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ABSTRACT

Motivation: Various human pathogens secret effector proteins into

hosts cells via the type IV secretion system (T4SS). These proteins

play important roles in the interaction between bacteria and hosts.

Computational methods for T4SS effector prediction have been de-

veloped for screening experimental targets in several isolated bacterial

species; however, widely applicable prediction approaches are still

unavailable

Results: In this work, four types of distinctive features, namely, amino

acid composition, dipeptide composition, .position-specific scoring

matrix composition and auto covariance transformation of position-

specific scoring matrix, were calculated from primary sequences. A

classifier, T4EffPred, was developed using the support vector machine

with these features and their different combinations for effector pre-

diction. Various theoretical tests were performed in a newly estab-

lished dataset, and the results were measured with four indexes. We

demonstrated that T4EffPred can discriminate IVA and IVB effectors in

benchmark datasets with positive rates of 76.7% and 89.7%, respect-

ively. The overall accuracy of 95.9% shows that the present method is

accurate for distinguishing the T4SS effector in unidentified se-

quences. A classifier ensemble was designed to synthesize all single

classifiers. Notable performance improvement was observed using

this ensemble system in benchmark tests. To demonstrate the

model’s application, a genome-scale prediction of effectors was per-

formed in Bartonella henselae, an important zoonotic pathogen.

A number of putative candidates were distinguished.

Availability: A web server implementing the prediction method and

the source code are both available at http://bioinfo.tmmu.edu.cn/

T4EffPred.
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Bacterial pathogens translocate numerous effector proteins into

the extracellular environment of host cells via secretion systems.
These proteins play critical roles in virulence and survival. In

gram-negative bacteria, secretion systems are classified into

seven major evolutionarily and functionally related subclasses,

termed types I–VII (Tseng et al., 2009). In recent years, type

III and type IV secretion systems (T3SS and T4SS), which

allow injection of effectors directly into the host cell cytoplasm,

have been widely studied (Cambronne and Roy, 2006; Galan and

Wolf-Watz, 2006; Llosa et al., 2009). T4SS consists of transmem-

brane multi-protein complexes and exists in many zoonotic

pathogens, such as Brucella sp., Bartonella henselae, Coxiella

burnetii, as well as in some other gram-negative pathogens,

such as Bordetella pertussis, Helicobacter pylori and

L.pneumophila (Chandran et al., 2009; Fronzes et al., 2009).

Many T4SS effectors, including two main subtypes called IVA

and IVB, have been confirmed to be involved in the pathogen-

icity of these species (Llosa et al., 2009). To adapt to different

hosts and different survival strategies, the arsenal of known

effectors varies widely across bacterial species and even shows

distinct differences between bacterial strains.
Recently, a number of novel T4SS effectors have been identi-

fied by experimental approaches such as fusion protein report

assays (Burstein et al., 2009; Chen et al., 2010; Lockwood et al.,

2011; Marchesini et al., 2011; Zhu et al., 2011). In many of these

studies, previously developed bioinformatics screening strategies

were adopted to predict effector candidates in genomic proteins

before experimental translocation verification. Sequence hom-

ology to known effectors and conserved domain analysis were

used to detect putative effectors in the genome of Brucella abor-

tus (Marchesini et al., 2011). An omnibus method, synthesizing

hydropathy profile comparison, eukaryotic domain search,

signal peptide identification and sequence similarity alignment,

was built to scan genomic sequences of Anaplasma marginale

for potential T4SS effectors (Lockwood et al., 2011). Two

approaches based on feature extraction and machine learning

algorithms were developed for large-scale effector identification

in L.pneumophila (Burstein et al., 2009) and C.burnetii (Chen

et al., 2010), respectively. A hidden semi-Markov model

(HSMM) was constructed to describe C-terminal patterns and

predict type-IVB secretion signals with high accuracy (Lifshitz

et al., 2013). Established methods for detecting the regulatory

elements or C-terminal translocation signals of eukaryotic pro-

teins were applied before screening of the experimental targets,

resulting in most of the T4SS effectors being identified in

L.pneumophila (Segal, 2013; Zhu et al., 2011).
The computational filters in these existing methods success-

fully selected a small portion of the genomic proteins as candi-

dates for experimental identification. However, these methods*To whom correspondence should be addressed.
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are not exhaustive enough and are not generally applicable for
secretion signal detection, especially for modelling type-IVA

signal. Homology search based on sequence alignment can

only find candidates that are similar to known effectors.
Scanning of regulatory elements or C-terminal signals relies on

the known motifs in the sequences of effectors and their pro-

moters, which are conserved but specific to effector families.

Furthermore, all existing machine learning models are based on
sequence features from a small supply of known effectors from

particular bacterial species. Therefore, they are often not accurate

for genomic effector discovery in other bacterial species. There are
5300 experimentally validated effectors in the 1884 known ef-

fectors stored in the SecReT4 database (Bi et al., 2013).

Although several methods have reported excellent performance
in identifying T3SS effectors in awide variety of bacterial genomes

(Arnold et al., 2009; Sato et al., 2011; Wang et al., 2011; Yang

et al., 2010), they are not recommended for T4SS effector predic-

tion due to low accuracies. Accurate prediction approaches that
are widely applicable to mining putative type-IVA or type-IVB

effectors in gram-negative pathogens are still absent.
Several computational approaches based on existing machine

learning algorithms, e.g. Naive Bayes, hidden Markov models,

artificial neural network and support vector machine (SVM),
have successfully predicted T3SS secreted signals (Arnold et al.,

2009; Lower and Schneider 2009; Samudrala et al., 2009; Wang

et al., 2011; Yang et al., 2010). However, the accuracy of machine

learning approach depends on the quantities of authentic nega-
tive and positive samples. Studies identifying T3SS effectors are

abundant, but those identifying T4SS effectors are rare. The two

recently published databases, AtlasT4SS (Souza et al., 2012) and
SecRet4 (Bi et al., 2013), have announced freely available data-

sets for T4SS components and secreted proteins. These datasets

provide numerous samples to train and optimize machine learn-

ing models for T4SS effectors prediction.
In this article, we propose a SVM model using four types of

features calculated from residue composition and position-spe-
cific scoring matrix (PSSM) profiles. The machine learning-based

model is trained on a set of experimentally validated T4SS ef-

fectors and 1132 non-effectors and is used to provide accurate
predictions of T4SS secreted proteins in evolutionarily distinct

bacteria. We demonstrate that our model can discriminate be-

tween IVA effectors (or IVB effectors) and non-effectors, with an

accuracy of 93.3% (or 95.9%), via leave-one-tests. To the best of
our knowledge, this is the first method to predict IVA effectors in

gram-negative bacteria. Genomic-scale prediction of effectors in

the zoonotic pathogen B.henselae is also performed and dis-
cussed. A list of predicted candidates from B.henselae may be

of academic interest in studying human pathogenic bacteria.

2 METHODS

2.1 Dataset

We constructed a dataset of known effectors and a dataset of non-

effectors. To collect known effectors, all experimentally validated effector

sequences were extracted from the effector dataset in the SecRet4 data-

base. In addition, other T4SS effectors confirmed by experiments were

collected from other studies. Four hundred and twenty six effectors

(51 IVA sequences and 375 IVB sequences) comprised the initial effector

dataset. Because a dataset of experimentally validated non-effectors was

unavailable, we searched for genes from 10 T4SS pathogens that are also

present as homologous genes in the Escherichia coli genome. These patho-

gens, including Agrobacterium sp., A.marginale, B.henselae, B.pertussis,

Brucella melitensis, C.burnetii, Ehrlichia chaffeensis, H.pylori,

L.pneumophila and Ochrobactrum anthropic, secrete a majority of the

currently known T4SS effectors. The genes that exist in these organisms

and in E.coli are most likely not associated with pathogenicity and are

thus expected to be non-effectors. To document these genes, the genomic

proteins from the 10 pathogens were compared against E.coli proteins

using Basic Local Alignment Search Tool (BLAST). Each pathogen pro-

tein with an E-value51e-20 and sequence similarity with E.coli450%

was extracted. The 1000 non-effector proteins collected by Lifshitz et al.

(Lifshitz et al., 2013) and a number of proteins in UniProt that have been

annotated and reviewed as non-secreted proteins were also appended in

the non-effector list. Additionally, all experimentally validated T4SS com-

ponent proteins derived from the SecRet4 database were included in the

non-effector dataset. Furthermore, 471 proteins from the 10 pathogens

with unique experimentally validated subcellular localization in

ePSORTb (intracellular and extracellular with definite functions) (Rey

et al., 2005) were also filtered out and added to the complete non-effector

list containing 5649 sequences.

To filter out orthologous and paralogous proteins, two steps were

performed successively. First, all sequences in each dataset were clustered

using BLAST, with the parameters of 20% sequence identity and 80%

coverage. Only one seed sequence in each cluster remained for the next

step. Second, an all-against-all comparison of full-length sequences using

the Smith–Waterman algorithm was performed. The Water program in

the European Molecular Biology Open Software Suite (EMBOSS) pack-

age was used to implement this pairwise alignment process. For each pair,

the ratio between the pairwise score, Spair, and the self-alignment score,

Sself, was computed, and sequences were iteratively grouped if they

showed a Spair/Sself value �0.15. This measure has excellent sensitivity

and is similar to the measure used by Arnold et al. (Arnold et al.,

2009) for the detection of putative orthologs in T3SS effector sequences.

After these steps, 340 effectors (30 IVA proteins and 310 IVB proteins)

and 1132 non-effectors were retained in the final datasets, which are col-

lectively referred to as T4_1472 in this study.

2.2 Composition of amino acids and amino acid pairs

For protein sequence A, we used a 20-D vector {f1, f2, . . . , f20} and a

400-D vector {d1, d2, . . . , d400} to represent the composition of 20

amino acids and 400 amino acid pairs, respectively. The 20 elements in

{f1, f2, . . . , f20} represent the number of amino acids normalized with the

total number of residues of A. The 400 elements in {d1, d2, . . . , d400}

represent the number of 400 amino acid pairs normalized with the total

number of residue pairs of A.

2.3 PSSM profiles and auto covariance transformation

The PSSM of a protein contains the protein’s amino acid substitution

scores. Hence, we adopted PSSM profiles, which were used for subcellu-

lar localization prediction (Xie et al., 2005) and protein structural classi-

fication (Chen et al., 2011; Liu et al., 2010) to calculate the evolutionary

features of T4SS secreted proteins. In this study, the PSSM profile of each

protein was generated by running Position-Specific Iterative Basic Local

Alignment Search Tool (PSI-BLAST) against the NCBI’s non-redundant

(nr) protein database (version 2012.12.01) with the parameters h¼ 0.001

and j¼ 3. The nr database is freely downloadable at ftp://ftp.ncbi.nih.

gov/. The (i, j)th entry of the resulting matrix represents integral score of

the amino acid in the ith position of the query sequence mutated to amino

acid type j during the evolution process. Two features, namely, PSSM

composition and auto covariance transformation, were extracted from

the PSSM profiles. The PSSM composition was generated by summing

the amino acid rows in the PSSM. The details of how to generate 400
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composition features from the original PSSM profiles are shown in

Supplementary Figure S1. Because each residue has many physicochem-

ical properties, such as polarity, solvent accessibility, hydrophobicity, se-

quence profiles and so on, a protein sequence can be represented as a

numeric matrix. Auto covariance transformation can measure the correl-

ation of two properties (or the same property) along the protein sequence

and transform the matrix into a fixed-length vector (Dong et al., 2009).

For the auto covariance transformation, let us denote the PSSM of a

protein sequence as:

PSSM ¼ ðS1,S2, � � � ,S20Þ ð1Þ

where Si (i¼ 1, 2, . . . , 20) is the column vector of amino acid type i in the

matrix. We also denote each column vector as:

Sj ¼ ðs1, j, s2, j, , � � � , sL, jÞ
T
ðj ¼ 1, 2, � � � , 20Þ ð2Þ

where L is the length of the protein sequence and si,j denotes the score of

number j residue in position i corresponding to the sequence order. The

function of auto covariance transformation is defined as the following:

PSSM ACj, g ¼
1

L� g

XL�g

i¼1

ðsi, j �
1

L

XL

i¼1

si, jÞðsiþg, j �
1

L

XL

i¼1

si, jÞ ð3Þ

(j¼ 1, 2, . . . , 20, g¼ 1, 2, . . . , G). Hence, auto covariance transformation

of PSSM (PSSM_AC) has 20*G features, where G is a positive integer

that indicates the grouped number of the transformation.

In this study, PSSM_AC transforms the PSSM profile of a sequence

into a vector by calculating the correlation of its properties (i.e. evolu-

tionary conservation of 20 residues in each position) between two residues

separated by a distance of G along the sequence.

2.4 SVM classifier

SVM is a machine learning algorithm that has been widely used for clas-

sification purposes. It is described in many other publications; therefore, it

will not be discussed in detail in this article. We used the publicly available

software the Library for Support Vector Machines (LIBSVM) for the

implementation of our SVM classifier. The LIBSVM toolbox can be

freely downloaded at http://www.csie.ntu.edu.tw/�cjlin/libsvm. We inte-

grated this toolbox in the Matrix Laboratory (MATLAB) workspace to

build the prediction system. Here, the radial basis function was chosen as

the kernel function and the SVM parameter � and penalty parameter C

optimized using a grid search based on a 10-fold cross-validation.

2.5 Protein sequence representation

We used four types of feature vectors to represent a protein sequence

[amino acid composition (AAC), residue pair composition (dipeptide

composition, DPC), PSSM profile composition (PSSM) and

PSSM_AC]. In addition, the AAC vector and the DPC vector were

combined with the PSSM vector and the PSSM_AC vector, respectively,

to obtain fixed-length vectors. We examined the SVMs based on different

vectors to assess prediction performance in T4_1472. A diagram that

describes the computational steps of this study is shown in

Supplementary Figure S2.

2.6 Performance assessment

The prediction performance in T4_1472 was assessed by four measures:

Acc, Sn, Sp and Matthew’s correlation coefficient (MCC) (Matthews,

1975). These measures are defined as follows:

Acc ¼
TPþ TN

TPþ TNþ FPþ FN
ð4Þ

Sn ¼
TP

TPþ FN
ð5Þ

Sp ¼
TN

TNþ FP
ð6Þ

MCC ¼
TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ
p ð7Þ

where TP, FP, TN and FN refer to the number of true positives, false

positives, true negatives and false negatives, respectively. A MCC coeffi-

cient of one represents a perfect prediction, whereas zero indicates a

completely random assignment. Acc is the overall accuracy in discrimi-

nating between effectors and non-effector proteins. Sn and Sp are the

sensitivity and the specificity values, which measure the ability to cor-

rectly predict effectors and correctly reject non-effectors. We also used the

receiver-operating characteristic (ROC) curve to measure the present

model’s true-positive rate and low false-positive rate during the predic-

tion. Furthermore, the ROC curve can be quantified by the area under

the curve (AUC), which is usually more accurate in evaluating learning

algorithms.

3 RESULTS

3.1 ACC of effectors and non-effectors

We computed the ACC and the variance in T4_1472 (Fig. 1). We

noticed that the residues Ala, Asn, Glu, Gly, Ile, Leu, Lys, Phe,

Ser and Val had variances41. In these residues, Asn, Glu and

Lys had higher compositions in IVB effectors. In contrast, Ala,

Gly and Val had higher composition in non-effectors. Somewhat

differently, Ala, Glu and Ser occurred more frequently in IVA

effectors than in non-effectors but Ile, Leu and Phe did not.

Some polar amino acids, such as Asp, Cys and His, have small

differences between secreted proteins and non-secreted proteins.

The detailed data are shown in Supplementary Table S1.
We also calculated the dipeptide composition and the variance

for all 400 possible residue pairs in T4_1472. Those pairs with the

topmost variances are listed in Supplementary Tables S2 and S3.

The pairs SS, LL and AA showed variances40.3 between IVA

proteins and non-effectors; however, the pairs KE, AA and AG

had variances40.3 between IVB proteins and the non-effectors.

Most of the residue pairs with Ala had higher variances than the

others. In contrast, some pairs with Cys, His and Tyr, such as

Fig. 1. (a) ACC in effectors and non-effectors; (b) variance of 20 amino

acid residues between effectors and non-effectors
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YM and IH, had minute composition differences between

effectors and non-effectors (data not shown).

3.2 The effect of G for auto covariance transformation

As mentioned in Section 2.3, the theoretical maximum number of

G is the length of the shortest sequence in the dataset. G defines

the maximum distance between two positions in the target se-

quence. The optimal value of G varies for different datasets. By

setting G from 1 to 20, 20 PSSM_AC vectors with different

lengths were calculated for protein representation. We examined

the performance of IVB effector discrimination using SVMs with

these features in T4_1472 by 5-fold cross-validation tests. The

variability curve of the prediction rate is shown in Figure 2. The

curve first ascends continuously to a maximum value and then

drops slightly with the increase in G. The best accuracy of 93.0%

was achieved with G¼ 10 (see Supplementary Table S4 for de-

tails). We also tested the prediction accuracy of PSSM_AC vec-

tors with G420 and found that these vectors did not lead to

performance improvement. The trend of the performance curve

of G for IVA effector prediction was in accordance with the

above case (data not shown).The best value for G in T4_1472

was 10, which generated a 200-D vector in the PSSM

transformation.

3.3 Prediction performance in datasets

Owing to the imbalance between positive samples and negative

samples in T4_1472, leave-one-out (LOO) tests were conducted

for performance assessment, using radial basis function kernel

SVM classifiers with different features as well as their combin-

ations as inputs. We used four single feature vectors and five

combination vectors for IVA effector discrimination and IVB

effector discrimination. The nine feature vectors and their cor-

responding results are shown in Table 1. In line with single fea-

ture tests, we observed that the performance measures of the four

feature categories were different. The classifier using the PSSM

composition discriminated IVB effectors and non-effectors with

the highest sensitivity (89.4%), which was 6.5% higher than

PSSM_AC and 20% higher than the ACC. The PSSM vector

is also better than other single vectors for IVA effector predic-

tion. It produced 73.3% sensitivity and 93.3% accuracy with the

highest MCC value of 0.782. The capability of two PSSM feature

categories, i.e. PSSM and PSSM_AC, is stronger than AAC and

DPC. The combined feature tests in Table 1 show that the per-

formance was improved when AAC was combined with PSSM.

For IVB effector prediction, the accuracy of AAC improved

from 88.7% to 95.9% when it was combined with PSSM. For

IVA effector prediction, the highest accuracy of 93.3% and an

MCC of 0.784 were achieved by using AAC plus PSSM. We

noticed that DPC had the lowest accuracy of all single vectors.

DPC predictions did not improve when combined with other

features. The sensitivity of these features for IVA effector pre-

diction was generally lower than for IVB effector prediction, but

the specificity was higher. This was likely because of a much

smaller number of IVA sequences than IVB sequences in

T4_1472.

We also executed independent dataset tests to assess the per-

formance of our model for IVA and IVB effector prediction. In

these tests, a small portion of positive sequences and negative

sequences in T4_1472 was picked up for prediction and others

for training. The corresponding results are illustrated in

Supplementary Table S5. Supplementary Table S5 shows a simi-

lar performance profile to Table 1. For IVB effector prediction,

the PSSM vector in combination with AAC outperformed other

single vectors and combined vectors. Not surprisingly, the sensi-

tivity of all feature vectors was decreased for IVA effector pre-

diction because of fewer positive training samples and weaker

C-terminal signals (Supplementary Fig. S3). PSSM and

PSSM_AC were more effective for IVA effector discrimination

than other features when they were used alone or in combination

with AAC.

The ROC curves in Figure 3 illustrate the performance trends

for discriminating IVB effectors and non-effectors using our clas-

sification models in 5-fold cross-validation tests. Figure 3a shows

that four single feature vectors (i.e. AAC, DPC, PSSM and

PSSM_AC) produce different ROCs in 5-fold cross-validation

tests. Figure 3b shows ROCs produced by SVMs with four com-

bined vectors. In Figure 3a, the AUC is 0.970, 0.926, 0.904 and

0.892 for PSSM, PSSM_AC, AAC and DPC, respectively.

Furthermore, AUCs of 0.970, 0.950 and 0.972 were obtained

using four vector combinations [i.e. PSSM plus AAC,

PSSM_AC plus AAC, PSSM plus PSSM_AC and AAC plus

DPC (see Supplementary Table S6)]. Further analysis indicated

that the true-positive rate of PSSM exceeded 85% when the

false-positive rate was53%. Moreover, PSSM plus AAC and

PSSM plus PSSM_AC both distinguished IVB effectors with a

true-positive rate of over 90% and with a false-positive rate

under 4% at the same time.

3.4 Prediction performance of the classifier ensemble

We observed that PSSM was the most effective single feature

vector for effector prediction. No significant performance im-

provement was obtained through its combinations with other

predictors (shown in Table 1 and Fig. 3). On the other hand,

the abilities of the four single vectors to predict T4SS effectors

Fig. 2. This graph shows how different values of G affect the overall

accuracies of the PSSM_AC model for discriminating IVB effectors

and non-effectors
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varied. To make full use of these features, we established a classi-

fier ensemble based on four different SVMs, which are shown in

Figure 4. We used two voting schemes, 2-in-3 and 3-in-4, to syn-

thesize SVMs outputs and give the final estimate. The 2-in-3

voting system was used for two or more positive predictions in

every three classifiers. Likewise the 3-in-4 voting system was used

for three or more positive outputs in all four classifiers. We exam-

ined the ensemble system via 10-fold cross-validation for IVB ef-

fector discrimination in T4_1472. Table 2 shows that the

performance of the classifier ensemble is better than independent

classifiers. The highest sensitivity and the accuracy of 91.6% and

97.9%, respectively, were obtained using the 2-in-3 voting system

based on the three SVMpredictors (AAC, PSSMand PSSM_AC)

that outperformed the single classifiers in Table 1 and Table 2.

The characteristics of the classifier ensemble for IVA effector

prediction were also detected by LOO tests in T4_1472

(Supplementary Table S7). In the LOO tests, the ensemble of

SVM_AAC, SVM_PSSM and SVM_PSSM_AC surpassed all

single classifiers. While discriminating negative sequences with

100% accuracy rate, this classifier correctly predicted 76.7% of

IVA effectors.

3.5 Comparison with existing methods

Two research groups reported the ability to implement genomic-

scale prediction of T4SS effectors in L.pneumophila (Burstein

et al., 2009; Lifshitz et al., 2013), predicting experimentally iden-

tifying dozens of secreted signals. The method presented by

Burstein et al. usedmultiple sequence features and used amachine

learning-based classifier ensemble to distinguish effectors from the

genomic proteins. This method was also adopted by Chen et al. to

predict effectors in the genome of C.burnetii. In a dataset of 134

known effectors and 670 non-effectors, this method achieved an

accuracy of 95.9% with an AUC of 0.980. Another method de-

veloped by Lifshitza et al. used the HSMM to construct a C-ter-

minal profile of known effectors and to search those proteins for

significant signals. It correctly predicted 92.9% effectors of 283

known effectors against a background of 1000 non-effectors with

an AUC of 0.881. Based on these datasets, we performed LOO

tests to measure the prediction rate of our model (Supplementary

Table S8). Compared with Burstein et al.’s ensemble predictor,

our ensemble model had higher accuracy and a higher value for

the AUC, although other single models resulted in lower AUCs.

In the dataset from Lifshitz et al., HSMM had a higher sensitivity

than all other single models; however, our ensemble predictor

produced better performance measures in the LOO tests.

3.6 Genome-scale prediction in B.henselae

To assess the ability of our prediction system to discriminate

T4SS effectors from genomic proteins, we used several independ-

ent classifiers and a classifier ensemble to predict effectors in

1488 genomic proteins from B.henselae strain Houston-1.

B.henselae is the major human pathogen in the genus

Bartonella, which causes cat-scratch disease. VirB/VirD4 T4SS

has been identified in this pathogen and was verified to be essen-

tial for establishing intraerythrocytic infection. This T4SS secrets

dozens of effectors into host cells, and three of them have been

included in T4_1472. The majority of these effectors belong to

the Bep family. Sequence alignments showed that all these ef-

fectors had high homology with seven proteins from B.henselae

(BH13370, BH13390, BH13400, BH13410, BH13420, BH13430

and BH13440). We trained our model using T4_1472 without

three known effectors (BH13370, BH13410 and BH13440) and

then predicted effector candidates from 1488 genomic proteins

(Supplementary Table S9). Using IVA sequences for training,

41–102 proteins were predicted as effectors, and at least three

of the seven known effectors were correctly recognized. The

AAC predictor and the PSSM predictor had better recognition

rates to known effectors than others. Using IVB sequences for

training, 117–158 candidates were predicted by these models. We

noticed that fewer of the known effectors were discovered by the

PSSM predictor and the PSSM_AC predictor, which are more

sensitive to training data than other models. Although gaps in

ACC and dipeptide composition exist between IVA effectors and

IVB effectors, both the AAC model and the DPC model

Table 1. Results of LOO tests using SVM classifiers based on different feature vectors

Class Featurea Cj�b IVA versus non-effectorc IVB versus non-effector

Sn Sp Acc MCC Sn Sp Acc MCC

Single AAC(20D) 10, 0.3 0.633 0.967 0.900 0.667 0.694 0.940 0.887 0.655

DPC(400D) 10, 0.0125 0.533 0.992 0.900 0.663 0.674 0.932 0.877 0.625

PSSM(400D) 10, 0.02 0.733 0.983 0.933 0.782 0.894 0.975 0.958 0.874

PSSM_AC(200D, G¼ 10) 10, 0.1 0.667 0.967 0.907 0.691 0.829 0.957 0.929 0.790

Combined AACþDPC(420D) 10, 0.02 0.567 1.000 0.913 0.715 0.688 0.932 0.882 0.637

PSSMþAAC(420D) 10, 0.02 0.767 0.975 0.933 0.784 0.897 0.976 0.959 0.878

PSSM_ACþAAC(220D) 10, 0.05 0.667 0.975 0.913 0.712 0.848 0.966 0.941 0.824

PSSMþPSSM_AC(600D) 10, 0.00125 0.733 0.958 0.913 0.720 0.897 0.964 0.949 0.852

PSSMþPSSM_ACþAAC(620D) 10, 0.00125 0.700 0.983 0.927 0.759 0.897 0.964 0.950 0.853

aAAC: amino acid composition; DPC: dipeptide composition; PSSM: PSSM composition; PSSM_AC: auto covariance transformation of PSSM profiles. The figure in the

bracket refers to the dimensions of the features.
bC and � are the cost and the gamma parameter of the SVM, respectively. They were optimized based on a 10-fold cross-validation grid search.
c120 non-effectors were selected randomly in the non-effector dataset as negative training samples for keeping the ratio of effectors to non-effectors at �1:4.
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recognized more known effectors when using IVB data rather

than IVA data for training. Models trained using all samples in

the T4_1472 were then used to predict effectors. All seven known

effectors were detected by the AAC model, and six were detected

by the PSSM model. The number of inferred effectors decreased

when classifier ensembles were used for prediction, but at least

six of the known effectors were present in each candidate list.

Fifty-seven proteins were detected by the ensemble with the

3-in-4 voting scheme, in which seven were known effectors and

50 were putative secreted proteins (see Supplementary Table

S10). Of these putative effectors, three were annotated as tonB

(BH04980), filamentous hemagglutinin (BH07950) and kroA

(BH15560) in UniProt. The others were uncharacterized pro-

teins. BH04980 was inferred as a cell surface protein for potential

transporter activity. BH07950 is a putative surface protein, but

its function is not clear. BH15560 has a high homology with the

korA protein from Bartonella grahamii, which is characterized as

a regulatory gene for trw T4SS (Nystedt et al., 2008). C-terminus

sequence profiles (Supplementary Fig. S3) show that the prob-

ability of amino acid occurrence in IVA effectors or IVB

effectors is different from non-effectors. The profiles of the 50

inferred effectors show weak C-terminal patterns, possibly be-

cause many sequences do not carry significant signals in the

C-terminus, which is expected for IVA effectors. The homolo-

gous targets of the 50 putative effectors were examined in the

NCBI protein database using BLAST (E-value51e-10)

(Supplementary Table S10). The majority of homologous pro-

teins (39 of 50, including 25 conserved homologs and 14 self-

homologs) were uncharacterized proteins and four were putative

membrane proteins. Three homologs (heme exporter, slyX and

tonB) are known to share an evolutionary lineage with T4SS

proteins in Bartonella (Engel et al., 2011). In summary, these

candidates may provide potential targets for functional identifi-

cation of T4SS pathogenicity.

4 DISCUSSION

The prediction of effectors in bacterial genomes is an important

task for functional analysis of the T4SS of human pathogens.

Fig. 3. Comparison of ROC curves for IVB effector prediction using

different features. The results obtained from amino acid composition

(AAC), residue pair composition (DPC), PSSM composition (PSSM)

and auto covariance transformation of PSSM profiles (PSSM_AC) as

well as the combination of AAC and DPC (AACþDPC), the combin-

ation of AAC and PSSM (PSSMþAAC), the combination of AAC and

PSSM_AC (PSSMþ AAC) and the combination of two PSSM feature

classes (PSSMþ PSSM_AC) are shown as color curves. (a) Five-fold

cross-validation tests in T4_1472 using four single feature classes;

(b) 5-fold cross-validation tests in T4_1472 using four combined feature

classes

Table 2. Results for the ensemble prediction of IVB effectors with 10-fold

cross-validation tests

Classifiers Modela Votingb Sn Sp Acc MCC

1. AAC

2. DPC

3. PSSM

4. PSSM_AC

1 — 0.707 0.933 0.884 0.651

2 — 0.658 0.928 0.870 0.603

3 — 0.903 0.971 0.956 0.871

4 — 0.839 0.959 0.933 0.800

{1,2,3} 2-in-3 0.832 0.990 0.956 0.867

{1,2,4} 2-in-3 0.816 0.984 0.948 0.842

{1,3,4} 2-in-3 0.916 0.996 0.979 0.936

{2,3,4} 2-in-3 0.894 0.994 0.972 0.917

{1,2,3,4} 3-in-4 0.774 0.977 0.933 0.796

aEach term in this column represents the combination form of different classifiers

(e.g. {1,2,3} means the ensemble of number 1, 2 and 3 classifiers in the first column).
bThe 2-in-3 voting scheme was adopted for voting on three classifiers and the 3-in-4

voting scheme was adopted for voting on four classifiers. The highest value of each

measure is shown in bold.

Fig. 4. The T4SS effector classifier ensemble based on multi-SVMs with

different features
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Previous studies demonstrated that T4SS effectors in several
bacterial species contained conserved C-terminal signals and eu-
karyotic domains (McDermott et al., 2011; Segal 2013).

Differences in GC content between the effector genes and the
non-effector genes were also discovered (Burstein et al., 2009).
Xu et al. reported a hidden Markov model-based method to

evaluate the distribution pattern of EPIYA motifs in a broad
range of biological species to predict potential T3SS effectors,
but this motif was not widely distributed from T4SS secreted

proteins (Xu et al., 2010). Burstein et al. presented a machine
learning method based on known features to predict candidates
for genome-wide effector identification in L.pneumophila

(Burstein et al., 2009). This approach was effective for screening
experimental targets but was specific to certain well-known bac-
terial species because few general features exist for extensive pre-

diction. The HSMM model presented by Lifshitz et al. captured
IVB secreted signals with a high success rate but was not usable
for the detection of IVA effectors (Lifshitz et al., 2013). We de-
veloped a widely applicable method for accurate prediction of

different subtypes of T4SS effectors in gram-negative pathogens.
To accomplish this, we calculated ACCs, residue pair compos-
itions, PSSM profiles and their auto covariance transformations.

We used these features to train SVM-based predictors for dis-
crimination of effectors from non-effectors.
To assess the performance of our prediction system, two reus-

able datasets were constructed for experimentally validated ef-
fectors and potential non-effectors. ACC analysis showed that
hydrophobic residues, especially aliphatic Ala, Gly and Val,

occur with higher frequencies in non-effectors than in effectors.
On the contrary, hydrophilic and polar residues are more
common components of effector sequences. As most of the

known secreted proteins exist in aqueous environments, such
as the cytoplasm of host cells, residue pairs with hydrophilic
residues would be expected to have higher compositions in

effectors than in non-effectors. We inferred that some hydro-
philic and polar groups may be important for effector protein
functions.

Performance tests showed that two classes of PSSM-based
features were more helpful for discrimination of effectors than
using ACC. The PSSM revealed remote relevance between func-

tion-related proteins. This relevance was conserved throughout
evolution, although amino acids continuously mutated. For the
two PSSM feature classes that we used, PSSM composition indi-

cated the position-specific information of each amino acid type
in the query sequence. On the other hand, auto covariance trans-
formation of the PSSM described the sequence-order position-

specific information. The former method performed better than
the latter method in benchmark tests. Feature combination is a
frequently used approach for improving classification perform-

ance. We combined four different feature vectors and found that
more accurate results were produced using vector combinations.
The prediction accuracy for IVB effectors was higher than for

IVA effectors. This can be attributed to different numbers of
positive samples and more abundant signals within IVB se-
quences, such as C-terminal motifs, which are more informative

than the known motifs in IVA effectors. We noticed that taxo-
nomic and functional biases in the training data impacted the
assessment and application of our method. In T4_1472, 30 IVA

sequences were derived from the genomic proteins of nine

species, i.e. A.marginale (4), Anaplasma phagocytophilum (2),
Bartonella sp.(3), H.pylori (1), Agrobacterium tumefacien (3),
Agrobacterium rhizogenes (4), Brucella sp.(8), B.pertussis (4)

and E.chaffeensis (1); 310 IVB effectors were selected from
L.pneumophila (258) and C.burnetii (52). The taxonomic distri-
bution of IVA sequences showed no obvious bias, but bias was

present for IVB sequences. Although all the effectors were ex-
perimentally validated to be secreted by T4SS, the functions of
most of them in host cells have not been identified. Therefore, the

functional bias of these effectors is still unknown. To reduce bias
for negative sequences, we collected non-effectors through mul-
tiple channels. Though biases in datasets are inevitable, the re-

sults of theoretical validations in several datasets showed that
our predictor was both accurate and robust for distinguishing
T4SS effectors. This indicates that our method may be useful for

IVA effector prediction in various T4SS pathogens but should be
restricted to Legionella sp., Coxiella sp. and their related species
for IVB effector prediction. It is noteworthy that characteristic
signals exist in both some T4SS effectors and some T3SS ef-

fectors (Xu et al., 2010), which may have similar amino acid
distributions and evolutionary conservation profiles. Thus, the
present method may not completely discriminate between T4SS

effectors and those secreted through the T3SS.
We improved the prediction accuracy using multi-classifier

ensembles with simple voting strategies. The 2-in-3 voting and

3-in-4 voting systems are linear discrimination systems that use
condition relaxation. Therefore, accurate prediction does not in-
dicate identical prediction performance in pathogenic genomes.

Accurate discrimination of effectors in bacterial genomes is the
ultimate goal of developing these prediction models. The predic-
tion results for the B.henselae genome demonstrate that our

method is effective at distinguishing unknown T4SS effectors
from genomic sequences. A small list of predicted candidates
will help to easily confirm experimental targets. In the

B.henselae genome, seven genes encoding known effector
proteins were all predicted by our classifier ensemble.
Furthermore, several proteins located at BH14310–BH14330

and BH14510–BH14590 were repeatedly predicted as positives
by multi-classifiers, indicating strong potential T4SS effectors. In
Supplementary Table S10, 47 out of 50 putative T4SS candidates

are annotated as ‘hypothetical proteins’ in the B.henselae
genome. The left three are inferred to be relevant to T4SS
from Bartonella. Most homologs of these proteins in gram-nega-

tive species are still uncharacterized and the annotated informa-
tion in available public databases shows some of the candidates
are most likely secreted proteins. A maximum likelihood phylo-

genic tree was constructed to reveal the evolutionary relationship
between the 26 IVA effectors and the 50 inferred effectors using
MUSCLE and MEGA5 (Supplementary Fig. S4). Conversely,

no phylogenic trees for IVB effectors could be established
by any evolutionary algorithms because no common sites in
these sequences were found when computing the distances.

Supplementary Figure S4 shows that several distinct groups
(YP_414449, YP_153762, YP_153570 and YP_505319) were
formed by multiple predicted effectors and an embedded IVA

protein. The seven known effectors of B.henselae were grouped
in a sub-tree, sharing a most recent common ancestor with
BH07480 and displaying close relationships to the putative ef-

fector BH13840. The arrangement of each branch in the tree
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indicates that the predicted effectors in each sub-tree were most
likely captured by our model based on the evolutionary infor-
mation of their nearest IVA effectors. We hope that these pre-
dicted effectors may serve as a useful resource for the research

community.
By taking into account all of our results and analyses, we can

conclude that the present method can detect T4SS effectors

within unidentified sequences with great power. As the features
used in our system are sequence-based and are commonly calcu-
lated across both genus and species, we believe that our method

can be widely used for T4SS effector screening for 10 confirmed
pathogens as well as for other gram-negative bacterial species.
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