = 10 b.i.d.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 148                    | 14.6                        | 48    | 132.2 | 14.6   | 48    | 1.5%   | 15.80 (9.96, 21.64)  |                                       |
| Neutel et al. <sup>51</sup> (2002) (O = 20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 149                    | 16.1                        | 45    | 132.5 | 16.1   | 45    | 1.3%   | 16.50 (9.85, 23.15)  |                                       |
| Dgihara <i>et al.</i> <sup>53</sup> (2009) (O = 20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 157.3                  | 12.6                        | 211   | 145.2 | 12.6   | 211   | 2.9%   | 12.10 (9.70, 14.50)  |                                       |
| Rajagopalan <i>et al.</i> <sup>61</sup> (2007) (V = 160)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 142.1                  | 13.2                        | 137   | 132.9 | 13.2   | 137   | 2.6%   | 9.20 (6.07, 12.33)   |                                       |
| Smith et al.63 (2005) (I = 150)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 151.6                  | 11.3                        | 146   | 140.3 | 11.3   | 146   | 2.8%   | 11.30 (8.71, 13.89)  |                                       |
| Smith et al.63 (2005) (O = 20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 152.1                  | 10.4                        | 147   | 139.6 | 10.4   | 147   | 2.9%   | 12.50 (10.12, 14.88) |                                       |
| Jbaid-Girioli et al.68 (2007) (I = 150)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 135.4                  | 4.7                         | 14    | 122   | 6.9    | 14    | 2.0%   | 13.40 (9.03, 17.77)  |                                       |
| White et al. <sup>71</sup> (2001) (E = 600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150                    | 4                           | 62    | 142.3 | 4      | 62    | 3.3%   | 7.70 (6.29, 9.11)    | -                                     |
| White et al. <sup>72</sup> (2004) (V = 160)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 149                    | 12                          | 246   | 138.4 | 12     | 246   | 3.0%   | 10.60 (8.48, 12.72)  |                                       |
| White et al.73 (2011) (A = 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 144                    | 10                          | 280   | 130.8 | 10     | 280   | 3.2%   | 13.20 (11.54, 14.86) | -                                     |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                             | 2744  |       |        | 2744  | 67.1%  | 12.77 (11.74, 13.80) | •                                     |
| Heterogeneity: $\tau^2 = 4.67$ ; $\chi^2 = 90.22$ , df = 28 ( <i>P</i> < 0<br>First for overall effect: <i>Z</i> = 24.32 ( <i>P</i> < 0.00001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00001)               | ; <i>I</i> <sup>2</sup> = 6 | 9%    |       |        |       |        |                      |                                       |
| Fotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                             | 4035  |       |        | 4035  | 100.0% | 11.74 (10.81, 12.66) | •                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                             |       |       |        |       |        |                      |                                       |
| Heterogeneity: $\tau^2 = 6.18$ : $v^2 - 150.02$ df - 48 (P -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 00001                | 1. 12                       | 70%   |       |        |       |        |                      |                                       |

**Figure 3** Forest plot showing reduction in ambulatory blood pressure for losartan and other angiotensin receptor blockers at 50% maximum dose. (*A*) Systolic. (*B*) Diastolic. The number in brackets represent angiotensin receptor blocker dose in milligrams. ABP, ambulatory blood pressure; ARB, angiotensin receptor blocker; b.i.d., twice daily; a.m., morning; p.m., evening; A, azilsartan; C, candesartan; E, eprosartan; I, irbesartan; L, losartan; O, olmesartan; T, telmisartan; V, valsartan.

|                                                                         | Pre-tr    | reatm                | ent   | Post- | treatm | ent   |        | Mean difference                                                                                                 | Mean difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------|-----------|----------------------|-------|-------|--------|-------|--------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study or subgroup                                                       | Mean      | SD                   | Total | Mean  | SD     | Total | Weight | IV random, 95% CI                                                                                               | IV random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .6.1 Losartan                                                           |           |                      |       |       |        |       |        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ndersen <i>et al.</i> <sup>14</sup> (2000) (L = 50)                     | 82        | 8                    | 16    | 75    | 4      | 16    | 1.4%   | 7.00 (2.62, 11.38)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Baguet et al. <sup>15</sup> (2006) (L = 50)                             | 89        | 9                    | 89    | 84.3  | 9      | 89    | 2.1%   | 4.70 (2.06, 7.34)                                                                                               | 100 March 100 Ma |
| Byyny et al. <sup>18</sup> (1996) (L = 50)                              | 94        | 6.9                  | 29    | 88.8  | 9.9    | 29    | 1.4%   | 5.20 (0.81, 9.59)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chanudet and Dechampvallins <sup>19</sup> (2001) (L = 50)               | 87        | 8.6                  | 77    | 81.8  | 8.6    | 77    | 2.1%   | 5.20 (2.48, 7.92)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chung et al. <sup>21</sup> (2000) (L = 50)                              | 90.2      | 6.1                  | 137   | 84.2  | 6.1    | 137   | 2.7%   | 6.00 (4.56, 7.44)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Crowe et al.22 (2003) (L = 50)                                          | 79.5      | 9.5                  | 9     | 73    | 8.5    | 9     | 0.6%   | 6.50 (-1.83, 14.83)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ding et al. <sup>25</sup> (2004) (L = 50)                               | 88.7      | 9.9                  | 30    | 82    | 9.9    | 30    | 1.2%   | 6.70 (1.69, 11.71)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| agard et al.28 (2001) (L = 50)                                          | 95.4      | 10.9                 | 9     | 88.2  | 9.2    | 9     | 0.5%   | 7.20 (-2.12, 16.52)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Guasti <sup>33</sup> (2001) (L = 50)                                    | 93        | 12                   | 22    | 84    | 9      | 22    | 0.9%   | 9.00 (2.73, 15.27)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kraiczi et al.38 (2000) (L = 50)                                        | 92        | 7.9                  | 16    | 87.2  | 7.9    | 16    | 1.0%   | 4.80 (-0.67, 1 0.27)                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kuschnir et al.39 (2004) (L = 50)                                       | 95        | 9.3                  | 99    | 89.6  | 9.3    | 99    | 2.2%   | 5.40 (2.81, 7.99)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| acourciere and Asmar <sup>40</sup> (1999) (L = 50)                      | 100.2     | 5.8                  | 115   | 94.6  | 5.8    | 115   | 2.7%   | 5.60 (4.10, 7.10)                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Aallion et al.44 (1999) (L = 50)                                        | 91.2      | 5.8                  | 57    | 86.3  | 5.8    | 57    | 2.4%   | 4.90 (2.77, 7.03)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| odzolkov et al.57 (2003) (L = 50)                                       | 96.3      | 11.5                 | 20    | 87    | 10     | 20    | 0.8%   | 9.30 (2.62, 15.98)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ragot et al.60 (2000) (L = 50)                                          | 85.6      | 9                    | 82    | 80.5  | 9      | 82    | 2.1%   | 5.10 (2.35, 7.85)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Smith et al.63 (2005) (L = 50)                                          | 95.2      | 8.2                  | 150   | 89    | 8.2    | 150   | 2.5%   | 6.20 (4.34, 8.06)                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Stergiou et al.64 (2002) (L = 50)                                       | 87.6      | 6.1                  | 33    | 83    | 6.9    | 33    | 1.9%   | 4.60 (1.46, 7.74)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Suonsyria et al.66 (2008) (L = 50)                                      | 93        | 6                    | 228   | 86.9  | 6      | 228   | 2.9%   | 6.10 (5.00, 7.20)                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| edesco et al.67 (1998) (L = 50)                                         | 95        | 7                    | 44    | 84    | 6      | 44    | 2.1%   | 11.00 (8.28, 13.72)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Veber et al. <sup>69</sup> (1995) (L = 50)                              | 94        | 6.9                  | 29    | 88.8  | 6.9    | 29    | 1.7%   | 5.20 (1.65. 8.75)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Subtotal (95% CI)                                                       |           | 5.00                 | 1291  |       |        | 1291  | 35.0%  | 5.96 (5.39, 6.52)                                                                                               | I +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| deterogeneity: $\tau^2 = 0.05$ ; $\chi^2 = 19.61$ , df = 19 (P =        | 0.42); /2 | = 3%                 |       |       |        |       |        | han one many a multiplicity in the provident of the second second second second second second second second sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| est for overall effect: $Z = 20.68 (P < 0.00001)$                       |           |                      |       |       |        |       |        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .6.2 Other ARBs                                                         |           |                      |       |       |        |       |        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Brunner <i>et al</i> . <sup>17</sup> (2003) (O = 20)                    | 92.3      | 4.9                  | 312   | 83.2  | 4.9    | 312   | 3.0%   | 9.10 (8.33, 9.87)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chrysant <i>et al.</i> <sup>20</sup> (2003) (O = 20)                    | 95.5      | 7.9                  | 188   | 87.8  | 7.9    | 188   | 2.7%   | 7.70 (6.10, 9.30)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| le Champlain <i>et al.</i> <sup>23</sup> (2007) (V = 160)               | 91        | 5                    | 24    | 85    | 8      | 24    | 1.6%   | 6.00 (2.23, 9.77)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Destro et al. <sup>24</sup> (2005) (O = 20)                             | 90.8      | 4.3                  | 52    | 79.6  | 3.3    | 52    | 2.7%   | 11.20 (9.73, 12.67)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Destro et al.24 (2005) (V = 160)                                        | 90.7      | 3.9                  | 55    | 78.5  | 4      | 55    | 2.7%   | 12.20 (10.72, 13.68)                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ding <i>et al.</i> <sup>25</sup> (2004) (T = 40)                        | 93.3      | 8.9                  | 31    | 82.4  | 8.9    | 31    | 1.3%   | 10.90 (6.47, 15.33)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duprez <i>et al.</i> <sup>26</sup> (2011) (V = 160)                     | 78.3      | 8.2                  | 41    | 75.1  | 8.8    | 41    | 1.6%   | 3.20 (-0.48, 6.88)                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fogari <i>et al.</i> <sup>29</sup> (2006) (O = 20)                      | 90        | 4.5                  | 65    | 79.1  | 5      | 65    | 2.7%   | 10.90 (9.26, 12.54)                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <sup>2</sup> ogari <i>et al.</i> <sup>29</sup> (2006) (V = 160)         | 90.2      | 3.9                  | 65    | 78    | 5.9    | 65    | 2.6%   | 12.20 (10.48, 13.92)                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <sup>2</sup> ogari <i>et al.</i> <sup>30</sup> (2008) (O = 20)          | 90.9      | 6.1                  | 63    | 82.4  | 6.3    | 63    | 2.4%   | 8.50 (6.33, 10.67)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lermida et al.34 (2005) (V = 160 a.m.)                                  | 77.7      | 7.8                  | 50    | 71.4  | 7.5    | 50    | 1.9%   | 6.30 (3.30, 9.30)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lermida <i>et al.</i> <sup>34</sup> (2005) (V = 160 p.m.)               | 78        | 9.6                  | 50    | 68.8  | 9.1    | 50    | 1.6%   | 9.20 (5.53, 12.87)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lermida et al.36 (2009) (O = 20 a.m.)                                   | 82.2      | 5.8                  | 73    | 71    | 7      | 73    | 2.4%   | 11.20 (9.11, 13.29)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lermida et al.36 (2009) (O = 20 p.m.)                                   | 82.4      | 6.8                  | 71    | 72.2  | 8.4    | 71    | 2.2%   | 10.20 (7.69, 12.71)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| acourciere and Asmar <sup>40</sup> (1999) (C = 16)                      | 101.8     | 7.4                  | 116   | 93.1  | 7.4    | 116   | 2.5%   | 8.70 (6.80, 10.60)                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Aallion et al.44 (1999) (T = 40)                                        | 94        | 6.4                  | 57    | 86.6  | 6.4    | 57    | 2.3%   | 7.40 (5.05, 9.75)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Norgan and Anderson <sup>47</sup> (2002) (C = 16)                       | 83.5      | 7.8                  | 31    | 76    | 8.9    | 31    | 1.4%   | 7.50 (3.33, 11.67)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Norgan and Anderson <sup>48</sup> (2004) (C = 16)                       | 80        | 6.7                  | 23    | 75.6  | 5.3    | 23    | 1.7%   | 4.40 (0.91, 7.89)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Neutel et al.50 (1997) (V = 160)                                        | 91.2      | 8.8                  | 41    | 85.7  | 8.8    | 41    | 1.6%   | 5.50 (1.69, 9.31)                                                                                               | ——                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| leutel et al.51 (2002) (O = 10 b.i.d.)                                  | 95        | 9.7                  | 48    | 84    | 9.7    | 48    | 1.6%   | 11.00 (7.12, 14.88)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Neutel et al.51 (2002) (O = 20)                                         | 96        | 11.4                 | 45    | 83.8  | 11.4   | 45    | 1.3%   | 12.20 (7.49, 16.91)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ogihara et al.53 (2009) (O = 20)                                        | 96.6      | 8.2                  | 211   | 89.6  | 8.2    | 211   | 2.7%   | 7.00 (5.44, 8.56)                                                                                               | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rajagopalan et al.61 (2007) (V = 160)                                   | 83.9      | 9                    | 137   | 78.4  | 9      | 137   | 2.4%   | 5.50 (3.37, 7.63)                                                                                               | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Smith et al.63 (2005) (I = 150)                                         | 94.8      | 7.6                  | 146   | 87.4  | 7.6    | 146   | 2.6%   | 7.40 (5.66, 9.14)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Smith et al.63 (2005) (O = 20)                                          | 94.3      | 6.9                  | 147   | 85.8  | 6.9    | 147   | 2.7%   | 8.50 (6.92, 10.08)                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Jbaid-Girioli et al.68 (2007) (I = 150)                                 | 82.3      | 2.4                  | 14    | 73.8  | 1.6    | 14    | 2.7%   | 8.50 (6.99, 10.01)                                                                                              | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Vhite et al. <sup>71</sup> (2001) (E = 600)                             | 93        | 6                    | 62    | 87.6  | 6      | 62    | 2.4%   | 5.40 (3.29, 7.51)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vhite et al.72 (2004) (V = 160)                                         | 93        | 6                    | 246   | 86    | 6      | 246   | 2.9%   | 7.00 (5.94, 8.06)                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Vhite et al. <sup>73</sup> (2011) (A = 40)                              | 88        | 10                   | 280   | 79.4  | 10     | 280   | 2.6%   | 8.60 (6.94, 10.26)                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Subtotal (95% CI)                                                       |           |                      | 2744  |       |        | 2744  | 65.0%  | 8.49 (7. 70, 9.28)                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Heterogeneity: $\tau^2 = 3.19$ ; $\chi^2 = 127.20$ , df = 28 ( <i>P</i> | < 0.0000  | 1); /² =             | = 78% |       |        |       |        | n men an an ann an an an an an an an an an a                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| est for overall effect: $\angle = 21.14 \ (P < 0.00001)$                |           |                      |       |       |        |       |        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total (95% CI)                                                          |           | 55                   | 4035  |       |        | 4035  | 100.0% | 7.63 (6. 95, 8.31)                                                                                              | I •.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| leterogeneity: $\tau^2 = 3.85$ ; $\chi^2 = 218.84$ , df = 48 (P         | < 0.0000  | 1); / <sup>2</sup> = | = 78% |       |        |       |        |                                                                                                                 | -20 -10 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                         |           |                      |       |       |        |       |        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Figure 3 Continued.

studies<sup>14–75</sup> enrolling 15 289 patients (mean age 56  $\pm$  7 years; 60% men) and the mean duration of 10 weeks fulfilled the inclusion criteria and were included in the analysis (*Table 2*). These 62 trials were with azilsartan (n = 1), candesartan (n = 8), eprosartan (n = 1), irbesartan (n = 6), losartan (n = 25), olmesartan (n = 12), telmisartan (n = 14), and valsartan (n = 12) (*Table 1*). Forty-six trials were excluded: uptitrated dose of ARBs (n = 13), inadequate data

(n = 15), ARBs combined with other drugs (n = 12), baseline study population without hypertension (n = 3), and studies with tasosartan (n = 3) (*Figure 1*).

All the included studies were done in patients with mild to moderate hypertension. Of the 62 trials, 18 trials reported adequate generation of allocation sequence and adequate allocation concealment, and 39 reported adequate masking of participants, personnel, and outcome assessors. On the basis of quality assessment, 18 were deemed as low-bias risk trials and the rest as high-bias risk trials.

# Antihypertensive efficacy of angiotensin receptor blockers

Reduction in blood pressure was measured at three separate doses—25% max dose, 50% max dose, and at the max dose for all the ARBs (*Figure 2*).

# Twenty-five per cent maximum dose of angiotensin receptor blockers

Data were available from 12 studies with the total of 1253 patients. Reduction in BP was 10.3 mmHg (95% CI: 9.3–11.3) systolic and 6.7 mmHg (95% CI: 5.8–7.5) diastolic with 25% max dose of ARBs.

# Fifty per cent maximum dose of angiotensin receptor blockers

Data were available from 40 studies with the total of 4035 patients. With 50% max dose, the reduction in BP was 11.8 mmHg (95% Cl: 10.8–12.7) systolic and 7.6 mmHg (95% Cl: 7.0–8.3) diastolic (*Figure 3*).

#### Maximum dose of angiotensin receptor blockers

Data were available from 30 studies with the total of 4025 patients. With the maximum dose of ARBs, the reduction in BP was 13.0 mmHg (95% CI: 11.8-14.3) systolic and 8.3 mmHg (95% CI: 7.6-9.1) diastolic (*Figure 4*).

On comparing ARBs at 25% max dose with 50% max dose, there was a significant reduction of systolic ABP (P = 0.04), but not diastolic ABP (P = 0.08). On comparing ARBs at 50% max dose with the max dose, there was no significant difference in both systolic (P = 0.11) and diastolic (P = 0.18) ABP reduction. There was a significant

| A                                                                                                                                                                |              |             |       |       |        |       |        |                      |                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-------|-------|--------|-------|--------|----------------------|-----------------------------------------------------------------------------------------------------------------|
| 6 N                                                                                                                                                              |              | reatme      | ent   | Post- | treatm | ent   |        | Mean difference      | Mean difference                                                                                                 |
| Study or subgroup                                                                                                                                                | Mean         | SD          | Total | Mean  | SD     | Total | Weight | IV, random 95 % CI   | IV, random 95 % Cl                                                                                              |
| 1.7.1 Losartan                                                                                                                                                   |              |             |       |       |        |       |        |                      |                                                                                                                 |
| Andersen et al. <sup>14</sup> (2000) (L = 100)                                                                                                                   | 147          | 12          | 16    | 135   | 12     | 16    | 1.5%   | 12.00 (3.68, 20.32)  | A. 19 Mar 10                                                                                                    |
| Bakris et al. <sup>16</sup> (2001) (L = 100)                                                                                                                     | 147          | 10          | 118   | 137.7 | 10     | 118   | 3.6%   | 9.30 (6.75, 11.85)   |                                                                                                                 |
| Byyny et al. <sup>18</sup> (1996) (L = 100)                                                                                                                      | 147.7        | 12.2        | 31    | 137.8 | 12.4   | 31    | 2.1%   | 9.90 (3.78, 16.02)   |                                                                                                                 |
| Byyny et al. <sup>18</sup> (1996) (L = 50 b.i.d.)                                                                                                                | 148.7        | 12.2        | 30    | 135.5 | 13.5   | 30    | 2.0%   | 13.20 (6.69, 19.71)  |                                                                                                                 |
| Chung et al. <sup>21</sup> (2000) (L = 100)                                                                                                                      | 148.4        | 12          | 137   | 137.4 | 12     | 137   | 3.5%   | 11.00 (8.16, 13.84)  |                                                                                                                 |
| Crowe et al.22 (2003) (L = 100)                                                                                                                                  | 127          | 18.5        | 8     | 117   | 13.5   | 8     | 0.6%   | 10.00 (-5.87, 25.87) |                                                                                                                 |
| Lacourciere and Asmar <sup>40</sup> (1999) (L = 100)                                                                                                             | 153          | 10.7        | 115   | 143.7 | 10.7   | 115   | 3.5%   | 9.30 (6.53, 12.07)   |                                                                                                                 |
| Meier et al.46 (2011) (L = 100)                                                                                                                                  | 139          | 17          | 20    | 129   | 17     | 20    | 1.1%   | 10.00 (-0.54, 20.54) |                                                                                                                 |
| Parati et al.55 (2010) (L = 100)                                                                                                                                 | 139          | 11          | 34    | 126.6 | 11     | 34    | 2.5%   | 12.40 (7.17, 17.63)  |                                                                                                                 |
| Weber et al.69 (1995) (L = 100)                                                                                                                                  | 147.7        | 12.2        | 30    | 137.8 | 12.2   | 30    | 2.1%   | 9.90 (3.73, 16.07)   | 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 |
| Weber et al.69 (1995) (L = 50 b.i.d.)                                                                                                                            | 148.7        | 12.2        | 31    | 135.5 | 12.2   | 31    | 2.1%   | 13.20 (7.13, 19.27)  |                                                                                                                 |
| Weir et al. <sup>70</sup> (2011) (L = 100)                                                                                                                       | 141.1        | 13.4        | 123   | 135.5 | 13.4   | 123   | 3.3%   | 5.60 (2.25, 8.95)    |                                                                                                                 |
| Yasuda et al. <sup>75</sup> (2005) (L = 100)                                                                                                                     | 158          | 15          | 44    | 146   | 13     | 44    | 2.2%   | 12.00 (6.13, 17.87)  |                                                                                                                 |
| Subtotal (95% CI)                                                                                                                                                |              |             | 737   |       |        | 737   | 30.0%  | 9.80 (8.60, 11.00)   | •                                                                                                               |
| Heterogeneity: $\tau^2 = 0.00$ ; $\chi^2 = 11.01$ , df = 12 ( <i>P</i> = 0.53); l <sup>2</sup> = Test for overall effect: <i>Z</i> = 16.01 ( <i>P</i> < 0.00001) | 0%           |             |       |       |        |       |        |                      |                                                                                                                 |
| 1.7.2 Other ARBs                                                                                                                                                 |              |             |       |       | 18.5   |       |        |                      | 100,000                                                                                                         |
| Düsing <i>et al.</i> <sup>27</sup> (2012) (T = 80)                                                                                                               | 146.9        | 9.5         | 408   | 134.6 | 12.7   | 408   | 4.0%   | 12.30 (10.76, 13.84) |                                                                                                                 |
| Fogari <i>et al.</i> <sup>30</sup> (2008) (T = 80)                                                                                                               | 152.9        | 9.9         | 63    | 137.1 | 8.2    | 63    | 3.3%   | 15.80 (12.63, 18.97) |                                                                                                                 |
| Galzerano <i>et al.</i> <sup>31</sup> (2004) (T = 80)                                                                                                            | 157          | 11          | 41    | 133   | 7      | 41    | 3.0%   | 24.00 (20.01, 27.99) |                                                                                                                 |
| Galzerano <i>et al.</i> <sup>32</sup> (2005) (T = 80)                                                                                                            | 159.6        | 10.2        | 36    | 128.6 | 6.5    | 36    | 3.0%   | 31.00 (27.05, 34.95) | ,                                                                                                               |
| Hermida <i>et al.</i> <sup>35</sup> (2007) (T = 80 a.m.)                                                                                                         | 132.6        | 10          | 107   | 122.1 | 10.9   | 107   | 3.5%   | 10.50 (7.70, 13.30)  |                                                                                                                 |
| Hermida <i>et al.</i> <sup>35</sup> (2007) (T = 80 p.m.)                                                                                                         | 133          | 9.7         | 108   | 121.3 | 10.7   | 108   | 3.5%   | 11.70 (8.98, 14.42)  |                                                                                                                 |
| Lacourciere and Asmar <sup>41</sup> (2006) (T = 80)                                                                                                              | 148.2        | 11.6        | 405   | 133.4 | 11.6   | 405   | 4.0%   | 14.80 (13.20, 16.40) |                                                                                                                 |
| Littlejohn <i>et al.</i> <sup>42</sup> (2000) (T = 80)                                                                                                           | 150.9        | 12.4        | 214   | 138.7 | 12.4   | 214   | 3.7%   | 12.20 (9.85, 14.55)  |                                                                                                                 |
| Mallion <i>et al.</i> <sup>44</sup> (1999) (T = 80)                                                                                                              | 151.2        | 11.8        | 54    | 137.9 | 11.8   | 54    | 2.8%   | 13.30 (8.85, 17.75)  |                                                                                                                 |
| Morgan and Anderson <sup>46</sup> (1999) (C = 32)                                                                                                                | 159.4        | 9.6         | 23    | 149.2 | 10.6   | 23    | 2.2%   | 10.20 (4.36, 16.04)  |                                                                                                                 |
| Neutel <i>et al.</i> <sup>55</sup> (1997) ( $V = 320$ )                                                                                                          | 148.4        | 13.7        | 45    | 134.1 | 13.7   | 45    | 2.3%   | 14.30 (8.64, 19.96)  |                                                                                                                 |
| Neutel <i>et al.</i> <sup>52</sup> (2003) (1 = 80)                                                                                                               | 150.1        | 14.1        | 351   | 136.9 | 14.1   | 351   | 3.8%   | 13.20 [11.11, 15.29) |                                                                                                                 |
| Palatini <i>et al.</i> <sup>54</sup> (2010) (I = 300)                                                                                                            | 145.4        | 12.1        | 222   | 132.3 | 12.1   | 222   | 3.7%   | 13.10 (10.85, 15.35) |                                                                                                                 |
| Pointer <i>et al.</i> <sup>(6)</sup> (2004) (1 = 80)                                                                                                             | 147.0        | 13.3        | 18    | 137.3 | 15.9   | 18    | 1.2%   | 10.30 (0.72, 19.88)  |                                                                                                                 |
| Sasso et al (2002) (1 = 300)                                                                                                                                     | 101          | 12          | 32    | 146   | 12     | 32    | 2.2%   | 11.00 (9.12, 20.88)  |                                                                                                                 |
| Stergiou <i>et al.</i> $(2002)$ (1 = 80)                                                                                                                         | 130.4        | 9.7         | 30    | 120.5 | 7.4    | 30    | 2.0%   | 10.70 (0.00, 17.40)  | 1.000 Control 1.000                                                                                             |
| Fovedano and Garcia De La Villa <sup>59</sup> (2009) ( $O = 40$ a.m.)                                                                                            | 138.5        | 9.3         | 30    | 124.8 | 1.1    | 30    | 3.1%   | 14.40 (10.72, 18.09) |                                                                                                                 |
| Noir of $a/70$ (2011) (O = 40)                                                                                                                                   | 130.5        | 9.3<br>13 F | 122   | 124.1 | 13 5   | 122   | 3.1%   | 0.20 (5.83 12 57)    |                                                                                                                 |
| White at $a/72 (2004) (T = 80)$                                                                                                                                  | 140.0        | 13.5        | 244   | 131.4 | 13.5   | 244   | 3.3%   | 11 80 (0.67 12.07)   |                                                                                                                 |
| White at $a/73$ (2011) (A = 80)                                                                                                                                  | 145          | 12          | 244   | 130.2 | 10     | 244   | 4 0%   | 14 30 (12 66 15 94)  |                                                                                                                 |
| Williams at $a/74$ (2006) (T = 90)                                                                                                                               | 147 6        | 12.0        | 200   | 130.7 | 12.0   | 203   | 3.00/  | 14.50 (12.00, 15.94) |                                                                                                                 |
| Subtotal (95% CI)                                                                                                                                                | 147.0        | 12.9        | 3288  | 133.1 | 12.9   | 3288  | 70.0%  | 14.16 (12.68, 15.65) | •                                                                                                               |
| Heterogeneity: $\tau^2 = 9.41$ ; $\chi^2 = 129.00$ , df = 21 (P = 0.00001)                                                                                       | ; $l^2 = 84$ | %           |       |       |        |       |        |                      |                                                                                                                 |
| Test for overall effect: $Z = 18.69 (P < 0.00001)$                                                                                                               |              |             |       |       |        |       |        |                      |                                                                                                                 |
| Total (95% CI)                                                                                                                                                   |              |             | 4025  |       |        | 4025  | 100.0% | 13.02 (11.75, 14.28) | •                                                                                                               |
| Heterogeneity: $\tau^2 = 9.83$ ; $\chi^2 = 174.12$ , df = 34 ( <i>P</i> = 0.00001)                                                                               | ; $I^2 = 80$ | %           |       |       |        |       |        |                      | -30 -10 0 10 20                                                                                                 |
| Test for overall effect: $Z = 20.18$ ( $P < 0.00001$ )<br>Test for subgroup differences: $y^2 = 20.01$ df = 1 ( $P = 0.0000$                                     | 1).12-0      | 95 0%       |       |       |        |       |        |                      | Pre-treatment Post-treatment                                                                                    |

Figure 4 Forest plot showing reduction in ambulatory blood pressure for losartan and other angiotensin receptor blockers at maximum dose. (A) Systolic. (B) Diastolic. Abbreviations as in Figure 3.

| AN                                                                                                                                                    |                               | reatme | ent         | Post-treatment |     |             |               | Mean difference                         | Mean difference    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------|-------------|----------------|-----|-------------|---------------|-----------------------------------------|--------------------|--|
| Study or subgroup                                                                                                                                     | Mean                          | SD     | Total       | Mean           | SD  | Total       | Weight        | IV, Rearchborn995%CCI                   | IV, random 95 % CI |  |
| 1.8.1 Losartan                                                                                                                                        |                               |        |             |                |     |             |               |                                         |                    |  |
| Andersen <i>et al.</i> <sup>14</sup> (2000) (L = 100)                                                                                                 | 82                            | 8      | 16          | 76             | 8   | 16          | 1.3%          | 6.00 (0.46, 11.54)                      |                    |  |
| Bakris <i>et al.</i> <sup>16</sup> (2001) (L = 100)                                                                                                   | 93                            | 8      | 118         | 87.6           | 8   | 118         | 3.4%          | 5.40 (3.36, 7.44)                       |                    |  |
| Byyny et al. <sup>18</sup> (1996) (L = 100)                                                                                                           | 93.8                          | 6      | 31          | 87.4           | 6   | 31          | 2.6%          | 6.40 (3.41, 9.39)                       |                    |  |
| Byyny et al. <sup>18</sup> (1996) (L = 50 b.i.d.)                                                                                                     | 94.4                          | 6.9    | 30          | 85.9           | 6.8 | 30          | 2.3%          | 8.50 (5.03, 11.97)                      |                    |  |
| Chung et al. <sup>21</sup> (2000) (L = 100)                                                                                                           | 90.2                          | 6.1    | 137         | 82.2           | 6.1 | 137         | 3.8%          | 8.00 (6.56, 9.44)                       |                    |  |
| Crowe et al. <sup>22</sup> (2003) (L = 100)                                                                                                           | 80.5                          | 12.5   | 8           | 71             | 11  | 8           | 0.4%          | 9.50 (-2.04, 21.04)                     |                    |  |
| Lacourciere and Asmar <sup>40</sup> (1999) (L = 100)                                                                                                  | 100.2                         | 7.1    | 115         | 93.3           | 7.1 | 115         | 3.5%          | 6.90 (5.06, 8.74)                       |                    |  |
| Meier et al.46 (2011) (L = 100)                                                                                                                       | 84                            | 9      | 20          | 79             | 9   | 20          | 1.3%          | 5.00 (-0.58, 10.58)                     |                    |  |
| Parati <i>et al.</i> <sup>55</sup> (2010) (L = 100)                                                                                                   | 83                            | 10     | 34          | 77.8           | 10  | 34          | 1.6%          | 5.20 (0.45, 9.95)                       |                    |  |
| Weber <i>et al.</i> <sup>69</sup> (1995) (L = 100)                                                                                                    | 93.8                          | 6      | 30          | 87.4           | 6   | 30          | 2.6%          | 6.40 (3.36, 9.44)                       |                    |  |
| Weber et al. <sup>69</sup> (1995) (L = 50 b.i.d.)                                                                                                     | 94.4                          | 6.9    | 31          | 85.9           | 6.9 | 31          | 2.3%          | 8.50 (5.06, 11.94)                      |                    |  |
| Weir et al. <sup>70</sup> (2011) (L = 100)                                                                                                            | 89.2                          | 9.7    | 123         | 85.6           | 9.7 | 123         | 3.1%          | 3.60 (1.18, 6.02)                       |                    |  |
| rasuda <i>et al.</i> <sup>75</sup> (2005) (L = 100)                                                                                                   | 89                            | 9      | 44          | 80             | 9   | 44          | 2.1%          | 9.00 (5.24, 12.76)                      |                    |  |
| Subtotal (95% CI)                                                                                                                                     |                               |        | 737         |                |     | 737         | 30.5%         | 6.68 (5.75, 7.61)                       | •                  |  |
| Heterogeneity: $\tau^2 = 0.62$ ; $\chi^2 = 15.60$ , df = 12 ( $P = 0.21$ ); $I^2 =$<br>Test for overall effect: $Z = 14.06$ ( $P < 0.00001$ )         | : 23%                         |        |             |                |     |             |               |                                         |                    |  |
| 1.8.2 Other ARBs                                                                                                                                      |                               |        |             |                |     |             |               |                                         |                    |  |
| Düsing <i>et al.</i> <sup>27</sup> (2012) (T = 80)                                                                                                    | 88.3                          | 9.5    | 408         | 80.7           | 9.5 | 408         | 3.9%          | 7.60 (6.30, 8.90)                       | -                  |  |
| Fogari <i>et al.</i> <sup>30</sup> (2008) (T = 80)                                                                                                    | 91.5                          | 6.4    | 63          | 80.6           | 5.8 | 63          | 3.3%          | 10.90 (8.77, 13.03)                     |                    |  |
| Galzerano <i>et al.</i> <sup>31</sup> (2004) (T = 80)                                                                                                 | 96                            | 6      | 41          | 83             | 5   | 41          | 3.1%          | 13.00 (10.61, 15.39)                    |                    |  |
| Galzerano <i>et al.</i> <sup>32</sup> (2005) (T = 80)                                                                                                 | 97.8                          | 5.4    | 36          | 78.2           | 5.8 | 36          | 2.9%          | 19.60 (17.01, 22.19)                    | _                  |  |
| Hermida <i>et al.</i> <sup>35</sup> (2007) (T = 80 a.m.)                                                                                              | 84.8                          | 7.4    | 107         | 76.9           | 8.3 | 107         | 3.3%          | 7.90 (5.79, 10.01)                      |                    |  |
| Hermida <i>et al.</i> <sup>35</sup> (2007) (T = 80 p.m.)                                                                                              | 83.2                          | 8      | 108         | 74.8           | 8.1 | 108         | 3.3%          | 8.40 (6.25, 10.55)                      |                    |  |
| acourciere and Asmar <sup>41</sup> (2006) (T = 80)                                                                                                    | 92.5                          | 6.3    | 405         | 82.6           | 6.3 | 405         | 4.2%          | 9.90 (9.03, 10.77)                      | -                  |  |
| Littlejohn <i>et al.</i> <sup>42</sup> (2000) (T = 80)                                                                                                | 93.3                          | 6.1    | 214         | 85.1           | 6.1 | 214         | 4.0%          | 8.20 (7.04, 9.36)                       |                    |  |
| Mallion et al.44 (1999) (T = 80)                                                                                                                      | 93.7                          | 6.3    | 54          | 85.3           | 6.3 | 54          | 3.1%          | 8.40 (6.02, 10.78)                      |                    |  |
| Morgan and Anderson <sup>48</sup> (1999) (C = 32)                                                                                                     | 80                            | 6.7    | 23          | 75.3           | 6.2 | 23          | 2.2%          | 4.70 (0.97, 8.43)                       |                    |  |
| Neutel <i>et al.</i> <sup>50</sup> (1997) (V = 320)                                                                                                   | 90.7                          | 9.8    | 45          | 82.3           | 9.8 | 45          | 2.0%          | 8.40 (4.35, 12.45)                      |                    |  |
| Neutel et al. <sup>52</sup> (2003) (T = 80)                                                                                                           | 93.2                          | 6.7    | 351         | 84.9           | 6.7 | 351         | 4.1%          | 8.30 (7.31, 9.29)                       | ~                  |  |
| Palatini <i>et al.</i> <sup>54</sup> (2010) (I = 300)                                                                                                 | 93                            | 6.4    | 222         | 83.5           | 6.4 | 222         | 4.0%          | 9.50 (8.31, 10.69)                      | -                  |  |
| Poirier <i>et al.</i> <sup>58</sup> (2004) (T = 80)                                                                                                   | 91.2                          | 7.3    | 18          | 84.7           | 9.2 | 18          | 1.4%          | 6.50 (1.07, 11.93)                      |                    |  |
| Sasso <i>et al.</i> <sup>62</sup> (2002) (I = 300)                                                                                                    | 96                            | 6      | 32          | 90             | 6   | 32          | 2.7%          | 6.00 (3.06, 8.94)                       |                    |  |
| Stergiou et al. <sup>64</sup> (2002) (T = 80)                                                                                                         | 89.3                          | 7.2    | 36          | 81.1           | 7.3 | 36          | 2.4%          | 8.20 (4.85, 11.55)                      |                    |  |
| T Povedano and Garcia De La Villa <sup>59</sup> (2009) (O = 40 a.m.)                                                                                  | 87.5                          | 8.4    | 38          | 78.9           | 9   | 38          | 2.0%          | 8.60 (4.69, 12.51)                      |                    |  |
| T Povedano and Garcia De La Villa <sup>59</sup> (2009) (O = 40 a.m.)                                                                                  | 87.5                          | 8.4    | 38          | 77.4           | 7   | 38          | 2.3%          | 10.10 (6.62, 13.58)                     |                    |  |
| Weir <i>et al.</i> <sup>70</sup> (2011) (O = 40)                                                                                                      | 87                            | 8.5    | 123         | 80.9           | 8.5 | 123         | 3.3%          | 6.10 (3.98, 8.22)                       |                    |  |
| White et al. <sup>72</sup> (2004) (T = 80)                                                                                                            | 94                            | 6      | 244         | 86.1           | 6   | 244         | 4.1%          | 7.90 (6.84, 8.96)                       |                    |  |
| White et al. <sup>73</sup> (2011) (A = 80)                                                                                                            | 89                            | 10     | 285         | 79.6           | 10  | 285         | 3.7%          | 9.40 (7.76, 11.04)                      | -                  |  |
| Williams <i>et al.</i> <sup>74</sup> (2006) (T = 80)<br>Subtotal (95% CI)                                                                             | 92.7                          | 6.8    | 397<br>3288 | 82.9           | 6.8 | 397<br>3288 | 4.2%<br>69.5% | 9.80 (8.85, 10.75)<br>9.07 (8.18, 9.97) |                    |  |
| Heterogeneity: $\tau^2 = 3.19$ ; $\chi^2 = 117.65$ , df = 21 ( <i>P</i> < 0.00001)<br>Test for overall effect: <i>Z</i> = 19.94 ( <i>P</i> < 0.00001) | ); <i>l</i> <sup>2</sup> = 82 | %      |             |                |     |             |               |                                         |                    |  |
| Fotal (95% CI)                                                                                                                                        |                               |        | 4025        |                |     | 4025        | 100.0%        | 8.34 (7.58, 9.10)                       | •                  |  |
| Heterogeneity: $\tau^2 = 3.42$ ; $\chi^2 = 162.08$ , df = 34 ( <i>P</i> < 0.00001)                                                                    | ); $l^2 = 79$                 | 9%     |             |                |     |             |               |                                         |                    |  |
| Test for overall effect: $Z = 21.40 (P < 0.00001)$                                                                                                    |                               |        |             |                |     |             |               |                                         | -20 -10 0 10 2     |  |

Figure 4 Continued.

reduction in both systolic (P = 0.0008) and diastolic ABP (P = 0.004) when ARBs at 25% max dose were compared with the ARBs at the max dose, but the four-fold increase in dose resulted in a meagre 2.7 mmHg (mean) decrease in systolic pressure. Since this is an indirect comparison, the data should be interpreted with caution.

## Comparison of losartan 50 and 100 mg with other angiotensin receptor blockers at 50% maximum dose and at maximum dose

Head-to-head comparison between losartan and other ARBs was available in six studies (*Figure 5*). Losartan in the dose of 50 mg lowered ABP less well than other ARBs at 50% max dose by 2.5 mmHg systolic (P < 0.0001) and 1.8 mmHg diastolic (P = 0.0003). Losartan in the dose of 100 mg lowered ABP less well

than other ARBs at max dose by 3.9 mmHg systolic (P = 0.0002) and 2.2 mmHg diastolic (P = 0.002) (*Figure 5*).

Significant heterogeneity was found to be present in most of the analyses and hence random variance model was used. There was no evidence of publication bias for any of the analyses. Sensitivity analysis performed to evaluate the role of baseline blood pressure on BP reduction showed no significant difference between the two subgroups (above vs. below mean BP) (*Table 3*). Similarly sensitivity analyses for various subgroups based on the risk of bias, number of patients, and study duration did not make any noticeable difference to any of the outcomes (data not shown).

## **Discussion**

In the present analysis of the antihypertensive efficacy of various ARBs with 24 h ABP monitoring, we observed a shallow dose-

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lo                                | sartar                                     | 1                                         | Other                                               | antihyper                                                                | ensives                                                                                                                                                                       |                                                                | Mean difference                                                                                                                                                     | Mean difference                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Study or subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean                              | SD                                         | Total                                     | Mear                                                | 1 SI                                                                     | D Total                                                                                                                                                                       | Weight                                                         | IV, random 95% CI                                                                                                                                                   | IV, random 95% Cl                                                                                    |
| 2.1.1 Losartan vs. other ARBs at 50% max dose SBF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0100                              |                                            |                                           |                                                     | 8 199                                                                    |                                                                                                                                                                               |                                                                |                                                                                                                                                                     |                                                                                                      |
| Baguet et al. <sup>15</sup> (2006) (L50 vs. C8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -8.2                              | 8.8                                        | 89                                        | -10.3                                               | 3 11.                                                                    | 2 87                                                                                                                                                                          | 14.6%                                                          | 2.10 (-0.88, 5.08)                                                                                                                                                  |                                                                                                      |
| Ding et al.25 (2004) (L50 vs. T40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -11.2                             | 10.5                                       | 30                                        | -14.6                                               | 5 10.                                                                    | 5 31                                                                                                                                                                          | 5.3%                                                           | 3.40 (-1.90, 8.70)                                                                                                                                                  |                                                                                                      |
| Lacourciere and Asmar <sup>40</sup> (1999) (L50 vs. C8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -7.7                              | 9.8                                        | 115                                       | -11.0                                               | 5 9.                                                                     | 116                                                                                                                                                                           | 18.9%                                                          | 3.90 (1.36, 6.44)                                                                                                                                                   |                                                                                                      |
| Mallion et al. 44 (1999) (L50 vs. 140)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -8                                | 9.8                                        | 57                                        | -11.                                                | 5 9.                                                                     | 57                                                                                                                                                                            | 10.6%                                                          | 3.50 (-0.10, 7.10)                                                                                                                                                  |                                                                                                      |
| Smith et al. 43 (2005) (L50 vs. 1150)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -9                                | 12.2                                       | 150                                       | -11.                                                | 3 11.                                                                    | 3 146                                                                                                                                                                         | 17.4%                                                          | 2.30 (-0.38, 4.98)                                                                                                                                                  |                                                                                                      |
| Smith et al. <sup>63</sup> (2005) (L50 vs. O20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -9                                | 12.2                                       | 150                                       | -12.                                                | 5 10.4                                                                   | 4 147                                                                                                                                                                         | 18.5%                                                          | 3.50 (0.92, 6.08)                                                                                                                                                   |                                                                                                      |
| Smith <i>et al.</i> (2005) (L50 VS. V80)<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -9                                | 12.2                                       | 741                                       | -8.                                                 | 1 13.                                                                    | 729                                                                                                                                                                           | 14.7%                                                          | -0.90 (-3.88, 2.08)<br>2.51 (1.25, 3.77)                                                                                                                            | •                                                                                                    |
| Heterogeneity: $\tau^2 = 0.50$ ; $\chi^2 = 7.26$ , df = 6 (P = 0.30); l <sup>2</sup><br>Test for overall effect: Z = 3.92 (P < 0.0001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 17%                             |                                            |                                           |                                                     |                                                                          |                                                                                                                                                                               |                                                                |                                                                                                                                                                     | 2                                                                                                    |
| 2.1.2 Losartan vs. other ARBs at 50% max dose DBF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                 |                                            |                                           |                                                     |                                                                          |                                                                                                                                                                               |                                                                |                                                                                                                                                                     |                                                                                                      |
| Baguet et al. <sup>15</sup> (2006) (L50 vs. C8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -4.7                              | 4.1                                        | 89                                        | -7.                                                 | 1 6.                                                                     | 8 87                                                                                                                                                                          | 16.8%                                                          | 2.40 (0.74, 4.06)                                                                                                                                                   |                                                                                                      |
| Ding et al.25 (2004) (L50 vs. T40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -6.7                              | 6.5                                        | 30                                        | -10.9                                               | 9 6.                                                                     | 31                                                                                                                                                                            | 7.2%                                                           | 4.20 (1.03, 7.37)                                                                                                                                                   |                                                                                                      |
| Lacourciere and Asmar <sup>40</sup> (1999) (L50 vs. C8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5.6                              | 6                                          | 115                                       | -7.3                                                | 2 6.                                                                     | 5 116                                                                                                                                                                         | 17.2%                                                          | 1.60 (-0.03, 3.23)                                                                                                                                                  | <b>⊢</b>                                                                                             |
| Mallion et al.44 (1999) (L50 vs. T40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.9                              | 6                                          | 57                                        | -7.4                                                | 4 (                                                                      | 5 57                                                                                                                                                                          | 12.1%                                                          | 2.50 (0.30, 4.70)                                                                                                                                                   |                                                                                                      |
| Smith et al.63 (2005) (L50 vs. 1150)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -6.2                              | 8.2                                        | 150                                       | -7.4                                                | 4 7.                                                                     | 5 146                                                                                                                                                                         | 15.4%                                                          | 1.20 (-0.60, 3.00)                                                                                                                                                  | +                                                                                                    |
| Smith et al.63 (2005) (L50 vs. O20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -6.2                              | 8.2                                        | 150                                       | -8.                                                 | 5 6.                                                                     | 9 147                                                                                                                                                                         | 16.2%                                                          | 2.30 (0.58, 4.02)                                                                                                                                                   |                                                                                                      |
| Smith et al.63 (2005) (L50 vs. V80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -6.2                              | 8.2                                        | 150                                       | -5.0                                                | 6 7.                                                                     | 3 145                                                                                                                                                                         | 15.2%                                                          | -0.60 (-2.43, 1.23)                                                                                                                                                 |                                                                                                      |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                                            | 741                                       |                                                     |                                                                          | 729                                                                                                                                                                           | 100.0%                                                         | 1.75 (0.79, 2.70)                                                                                                                                                   | •                                                                                                    |
| Test for overall effect: $Z = 3.59$ ( $P = 0.0003$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                            |                                           |                                                     |                                                                          |                                                                                                                                                                               |                                                                |                                                                                                                                                                     |                                                                                                      |
| Test for overall effect: <i>Z</i> = 3.59 ( <i>P</i> = 0.0003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                            |                                           |                                                     |                                                                          |                                                                                                                                                                               |                                                                |                                                                                                                                                                     | -20 -10 0 10 20<br>Favours losartan Favours other antihypert                                         |
| Test for overall effect: <i>Z</i> = 3.59 ( <i>P</i> = 0.0003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | Los                                        | artan                                     |                                                     | Other /                                                                  | ARBs                                                                                                                                                                          |                                                                | Mean difference                                                                                                                                                     | -20 -10 0 10 20<br>Favours losartan Favours other antihypert                                         |
| Test for overall effect: <i>Z</i> = 3.59 ( <i>P</i> = 0.0003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M                                 | Los<br>ean                                 | artan<br>SD                               | Total M                                             | Other A                                                                  | ARBs<br>5D Total                                                                                                                                                              | Weight                                                         | Mean difference<br>IV, fixed, 95% Cl                                                                                                                                | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: Z = 3.59 (P = 0.0003) Study or subgroup 2.2.1 Losartan vs. other ARBs at max dose SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M                                 | Los<br>ean                                 | artan<br>SD                               | Total M                                             | Other /<br>Nean S                                                        | ARBs<br>5D Total                                                                                                                                                              | Weight                                                         | Mean difference<br>IV, fixed, 95% Cl                                                                                                                                | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: Z = 3.59 (P = 0.0003)  Study or subgroup 2.2.1 Losartan vs. other ARBs at max dose SB Lacourciere and Asma <sup>40</sup> (1999) (L100 vs. C16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M.                                | Los<br>ean<br>-9.3                         | artan<br>SD                               | <b>Total M</b>                                      | Other A<br>Mean S                                                        | ARBs<br>BD Total                                                                                                                                                              | Weight<br>50.2%                                                | Mean difference<br>IV, fixed, 95% Cl<br>4.10 (1.20, 7.00)                                                                                                           | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: Z = 3.59 (P = 0.0003)  Study or subgroup 2.2.1 Losartan vs. other ARBs at max dose SB Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16) Weir ef al <sup>70</sup> (2011) (L100 vs. O40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M<br>P                            | Los<br>ean<br>-9.3                         | artan<br><u>SD</u><br>11.5<br>12.2        | Total M<br>115 -<br>123                             | Other /<br>//ean \$                                                      | ARBs<br>5D Total<br>11 116<br>.1 123                                                                                                                                          | Weight<br>50.2%<br>49.8%                                       | Mean difference<br>IV, fixed, 95% Cl<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)                                                                                      | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: Z = 3.59 (P = 0.0003)         Study or subgroup         2.2.1 Losartan vs. other ARBs at max dose SB         Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16)         Weir et al. <sup>70</sup> (2011) (L100 vs. O40)         Subtotal (95% C1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>M</u><br>P                     | Los<br>ean<br>-9.3<br>-5.6                 | artan<br>SD<br>11.5<br>12.2               | Total M<br>115 -<br>123<br>238                      | Other /<br>Mean 5<br>-13.4<br>-9.2 11                                    | ARBs<br>5D Total<br>11 116<br>.1 123<br>239                                                                                                                                   | Weight<br>50.2%<br>49.8%<br>100.0%                             | Mean difference<br>IV, fixed, 95% Cl<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)<br>3.85 (1.79, 5.91)                                                                 | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: $Z = 3.59$ ( $P = 0.0003$ )<br>Study or subgroup<br>2.2.1 Losartan vs. other ARBs at max dose SB<br>Lacourciere and Asma <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)<br>Subtotal (95% C1)<br>Heterosponeity $S^2 = 0.06$ df = 1 ( $P = 0.81$ ); $\beta = 0\%$                                                                                                                                                                                                                                                                                                                                                                                                                          | M<br>P                            | Los<br>ean<br>-9.3<br>-5.6                 | artan<br>SD<br>11.5<br>12.2               | Total M<br>115 -<br>123<br>238                      | Other /<br>Mean 5<br>-13.4<br>-9.2 11                                    | <b>RBs</b><br><b>D Total</b><br>11 116<br>.1 123<br><b>239</b>                                                                                                                | Weight<br>50.2%<br>49.8%<br>100.0%                             | Mean difference<br>IV, fixed, 95% Cl<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)<br>3.85 (1.79, 5.91)                                                                 | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: $Z = 3.59$ ( $P = 0.0003$ )<br><b>Study or subgroup</b><br><b>2.2.1 Losartan vs. other ARBs at max dose SB</b><br>Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)<br><b>Subtotal (95% CI)</b><br>Heterogeneity: $\chi^2 = 0.06$ , df = 1 ( $P = 0.81$ ); $l^2 = 0\%$                                                                                                                                                                                                                                                                                                                                                                                                 | M<br>P<br>-                       | Los<br>ean<br>-9.3<br>-5.6                 | artan<br>SD<br>11.5<br>12.2               | Total M<br>115 -<br>123<br>238                      | Other /<br>Mean \$<br>-13.4<br>-9.2 11                                   | ARBs<br>5D Total<br>11 116<br>.1 123<br>239                                                                                                                                   | Weight<br>50.2%<br>49.8%<br>100.0%                             | Mean difference<br>IV, fixed, 95% Cl<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)<br>3.85 (1.79, 5.91)                                                                 | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: $Z = 3.59$ ( $P = 0.0003$ )<br>Study or subgroup<br>2.2.1 Losartan vs. other ARBs at max dose SB<br>Lacourciere and Asma <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)<br>Subtotal (95% CI)<br>Heterogeneity: $\chi^2 = 0.06$ , df = 1 ( $P = 0.81$ ); $l^2 = 0\%$<br>Test for overall effect: $Z = 3.67$ ( $P = 0.0002$ )                                                                                                                                                                                                                                                                                                                                                               | <u>M</u><br>P                     | Los<br>ean<br>-9.3<br>-5.6                 | artan<br>SD<br>11.5<br>12.2               | Total 1<br>115 -<br>123<br>238                      | Other /<br>//ean \$<br>-13.4<br>-9.2 11                                  | RBs<br>5D Total<br>11 116<br>.1 123<br>239                                                                                                                                    | Weight<br>50.2%<br>49.8%<br>100.0%                             | Mean difference<br>IV, fixed, 95% Cl<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)<br>3.85 (1.79, 5.91)                                                                 | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: $Z = 3.59$ ( $P = 0.0003$ )<br>Study or subgroup<br>2.2.1 Losartan vs. other ARBs at max dose SB<br>Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)<br>Subtotal (95% CI)<br>Heterogeneity: $\chi^2 = 0.06$ , df = 1 ( $P = 0.81$ ); $l^2 = 0\%$<br>Test for overall effect: $Z = 3.67$ ( $P = 0.0002$ )<br>2.2.2 Losartan vs. other ARBs at max dose DB                                                                                                                                                                                                                                                                                                              | <u>M</u><br>P<br>-<br>-           | Los<br>ean<br>-9.3<br>-5.6                 | artan<br>SD<br>11.5<br>12.2               | Total M<br>115 -<br>123<br>238                      | Other /<br>/lean \$<br>-13.4<br>-9.2 11                                  | RBs<br>D Total<br>11 116<br>.1 123<br>239                                                                                                                                     | Weight<br>50.2%<br>49.8%<br>100.0%                             | Mean difference<br>IV, fixed, 95% Cl<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)<br>3.85 (1.79, 5.91)                                                                 | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: $Z = 3.59$ ( $P = 0.0003$ )<br>Study or subgroup<br>2.2.1 Losartan vs. other ARBs at max dose SB<br>Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al</i> <sup>70</sup> (2011) (L100 vs. O40)<br>Subtotal (95% CI)<br>Heterogeneity; $Z^2 = 0.06$ , df = 1 ( $P = 0.81$ ); $I^2 = 0\%$<br>Test for overall effect: $Z = 3.67$ ( $P = 0.0002$ )<br>2.2.2 Losartan vs. other ARBs at max dose DB<br>Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16)                                                                                                                                                                                                                                                     | <u>M</u><br>P<br>                 | Los<br>ean<br>-9.3<br>-5.6<br>-6.9         | artan<br>SD<br>11.5<br>12.2<br>7.5        | Total 1<br>115 -<br>123<br>238<br>115               | Other /<br>/lean \$<br>-13.4<br>-9.2 11                                  | NRBs<br>D Total<br>11 116<br>.1 123<br>239<br>.5 116                                                                                                                          | Weight<br>50.2%<br>49.8%<br>100.0%<br>48.5%                    | Mean difference<br>IV, fixed, 95% Cl<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)<br>3.85 (1.79, 5.91)<br>1.80 (-0.13, 3.73)                                           | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: $Z = 3.59$ ( $P = 0.0003$ )<br><b>Study or subgroup</b><br><b>2.2.1 Losartan vs. other ARBs at max dose SB</b><br>Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)<br><b>Subtotal (95% CI)</b><br>Heterogeneity: $\chi^2 = 0.06$ , df = 1 ( $P = 0.81$ ); $I^2 = 0\%$<br>Test for overall effect: $Z = 3.67$ ( $P = 0.0002$ )<br><b>2.2.2 Losartan vs. other ARBs at max dose DB</b><br>Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)                                                                                                                                                           | - M<br>-<br>-<br>-<br>-           | Los<br>ean<br>-9.3<br>-5.6<br>-6.9<br>-3.6 | artan<br>SD<br>11.5<br>12.2<br>7.5<br>7.2 | Total M<br>115 -<br>123<br>238<br>115<br>123        | Other /<br>Mean S<br>-13.4 -9.2 11<br>-9.2 11                            | RBs         Total           I1         116           .1         123           239           .5         116           .5         116           .8         123                  | Weight<br>50.2%<br>49.8%<br>100.0%<br>48.5%<br>51.5%           | Mean difference<br>IV, fixed, 95% Cl<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)<br>3.85 (1.79, 5.91)<br>1.80 (-0.13, 3.73)<br>2.50 (0.62, 4.38)                      | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: $Z = 3.59$ ( $P = 0.0003$ )<br>Study or subgroup<br>2.2.1 Losartan vs. other ARBs at max dose SB<br>Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)<br>Subtotal (95% CI)<br>Heterogeneity: $\chi^2 = 0.06$ , df = 1 ( $P = 0.81$ ); $l^2 = 0\%$<br>Test for overall effect: $Z = 3.67$ ( $P = 0.0002$ )<br>2.2.2 Losartan vs. other ARBs at max dose DB<br>Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)<br>Subtotal (95% CI)                                                                                                                                                                  | <u>M</u><br>-<br>-<br>-<br>-      | Los<br>ean<br>-9.3<br>-5.6<br>-6.9<br>-3.6 | artan<br>SD<br>11.5<br>12.2<br>7.5<br>7.2 | Total 115 -<br>123<br>238<br>115<br>123<br>238      | Other /<br>Mean \$<br>-13.4<br>-9.2 11<br>-9.2 11<br>-8.7 7<br>-6.1 7    | ARBs           D         Total           11         116           .1         123           239           .5         116           .8         123           239                | Weight<br>50.2%<br>49.8%<br>100.0%<br>48.5%<br>51.5%           | Mean difference<br>IV, fixed, 95% Cl<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)<br>3.85 (1.79, 5.91)<br>1.80 (-0.13, 3.73)<br>2.50 (0.62, 4.38)<br>2.16 (0.81, 3.51) | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% CI |
| Test for overall effect: $Z = 3.59$ ( $P = 0.0003$ )<br>Study or subgroup<br>2.2.1 Losartan vs. other ARBs at max dose SB<br>Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al</i> . <sup>70</sup> (2011) (L100 vs. O40)<br>Subtotal (95% CI)<br>Heterogeneity: $Z^2 = 0.06$ , df = 1 ( $P = 0.81$ ); $I^2 = 0\%$<br>Test for overall effect: $Z = 3.67$ ( $P = 0.0002$ )<br>2.2.2 Losartan vs. other ARBs at max dose DB<br>Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al</i> . <sup>70</sup> (2011) (L100 vs. O40)<br>Subtotal (95% CI)<br>Heterogeneity: $Y^2 = 0.26$ , df = 1 ( $P = 0.61$ ): $I^2 = 0\%$                                                                                               | <u>М</u><br>-<br>-<br>Р           | Los<br>ean<br>-9.3<br>-5.6<br>-6.9<br>-3.6 | artan<br>SD<br>11.5<br>12.2<br>7.5<br>7.2 | Total M<br>115 -<br>123<br>238<br>115<br>123<br>238 | Other /<br>Mean 5<br>-13.4<br>-9.2 11<br>-8.7 7<br>-6.1 7                | ARBs<br>5D Total<br>11 116<br>1 123<br>239<br>.5 116<br>.8 123<br>239                                                                                                         | Weight<br>50.2%<br>49.8%<br>100.0%<br>48.5%<br>51.5%<br>100.0% | Mean difference<br>IV, fixed, 95% CI<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)<br>3.85 (1.79, 5.91)<br>1.80 (-0.13, 3.73)<br>2.50 (0.62, 4.38)<br>2.16 (0.81, 3.51) | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: $Z = 3.59$ ( $P = 0.0003$ )<br><b>Study or subgroup</b><br><b>2.1 Losartan vs. other ARBs at max dose SB</b><br>Lacourciere and Asma <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)<br><b>Subtotal (95% CI)</b><br>Heterogeneity: $\chi^2 = 0.06$ , df = 1 ( $P = 0.81$ ); $I^2 = 0\%$<br>Test for overall effect: $Z = 3.67$ ( $P = 0.0002$ )<br><b>2.2 Losartan vs. other ARBs at max dose DB</b><br>Lacourciere and Asma <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)<br><b>Subtotal (95% CI)</b><br>Heterogeneity: $\chi^2 = 0.26$ , df = 1 ( $P = 0.61$ ); $I^2 = 0\%$<br>Test for overall effect $Z = 3.14$ ( $P = 0.002$ )        |                                   | Los<br>ean<br>-9.3<br>-5.6<br>-6.9<br>-3.6 | artan<br>SD<br>11.5<br>12.2<br>7.5<br>7.2 | Total 1<br>115 -<br>123<br>238<br>115<br>123<br>238 | Other /<br>Mean \$<br>-13.4<br>-9.2 11<br>-9.2 11<br>-8.7 7<br>-6.1 7    | ARBs           D         Total           11         116           1.1         123           239           .5         116           .8         123           239               | Weight<br>50.2%<br>49.8%<br>100.0%<br>48.5%<br>51.5%<br>100.0% | Mean difference<br>IV, fixed, 95% Cl<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)<br>3.85 (1.79, 5.91)<br>1.80 (-0.13, 3.73)<br>2.50 (0.62, 4.38)<br>2.16 (0.81, 3.51) | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: $Z = 3.59$ ( $P = 0.0003$ )<br><b>Study or subgroup</b><br><b>2.2.1 Losartan vs. other ARBs at max dose SB</b><br>Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)<br><b>Subtotal (95% CI)</b><br>Heterogeneity: $\chi^2 = 0.06$ , df = 1 ( $P = 0.81$ ); $l^2 = 0\%$<br>Test for overall effect: $Z = 3.67$ ( $P = 0.0002$ )<br><b>2.2.2 Losartan vs. other ARBs at max dose DB</b><br>Lacourciere and Asmar <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)<br><b>Subtotal (95% CI)</b><br>Heterogeneity: $\chi^2 = 0.26$ , df = 1 ( $P = 0.61$ ); $l^2 = 0\%$<br>Test for overall effect: $Z = 3.14$ ( $P = 0.002$ ) | <u>М</u><br>-<br>-<br>-<br>-<br>- | Los<br>ean<br>-9.3<br>-5.6<br>-6.9<br>-3.6 | artan<br>SD<br>11.5<br>12.2<br>7.5<br>7.2 | Total M<br>115 -<br>123<br>238<br>115<br>123<br>238 | Other /<br>/lean \$<br>-13.4 1<br>-9.2 11<br>-9.2 11<br>-8.7 7<br>-6.1 7 | ARBs<br>ED Total<br>11 116<br>1 123<br>239<br>.5 116<br>.8 123<br>239                                                                                                         | Weight<br>50.2%<br>49.8%<br>100.0%<br>48.5%<br>51.5%<br>100.0% | Mean difference<br>IV, fixed, 95% Cl<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)<br>3.85 (1.79, 5.91)<br>1.80 (-0.13, 3.73)<br>2.50 (0.62, 4.38)<br>2.16 (0.81, 3.51) | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% CI |
| Test for overall effect: $Z = 3.59$ ( $P = 0.0003$ )<br><b>Study or subgroup</b><br><b>2.2.1 Losartan vs. other ARBs at max dose SB</b><br>Lacourciere and Asma <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al</i> <sup>70</sup> (2011) (L100 vs. O40)<br><b>Subtotal (95% CI)</b><br>Heterogeneity: $\chi^2 = 0.06$ , df = 1 ( $P = 0.81$ ); $l^2 = 0\%$<br>Test for overall effect: $Z = 3.67$ ( $P = 0.0002$ )<br><b>2.2.2 Losartan vs. other ARBs at max dose DB</b><br>Lacourciere and Asma <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al</i> <sup>70</sup> (2011) (L100 vs. O40)<br><b>Subtotal (95% CI)</b><br>Heterogeneity: $\chi^2 = 0.26$ , df = 1 ( $P = 0.61$ ); $l^2 = 0\%$<br>Test for overall effect: $Z = 3.14$ ( $P = 0.002$ )     |                                   | Los<br>ean<br>-9.3<br>-5.6<br>-6.9<br>-3.6 | artan<br>SD<br>11.5<br>12.2<br>7.5<br>7.2 | Total M<br>115 -<br>123<br>238<br>115<br>123<br>238 | Other /<br>/ean \$<br>-13.4 -<br>-9.2 11<br>-9.2 11<br>-8.7 7<br>-6.1 7  | IRBs         Total           10         Total           11         116           .1         123           239           .5         116           .8         123           239 | Weight<br>50.2%<br>49.8%<br>100.0%<br>48.5%<br>51.5%<br>100.0% | Mean difference<br>IV, fixed, 95% CI<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)<br>3.85 (1.79, 5.91)<br>1.80 (-0.13, 3.73)<br>2.50 (0.62, 4.38)<br>2.16 (0.81, 3.51) | -20 -10 0 10 20<br>Favours losartan Favours other antihypert<br>Mean difference<br>IV, fixed, 95% Cl |
| Test for overall effect: $Z = 3.59$ ( $P = 0.0003$ )<br><b>Study or subgroup</b><br><b>2.2.1 Losartan vs. other ARBs at max dose SB</b><br>Lacourciere and Asma <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)<br><b>Subtotal (95% CI)</b><br>Heterogeneity: $\chi^2 = 0.06$ , df = 1 ( $P = 0.81$ ); $l^2 = 0\%$<br>Test for overall effect: $Z = 3.67$ ( $P = 0.0002$ )<br><b>2.2.2 Losartan vs. other ARBs at max dose DB</b><br>Lacourciere and Asma <sup>40</sup> (1999) (L100 vs. C16)<br>Weir <i>et al.</i> <sup>70</sup> (2011) (L100 vs. O40)<br><b>Subtotal (95% CI)</b><br>Heterogeneity: $\chi^2 = 0.26$ , df = 1 ( $P = 0.61$ ); $l^2 = 0\%$<br>Test for overall effect: $Z = 3.14$ ( $P = 0.002$ )   |                                   | Los<br>ean<br>-9.3<br>-5.6<br>-6.9<br>-3.6 | artan<br>SD<br>11.5<br>12.2<br>7.5<br>7.2 | Total 1<br>115 -<br>123<br>238<br>115<br>123<br>238 | Other /<br>/lean \$<br>-13.4<br>-9.2 11<br>-9.2 11<br>-8.7 7<br>-6.1 7   | Interpretation         Interpretation           11         116           11         123           239           .5         116           .8         123           239         | Weight<br>50.2%<br>49.8%<br>100.0%<br>48.5%<br>51.5%<br>100.0% | Mean difference<br>IV, fixed, 95% Cl<br>4.10 (1.20, 7.00)<br>3.60 (0.69, 6.51)<br>3.85 (1.79, 5.91)<br>1.80 (-0.13, 3.73)<br>2.50 (0.62, 4.38)<br>2.16 (0.81, 3.51) | Mean difference<br>IV, fixed, 95% CI                                                                 |

**Figure 5** Forest plot showing 24 h ambulatory blood pressure reduction by losartan compared with other angiotensin receptor blockers. (*A*) Losartan 50 mg vs. other angiotensin receptor blockers at 50% maximum dose. (*B*) Losartan 100 mg vs. other angiotensin receptor blockers at max dose. DBP, diastolic blood pressure; SBP, systolic blood pressure; other abbreviations as in *Figure 3*.

| Tabl | le 3 | Sensitivit | y analysis | based on | baseline l | blood | l pressure |
|------|------|------------|------------|----------|------------|-------|------------|
|------|------|------------|------------|----------|------------|-------|------------|

|           | Baseline mean BP (±SI | D)               | Number of trials | Reduction in BP (95% CI)                   | Interaction P-value |
|-----------|-----------------------|------------------|------------------|--------------------------------------------|---------------------|
| 25% max   |                       |                  |                  |                                            |                     |
| Systolic  | 147.3 <u>+</u> 4.7    | <147.3<br>≥147.3 | 6<br>7           | 10.03 (8.56–11.50)<br>10.57 (8.94–12.20)   | 0.63                |
| Diastolic | 93.2 ± 4.1            | <93.2<br>≥93.2   | 6<br>7           | 7.44 (6.77–8.12)<br>6.27 (5.18–7.37)       | 0.09                |
| 50% max   |                       |                  |                  |                                            |                     |
| Systolic  | 146.6 ± 7.3           | <146.6<br>≥146.6 | 21<br>28         | 11.79 (10.55–13.04)<br>11.78 (10.45–13.10) | 0.99                |
| Diastolic | 90.1 ± 5.9            | <90.1<br>≥90.1   | 19<br>30         | 7.22 (6.02–8.42)<br>7.66 (6.92–8.59)       | 0.56                |
| Max dose  |                       |                  |                  |                                            |                     |
| Systolic  | 146.7 ± 7.8           | <146.7<br>≥146.7 | 12<br>23         | 12.66 (11.62–13.70)<br>13.32 (11.53–15.11) | 0.53                |
| Diastolic | 90.3 ± 4.9            | <90.3<br>≥90.3   | 16<br>19         | 7.90 (7.29–8.52)<br>8.71 (7.61–9.80)       | 0.20                |

Interaction *P*-value comparing reduction in BP above and below baseline mean BP. BP, blood pressure; CI, confidence interval; max, maximum; SD, standard deviation

response curve. Doubling the dose is a common clinical practice when proper blood pressure levels are not reached. In our analysis, doubling the dose merely increased the antihypertensive efficacy by <2 mmHg systolic or diastolic. Losartan had a similarly shallow dose–response curve and, in head-to-head comparisons with other ARBs, was significantly less efficacious at all doses.

The control of blood pressure in the USA remains far from adequate as was observed by the most recent NHANES data.  $^{76}$ Thus, it becomes increasingly important to better control blood pressure with currently available drugs. Monotherapy remains the standard initial treatment for reducing blood pressure in many hypertensive patients. However, if specific blood pressure targets are not reached, most physicians will resort to uptitrating the drug to its max dose before switching to combination therapy. Indeed the American Joint National Committee VII<sup>11</sup> advocates uptitration as a primary approach, and combination therapy may be used initially only if a patient's blood pressure is distinctly above the therapeutic goal. British hypertension guidelines<sup>77</sup> of 2011 recommend starting monotherapy with either calcium channel blockers or ACEinhibitors and then adding another antihypertensive agent if blood pressure is not under control. Our data make it clear that uptitration of monotherapy has little benefits for the antihypertensive regimen. Although ARBs may have a particularly shallow dose-response curve, the meta-analysis by Wald et al.<sup>78</sup> showed that the response was not much better among other antihypertensive drug classes with the exception of the calcium channel blockers. Wald et al. in this meta-analysis of more than 11 000 patients from 42 trials concluded that combining drugs from two different classes was approximately five times more effective in lowering blood pressure than doubling the dose. In fact, the most recent European Society of Cardiology guidelines on cardiovascular disease prevention<sup>79</sup> of 2012 recommend addition of drug from another class rather than uptitration for greater BP control. The guidelines also recommend treatment initiation with combination therapy in patients at high risk in whom early BP control is required.<sup>79</sup> In a meta-analysis of 354 trials,<sup>80</sup> reduction in blood pressure was only 20% lower with half standard dose compared with standard dose and was consistent among all antihypertensive agents. However, the dose-related adverse events were significantly lower with half standard dose compared with standard dose with thiazides, calcium channel blockers, and beta-blockers, but not with ACE-inhibitors and ARBs.<sup>80</sup> In the same meta-analysis, they showed that the reductions in BP were additive with low-dose combination therapy, but the adverse effects were less than additive compared with uptitration.<sup>80</sup> Several studies have shown that fixed combinations improve efficacy and adherence without increasing the overall adverse effects.<sup>81</sup> In a study comparing combination of valsartan and hydrochlorothiazide (HCTZ) with individual monotherapy, reduction in SBP/DBP was 16.7/8.6 mmHg with combination compared with 14.2/7.9 mmHg with valsartan alone and 9.0/3.9 mmHg with HCTZ alone.<sup>26</sup> Similarly, in a study comparing combination of olmesartan and azelnidipine with individual monotherapy, reduction in SBP/DBP was 22.1/13.5 mmHg with combination compared with 12.1/6.9 mmHg with olmesartan and 12.0/6.9 mmHg with azelnidipine.<sup>53</sup> Thus, antihypertensive combination therapy may be considered over uptitration of a single agent for better hypertension management. Angiotensin receptor blockers are available in fixed combinations with thiazide diuretics

(HCTZ and chlorthalidone) as well as with calcium channel blockers (amlodipine).

Our analysis provides good evidence that antihypertensive efficacy of losartan is weaker compared with other ARBs and increasing the dosage from 50 to 100 mg contributes less to further BP reduction. The antihypertensive efficacy of losartan has been under fire ever since it was marketed.<sup>82</sup> Although all ARBs act by blocking angiotensin II receptor blocker, pharmacokinetic differences exist and may be the reason for the difference in antihypertensive efficacy. In a group of normotensive subjects comparing losartan with irbesartan and valsartan, losartan had the weakest angiotensin II antagonist effect; whereas irbesartan showed the slowest decay and longest duration of antagonist effects.<sup>83,84</sup> At 4 h, losartan blocked 43% of angiotensin II-induced systolic BP increase, compared with 51% with valsartan and 88% with irbesartan.<sup>84</sup> The results were similar when angiotensin II receptor blockade was assessed by the reactive rise in plasma angiotensin II levels and with an *in vitro* receptor assay.<sup>84</sup> In several head-to-head comparisons with other ARBs and meta-analyses, losartan lowered the blood pressure less well than other ARBs; however, for office blood pressure, this may be of questionable significance.<sup>1</sup> Its dose-response curve was so shallow that it was initially marketed in one dose only, and instead of uptitration from 50 to 100 mg, add-on therapy with HCTZ was advised.

## Limitations

As with other meta-analyses, given the lack of data in each trial, we did not adjust our analysis for adherence to therapy. Also, the results are subject to limitations inherent to any meta-analysis based on pooling of data from different trials with different duration and different patient groups. We tried to minimize the effect of other antihypertensive drugs by excluding the studies that had second- or third-line agents added to control high BP. We also excluded studies that uptitrated the dose of ARB, since this study aimed at measuring 24 h BP at specifically 25% max, 50% max, and at the max dose. Blood pressure response to any drug depends on baseline blood pressure. However, we included only a rather homogeneous patient population with mild to moderate hypertension. Sensitivity analysis comparing studies with above baseline BP with those below baseline did not show a significant difference. Adequate data were not available to perform the head-to-head comparison between different ARBs except losartan.

#### Conclusion

As evaluated by 24 h ABP, uptitration of ARBs marginally enhances their antihypertensive efficacy. Antihypertensive efficacy of losartan at starting dose and at max dose is consistently inferior to other ARBs.

# **Authors' contributions**

H.M. had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: H.M., S.B., and F.H.M.; acquisition of data: H.M. and J.R.; analysis and interpretation of data: H.M., S.B., and F.H.M.; drafting of the manuscript: H.M., S.B., and F.H.M.; critical revision of the manuscript for important intellectual content: H.M., S.B., E.A., J.R., A.S., and F.H.M.; statistical analysis: H.M. and A.S.; study supervision: F.H.M. and H.M.

**Conflict of interest:** F.H.—*ad hoc* consultant/speaker for the following organizations: Novartis, Daiichi Sankyo, Pfizer, Takeda, Abbott, Medtronic, Servier, and Bayer. S.B.—advisory board: Daiichi Sankyo, Boehringer Ingelheim, Pfizer. H.M., E.A., J.R., A.S.: none.

#### References

- Heran B, Wong M, Heran I, Wright J. Blood pressure lowering efficacy of angiotensin receptor blockers for primary hypertension. *Cochrane Database Syst Rev* 2008; (4):CD003822. Review.
- Song JC, White CM. Pharmacologic, pharmacokinetic, and therapeutic differences among angiotensin II receptor antagonists. *Pharmacotherapy* 2000;20:130–139.
- Conlin PR, Spence JD, Williams B, Ribeiro AB, Saito I, Benedict C, Bunt AM. Angiotensin II antagonists for hypertension: are there differences in efficacy? *Am J Hypertens* 2000;**13**:418–426.
- Xi GL, Cheng JW, Lu GC. Meta-analysis of randomized controlled trials comparing telmisartan with losartan in the treatment of patients with hypertension. *Am J Hyper*tens 2008;**21**:546–552.
- Smith DH, Cramer MJ, Neutel JM, Hettiarachchi R, Koval S. Comparison of telmisartan versus losartan: meta-analysis of titration-to-response studies. *Blood Press Monit* 2003;8:111–117.
- Clement DL, De Buyzere ML, De Bacquer DA, de Leeuw PW, Duprez DA, Fagard RH, Gheeraert PJ, Missault LH, Braun JJ, Six RO, Van Der Niepen P, O'Brien E. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. *N Engl J Med* 2003;**348**:2407–2415.
- Higgins J, Green S. Assessing Risk of Bias in Included Studies. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.0.0. Oxford: The Cochrane Collaboration; 2008. p672.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ* 2009;339:b2535.
- 9. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials* 1986;**7**: 177–188.
- Follmann D, Elliott P, Suh I, Cutler J. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol 1992;45:769–773.
- Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003;289:2560–2572.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 1997;315:629–634.
- Altman DG, Bland JM. Interaction revisited: the difference between two estimates. BMJ 2003;326:219.
- Andersen S, Tarnow L, Rossing P, Hansen BV, Parving HH. Renoprotective effects of angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy. *Kidney Int* 2000;57:601–606.
- Baguet JP, Nisse-Durgeat S, Mouret S, Asmar R, Mallion JM. A placebo-controlled comparison of the efficacy and tolerability of candesartan cilexetil, 8 mg, and losartan, 50 mg, as monotherapy in patients with essential hypertension, using 36-h ambulatory blood pressure monitoring. *Int J Clin Pract* 2006;**60**:391–398.
- Bakris G, Sica D, Ram V, Fagan T, Vaitkus PT, Anders RJ. A comparative trial of controlled-onset, extended-release verapamil, enalapril, and losartan on blood pressure and heart rate changes. *Am J Hypertens* 2002;**15**:53–57.
- Brunner HR, Stumpe KO, Januszewicz A. Antihypertensive efficacy of olmesartan medoxomil and candesartan cilexetil assessed by 24-hour ambulatory blood pressure monitoring in patients with essential hypertension. *Clin Drug Investig* 2003;23: 419–430.
- Byyny RL. Antihypertensive efficacy of the angiotensin II AT1-receptor antagonist losartan: results of a randomized, double-blind, placebo-controlled, parallel-group trial using 24-hour blood pressure monitoring. Ambulatory Blood Pressure Monitoring Study Group. *Blood Press Suppl* 1996;2:71–77.
- Chanudet X, De Champvallins M. Antihypertensive efficacy and tolerability of low-dose perindopril/indapamide combination compared with losartan in the treatment of essential hypertension. *Int J Clin Pract* 2001;55:233–239.
- Chrysant SG, Marbury TC, Robinson TD. Antihypertensive efficacy and safety of olmesartan medoxomil compared with amlodipine for mild-to-moderate hypertension. J Hum Hypertens 2003;17:425–432.
- Chung O, Hinder M, Sharma AM, Bonner G, Middeke M, Platon J, Unger T. Comparison of the efficacy and safety of losartan (50–100 mg) with the T-type calcium channel blocker mibefradil (50–100 mg) in mild to moderate hypertension. *Fundam Clin Pharmacol* 2000;**14**:31–41.
- Crowe AV, Howse M, Vinjamuri S, Kemp GJ, Williams PS. The antiproteinuric effect of losartan is systemic blood pressure dependent. *Nephrol Dial Transplant* 2003;18: 2160–2164.

- de Champlain J, Karas M, Assouline L, Nadeau R, LeBlanc AR, Dube B, Larochelle P. Effects of valsartan or amlodipine alone or in combination on plasma catecholamine levels at rest and during standing in hypertensive patients. *J Clin Hypertens (Greenwich)* 2007;**9**:168–178.
- Destro M, Scabrosetti R, Vanasia A, Mugellini A. Comparative efficacy of valsartan and olmesartan in mild-to-moderate hypertension: results of 24-hour ambulatory blood pressure monitoring. *Adv Ther* 2005;**22**:32–43.
- 25. Ding PY, Chu KM, Chiang HT, Shu KH. A double-blind ambulatory blood pressure monitoring study of the efficacy and tolerability of once-daily telmisartan 40 mg in comparison with losartan 50 mg in the treatment of mild-to-moderate hypertension in Taiwanese patients. *Int J Clin Pract Suppl* 2004;**125**:16–22.
- Duprez DA, Weintraub HS, Cushman WC, Purkayastha D, Zappe D, Samuel R, Izzo JL Jr. Effect of valsartan, hydrochlorothiazide, and their combination on 24-h ambulatory blood pressure response in elderly patients with systolic hypertension: a ValVET substudy. *Blood Press Monit* 2011;**16**:186–196.
- Düsing R, Brunel P, Baek I, Baschiera F. Sustained decrease in blood pressure following missed doses of aliskiren or telmisartan: the ASSERTIVE double-blind, randomized study. J Hypertens 2012;30:1029–1040.
- Fagard R, Lijnen P, Pardaens K, Thijs L, Vinck W. A randomised, placebo-controlled, double-blind, crossover study of losartan and enalapril in patients with essential hypertension. J Hum Hypertens 2001;15:161–167.
- Fogari R, Zoppi A, Mugellini A, Preti P, Destro M, Rinaldi A, Derosa G. Hydrochlorothiazide added to valsartan is more effective than when added to olmesartan in reducing blood pressure in moderately hypertensive patients inadequately controlled by monotherapy. Adv Ther 2006;23:680–695.
- 30. Fogari R, Zoppi A, Mugellini A, Preti P, Destro M, Rinaldi A, Derosa G. Effectiveness of hydrochlorothiazide in combination with telmisartan and olmesartan in adults with moderate hypertension not controlled with monotherapy: a prospective, randomized, open-label, blinded end point (PROBE), parallel-arm study. *Curr Ther Res Clin Exp* 2008;69:1–15.
- Galzerano D, Tammaro P, Cerciello A, Breglio R, Mallardo M, Lama D, Tuccillo B, Capogrosso P. Freehand three-dimensional echocardiographic evaluation of the effect of telmisartan compared with hydrochlorothiazide on left ventricular mass in hypertensive patients with mild-to-moderate hypertension: a multicentre study. *J Hum Hypertens* 2004;**18**:53–59.
- Galzerano D, Tammaro P, del Viscovo L, Lama D, Galzerano A, Breglio R, Tuccillo B, Paolisso G, Capogrosso P. Three-dimensional echocardiographic and magnetic resonance assessment of the effect of telmisartan compared with carvedilol on left ventricular mass a multicenter, randomized, longitudinal study. *Am J Hypertens* 2005;**18**: 1563–1569.
- Guasti L, Zanotta D, Diolisi A, Garganico D, Simoni C, Gaudio G, Grandi AM, Venco A. Changes in pain perception during treatment with angiotensin converting enzyme-inhibitors and angiotensin II type 1 receptor blockade. J Hypertens 2002;20: 485–491.
- Hermida RC, Calvo C, Ayala DE, Mojon A, Rodriguez M, Chayan L, Lopez JE, Fontao MJ, Soler R, Fernandez JR. Administration time-dependent effects of valsartan on ambulatory blood pressure in elderly hypertensive subjects. *Chronobiol Int* 2005;22:755–776.
- Hermida RC, Ayala DE, Fernandez JR, Calvo C. Comparison of the efficacy of morning versus evening administration of telmisartan in essential hypertension. *Hypertension* 2007;50:715–722.
- Hermida RC, Ayala DE, Chayan L, Mojon A, Fernandez JR. Administration-timedependent effects of olmesartan on the ambulatory blood pressure of essential hypertension patients. *Chronobiol Int* 2009;26:61–79.
- Kawano Y, Sato Y, Yoshinaga K. A randomized trial of the effect of an angiotensin II receptor blocker SR47436 (irbesartan) on 24-hour blood pressure in patients with essential hypertension. *Hypertens Res* 2008;**31**:1753–1763.
- Kraiczi H, Hedner J, Peker Y, Grote L. Comparison of atenolol, amlodipine, enalapril, hydrochlorothiazide, and losartan for antihypertensive treatment in patients with obstructive sleep apnea. *Am J Respir Crit Care Med* 2000;**161**:1423–1428.
- Kuschnir E, Bendersky M, Resk J, Panart MS, Guzman L, Plotquin Y, Grassi G, Mancia G, Wagener G. Effects of the combination of low-dose nifedipine GITS 20 mg and losartan 50 mg in patients with mild to moderate hypertension. *J Cardiovasc Pharmacol* 2004;**43**:300–305.
- Lacourciere Y, Asmar R. A comparison of the efficacy and duration of action of candesartan cilexetil and losartan as assessed by clinic and ambulatory blood pressure after a missed dose, in truly hypertensive patients: a placebo-controlled, forced titration study. Candesartan/Losartan study investigators. *Am J Hypertens* 1999;**12**: 1181–1187.
- Lacourciere Y, Neutel JM, Davidai G, Koval S. A multicenter, 14-week study of telmisartan and ramipril in patients with mild-to-moderate hypertension using ambulatory blood pressure monitoring. *Am J Hypertens* 2006;**19**:104–112.
- 42. Littlejohn T, Mroczek W, Marbury T, VanderMaelen CP, Dubiel RF. A prospective, randomized, open-label trial comparing telmisartan 80 mg with valsartan 80 mg in

patients with mild to moderate hypertension using ambulatory blood pressure monitoring. *Can J Cardiol* 2000;**16**:1123–1132.

- London G, Schmieder R, Calvo C, Asmar R. Indapamide SR versus candesartan and amlodipine in hypertension: the X-CELLENT Study. Am J Hypertens 2006;19: 113–121.
- Mallion J, Siche J, Lacourciere Y. ABPM comparison of the antihypertensive profiles of the selective angiotensin II receptor antagonists telmisartan and losartan in patients with mild-to-moderate hypertension. J Hum Hypertens 1999;13:657–664.
- Matsumoto S, Shimodozono M, Miyata R, Kawahira K. Effect of the angiotensin II type 1 receptor antagonist olmesartan on cerebral hemodynamics and rehabilitation outcomes in hypertensive post-stroke patients. *Brain Inj* 2009;23:1065–1072.
- 46. Meier P, Maillard MP, Meier JR, Tremblay S, Gauthier T, Burnier M. Combining blockers of the renin-angiotensin system or increasing the dose of an angiotensin II receptor antagonist in proteinuric patients: a randomized triple-crossover study. *J Hypertens* 2011;**29**:1228–1235.
- Morgan T, Anderson A. A comparison of candesartan, felodipine, and their combination in the treatment of elderly patients with systolic hypertension. *Am J Hypertens* 2002;**15**:544–549.
- Morgan T, Anderson A, Bertram D, MacInnis RJ. Effect of candesartan and lisinopril alone and in combination on blood pressure and microalbuminuria. J Renin Angiotensin Aldosterone Syst 2004;5:64–71.
- Munakata M, Nagasaki A, Nunokawa T, Sakuma T, Kato H, Yoshinaga K, Toyota T. Effects of valsartan and nifedipine coat-core on systemic arterial stiffness in hypertensive patients. Am J Hypertens 2004;17:1050–1055.
- Neutel J, Weber M, Pool J, Smith D, Fitzsimmons S, Chiang YT, Gatlin M. Valsartan, a new angiotensin II antagonist: antihypertensive effects over 24 hours. *Clin Ther* 1997; 19:447–458; Discussion 367–368.
- Neutel JM, Elliott WJ, Izzo JL, Chen CL, Masonson HN. Antihypertensive efficacy of olmesartan medoxomil, a new angiotensin II receptor antagonist, as assessed by ambulatory blood pressure measurements. J Clin Hypertens (Greenwich) 2002;4: 325–331.
- Neutel JM, Kolloch RE, Plouin PF, Meinicke TW, Schumacher H. Telmisartan vs losartan plus hydrochlorothiazide in the treatment of mild-to-moderate essential hypertension—a randomised ABPM study. J Hum Hypertens 2003;17:569–575.
- 53. Ogihara T, Saruta T, Shimada K, Kuramoto K. A randomized, double-blind, four-arm parallel-group study of the efficacy and safety of azelnidipine and olmesartan medoxomil combination therapy compared with each monotherapy in Japanese patients with essential hypertension: the REZALT study. *Hypertens Res* 2009;**32**:1148–1154.
- Palatini P, Jung W, Shlyakhto E, Botha J, Bush C, Keefe DL. Maintenance of blood-pressure-lowering effect following a missed dose of aliskiren, irbesartan or ramipril: results of a randomized, double-blind study. J Hum Hypertens 2010;24:93–103.
- 55. Parati G, Giglio A, Lonati L, Destro M, Ricci AR, Cagnoni F, Pini C, Venco A, Maresca AM, Monza M, Grandi AM, Omboni S. Effectiveness of barnidipine 10 or 20 mg plus losartan 50-mg combination versus losartan 100-mg monotherapy in patients with essential hypertension not controlled by losartan 50-mg monotherapy: a 12-week, multicenter, randomized, open-label, parallel-group study. *Clin Ther* 2010;**32**:1270–1284.
- Pechere-Bertschi A, Nussberger J, Decosterd L, Armagnac C, Sissmann J, Bouroudian M, Brunner HR, Burnier M. Renal response to the angiotensin II receptor subtype 1 antagonist irbesartan versus enalapril in hypertensive patients. *J Hypertens* 1998;**16**:385–393.
- Podzolkov VI, Bulatov VA, Son EA, Os I. Central and peripheral hemodynamic effects of losartan and in combination with hydrochlorothiazide in mild to moderate essential hypertension. *Blood Press* 2003;**12**:239–245.
- Poirier L, de Champlain J, Larochelle P, Lamarre-Cliche M, Lacourciere Y. A comparison of the efficacy and duration of action of telmisartan, amlodipine and ramipril in patients with confirmed ambulatory hypertension. *Blood Press Monit* 2004;9:231–236.
- Povedano ST, Garcia De La Villa G. 24-hour and nighttime blood pressure monitoring in type 2 diabetic hypertensive patients. J Clin Hypertens (Greenwich) 2009;11:426–431.
- Ragot S, Genes N, Vaur L, Herpin D. Comparison of three blood pressure measurement methods for the evaluation of two antihypertensive drugs: feasibility, agreement, and reproducibility of blood pressure response. *Am J Hypertens* 2000;**13**: 632–639.
- Rajagopalan S, Zannad F, Radauceanu A, Glazer R, Jia Y, Prescott MF, Kariisa M, Pitt B. Effects of valsartan alone versus valsartan/simvastatin combination on ambulatory blood pressure, C-reactive protein, lipoproteins, and monocyte chemoattractant protein-1 in patients with hyperlipidemia and hypertension. *Am J Cardiol* 2007;**100**: 222–226.
- 62. Sasso FC, Carbonara O, Persico M, Iafusco D, Salvatore T, D'Ambrosio R, Torella R, Cozzolino D. Irbesartan reduces the albumin excretion rate in microalbuminuric type 2 diabetic patients independently of hypertension: a randomized double-blind placebo-controlled crossover study. *Diabetes Care* 2002;**25**:1909–1913.
- Smith DH, Dubiel R, Jones M. Use of 24-hour ambulatory blood pressure monitoring to assess antihypertensive efficacy: a comparison of olmesartan medoxomil, losartan potassium, valsartan, and irbesartan. *Am J Cardiovasc Drugs* 2005;5:41–50.

- Stergiou GS, Efstathiou SP, Skeva II, Baibas NM, Kalkana CB, Mountokalakis TD. Assessment of drug effects on blood pressure and pulse pressure using clinic, home and ambulatory measurements. J Hum Hypertens 2002;16:729–735.
- Stergiou GS, Efstathiou SP, Roussias LG, Mountokalakis TD. Blood pressure- and pulse pressure-lowering effects, trough:peak ratio and smoothness index of telmisartan compared with lisinopril. J Cardiovasc Pharmacol 2003;42:491–496.
- 66. Suonsyrja T, Hannila-Handelberg T, Paavonen KJ, Miettinen HE, Donner K, Strandberg T, Tikkanen I, Tilvis R, Pentikainen PJ, Kontula K, Hiltunen TP. Laboratory tests as predictors of the antihypertensive effects of amlodipine, bisoprolol, hydrochlorothiazide and losartan in men: results from the randomized, double-blind, crossover GENRES Study. J Hypertens 2008;26:1250–1256.
- Tedesco MA, Ratti G, Aquino D, Limongelli G, di Salvo G, Mennella S, Galzerano D, larussi D, lacono A. Effects of losartan on hypertension and left ventricular mass: a long-term study. J Hum Hypertens 1998;12:505–510.
- Ubaid-Girioli S, Ferreira-Melo SE, Souza LA, Nogueira EA, Yugar-Toledo JC, Coca A, Moreno H Jr. Aldosterone escape with diuretic or angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker combination therapy in patients with mild to moderate hypertension. J Clin Hypertens (Greenwich) 2007;9:770–774.
- Weber MA, Byyny RL, Pratt JH, Faison EP, Snavely DB, Goldberg AI, Nelson EB. Blood pressure effects of the angiotensin II receptor blocker, losartan. Arch Intern Med 1995;155:405–411.
- Weir MR, Punzi HA, Flack JM, Stoakes KA, Chavanu KJ, Li W, Dubiel R. A randomized, double-blind, forced-titration study to compare olmesartan medoxomil versus losartan potassium in patients with stage 1 and 2 hypertension. *Postgrad Med* 2011;**123**:80–87.
- White WB, Anwar YA, Mansoor GA, Sica DA. Evaluation of the 24-hour blood pressure effects of eprosartan in patients with systemic hypertension. *Am J Hypertens* 2001;**14**:1248–1255.
- White WB, Lacourciere Y, Davidai G. Effects of the angiotensin II receptor blockers telmisartan versus valsartan on the circadian variation of blood pressure: impact on the early morning period. Am J Hypertens 2004;17:347–353.
- 73. White WB, Weber MA, Sica D, Bakris GL, Perez A, Cao C, Kupfer S. Effects of the angiotensin receptor blocker azilsartan medoxomil versus olmesartan and valsartan on ambulatory and clinic blood pressure in patients with stages 1 and 2 hypertension. *Hypertension* 2011;**57**:413–420.
- Williams B, Gosse P, Lowe L, Harper R. The prospective, randomized investigation of the safety and efficacy of telmisartan versus ramipril using ambulatory blood pressure monitoring (PRISMA I). J Hypertens 2006;24:193–200.
- Yasuda G, Ando D, Hirawa N, Umemura S, Tochikubo O. Effects of losartan and amlodipine on urinary albumin excretion and ambulatory blood pressure in hypertensive type 2 diabetic patients with overt nephropathy. *Diabetes Care* 2005;28: 1862–1868.
- Guo F, He D, Zhang W, Walton RG. Trends in prevalence, awareness, management, and control of hypertension among United States adults, 1999 to 2010. J Am Coll Cardiol 2012;60:599–606.
- National Institute for Health and Clinical Excellence. Guidance. Hypertension: the clinical management of primary hypertension in adults: update of Clinical Guidelines 18 and 34. August 2011. http://www.nice.org.uk/nicemedia/live/13561/56007/ 56007.pdf (12 December 2012).
- Wald DS, Law M, Morris JK, Bestwick JP, Wald NJ. Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. *Am J Med* 2009;**122**:290–300.
- 79. Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, Verschuren M, Albus C, Benlian P, Boysen G, Cifkova R, Deaton C, Ebrahim S, Fisher M, Germano G, Hobbs R, Hoes A, Karadeniz S, Mezzani A, Prescott E, Ryden L, Scherer M, Syvanne M, Scholte op Reimer WJ, Vrints C, Wood D, Zamorano JL, Zannad F. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). *Eur Heart* J 2012;33:1635–1701.
- Law MR, Wald NJ, Morris JK, Jordan RE. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. *BMJ* 2003; 326:1427.
- Bangalore S, Kamalakkannan G, Parkar S, Messerli FH. Fixed-dose combinations improve medication compliance: a meta-analysis. *Am J Med* 2007;**120**:713–719.
- Messerli FH. . . . and losartan was no better than placebo. J Hum Hypertens 1999;13: 649-650.
- Belz GG, Butzer R, Kober S, Mang C, Mutschler E. Time course and extent of angiotensin II antagonism after irbesartan, losartan, and valsartan in humans assessed by angiotensin II dose response and radioligand receptor assay. *Clin Pharmacol Ther* 1999;**66**:367–373.
- Mazzolai L, Maillard M, Rossat J, Nussberger J, Brunner HR, Burnier M. Angiotensin II receptor blockade in normotensive subjects: a direct comparison of three AT1 receptor antagonists. *Hypertension* 1999;33:850–855.