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ABSTRACT

Motivation: Prediction of protein residue contacts, even at the coarse-

grain level, can help in finding solutions to the protein structure pre-

diction problem. Unlike a-helices that are locally stabilized, b-sheets

result from pairwise hydrogen bonding of two or more disjoint regions

of the protein backbone. The problem of predicting contacts among

b-strands in proteins has been addressed by several supervised com-

putational approaches. Recently, prediction of residue contacts based

on correlated mutations has been greatly improved and finally allows

the prediction of 3D structures of the proteins.

Results: In this article, we describe BCov, which is the first unsuper-

vised method to predict the b-sheet topology starting from the protein

sequence and its secondary structure. BCov takes advantage of

the sparse inverse covariance estimation to define b-strand partner

scores. Then an optimization based on integer programming is carried

out to predict the b-sheet connectivity. When tested on the prediction

of b-strand pairing, BCov scores with average values of Matthews

Correlation Coefficient (MCC) and F1 equal to 0.56 and 0.61, respect-

ively, on a non-redundant dataset of 916 protein chains known with

atomic resolution. Our approach well compares with the state-of-the-

art methods trained so far for this specific task.

Availability and implementation: The method is freely available

under General Public License at http://biocomp.unibo.it/savojard/

bcov/bcov-1.0.tar.gz. The new dataset BetaSheet1452 can be down-

loaded at http://biocomp.unibo.it/savojard/bcov/BetaSheet1452.dat.

Contact: piero.fariselli@unibo.it

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

b-Sheets are widespread motifs of local structure found in over

80% of the protein structures presently available in the Protein

Data Bank (http://www.rcsb.org/pdb/home/home.do). b-Sheets
are generated by the pairing of two or more b-strands held to-

gether by characteristic patterns of hydrogen bonds running in a
parallel or antiparallel fashion (Zhang and Kim, 2000).

Prediction of the b-sheet topology from the covalent structure

of the protein is useful for predicting its tertiary structure, for

designing new proteins and for understanding folding pathways.

The first method to predict b-strand pairing was based on a

statistical potential approach (Hubbard, 1994). Prediction of

b-residue contacts was addressed by Baldi et al. (2000) using
an elaborate method based on neural networks. Steward and

Thornton (2002) adopted an information theoretic approach to

predict b-residue pairwise interaction. Cheng and Baldi (2005)
pioneered the idea of predicting b-sheet topologies when the pro-

tein secondary structure is known and set the standard for this
type of task. Their method BetaPro is based on a 2D-recursive

neural network (Baldi and Pollastri, 2003) trained to predict

pairing probabilities of interstrand b-residue pairs. Then an
algorithm finds alignments between all pairs of b-strands, and
a weighted-graph matching algorithm predicts the b-sheet topol-
ogies. Lippi and Frasconi (2009) introduced an alternative ap-

proach based onMarkov logic networks (MLNs). This approach

exploits b-sheet structural constraints defined as logical formulas
whose weights can be learned from examples (Lippi and

Frasconi, 2009). The prediction of b-residue contacts was also
applied to the problem of predicting the 3D structure of proteins

using integer linear optimization (Rajgaria et al., 2010). Aydin

et al. (2011) combined BetaPro outputs with a Bayesian ap-
proach and tested it on subsets of the Cheng and Baldi bench-

mark set (Aydin et al., 2011). Recently, a new method to predict
protein b-sheet contacts using a maximum entropy-based corre-

lated mutation measure (CMM) has been introduced and com-

pared with the state-of-the-art methods (Burkoff et al., 2013).
CMM achieves performances similar to BetaPro and MLNs

(Burkoff et al., 2013).
In recent years, the main breakthroughs in residue contact

prediction have concerned improvements in the exploitation of
information from multiple sequence alignments (MSA). The

degree of coevolution of pair of sites in the MSA can be used
to infer the closeness of the corresponding residues in the 3D

structure. Different approaches have been described to elucidate

the coevolution of columns in an MSA, including standard cor-
related mutations analysis (Olmea and Valencia, 1997) and in-

formation theoretic measures (Dunn et al., 2008). Recently some
powerful methods based on the extraction of direct coupling in-

formation from MSAs have been introduced to predict protein

contacts both in globular (Cocco et al, 2013; Ekeberg et al. 2013;
Jones et al., 2012; Marks et al., 2011; Morcos et al., 2001; Weigt

et al. 2009) and membrane proteins (Hopf et al., 2012; Nugent
and Jones 2012). These new contact prediction methods are not

only improved with respect the previous approaches but also

finally allow to predict 3D structures of the proteins (for
review see de Juan et al., 2013; Marks et al., 2012; Taylor

et al., 2013).*To whom correspondence should be addressed.
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In this article, we describe BCov, a new approach for b-sheet
topology prediction based on sparse inverse covariance estima-
tion and integer programming. BCov is the first unsupervised

method that addresses this task. We use the residue-contact pro-

pensities provided by the Protein Sparse Inverse COVariance

(PSICOV) method (Jones et al., 2012) to compute the scores of

the b-strand pairings. We selected PSICOV because it is freely

available and does not require proprietary software to run. Then

we apply an integer programming optimization to assign the b-
sheet topology. BCov well compares with the performances of

the state-of-the-art algorithms (BetaPro, CMMs and MLNs)

that integrate supervised techniques to address the same task.

2 METHODS

2.1 The BetaSheet916 dataset

The BetaSheet916 dataset was first introduced by Cheng and Baldi (2005)

to evaluate their BetaPro method for b-sheet prediction and then adopted

by other authors (Burkoff et al., 2013; Lippi and Frasconi, 2009). The set

is routinely adopted as benchmark set for b-sheet prediction methods and

for sake of comparison we also use it in this article. The atomic coord-

inates of 916 protein chains (with X-ray diffraction at a resolution �2.5

Å) were extracted from the Protein Data Bank (PDB) as to May, 2004

(Cheng and Baldi, 2005). Secondary structure assignments were com-

puted by means of the Define Secondary Structure of Proteins (DSSP)

program (Kabsch and Sander, 1983). Both extended b-strands (marked

by E in the DSSP output) and isolated b-bridges (B in the DSSP output)

were considered b-residues. The b-contact maps were defined using in-

formation about b-partnership available from the DSSP output. Statistics

of the dataset are shown in Table 1.

2.2 The BetaSheet1452 dataset

To complement the BetaSheet916 dataset, we constructed a new dataset

of more recently deposited high-resolution proteins. We extracted from

the PDB a set of protein chains whose structures were obtained by X-ray

diffraction with a resolution� 2.5 Å. We restricted our search to PDB

entries deposited after May, 2004 to exclude chains already present in the

BetaSheet916 dataset. We filtered out protein sequences at 20% of se-

quence identity level to obtain a non-redundant dataset. More import-

antly, we also removed sequences with identity420% with any of the

proteins contained in the BetaSheet916 set. We used DSSP to assign

secondary structures, and we filtered out sequences having53 distinct

extended b-strands to exclude trivial cases. We also discharged protein

chains shorter than 50 residues or having backbone interruptions or non-

standard amino acids. The final dataset of proteins, referred to as

BetaSheet1452, contained 1452 protein chains. Statistics are shown in

Table 1.

2.3 CASP 2010 dataset

For sake of comparison, we also considered protein chains from the

Critical Assessment of protein Structure Prediction (CASP) 2010 experi-

ment. The original set comprised 116 targets. We used the same proced-

ure described in Burkoff et al. (2013) to filter out sequences with a

number of b-residues� 10. The final set consisted of 92 protein chains.

Secondary structures have been assigned using DSSP.

2.4 MSA construction

For each sequence in the datasets described earlier in the text, we ob-

tained an MSA using the jackhmmer program that is part of HMMER

3.0 package (http://hmmer.org). Given a target protein sequence,

homologous sequences were found by running three iterations of jackhm-

mer against the UNIREF90 database (Magrane and the Uniprot

Consortium, 2011) setting the E-value threshold to 1e-3. The correspond-

ing MSA has been obtained from jackhmmer output.

2.5 BCov general description

BCov consists of three main steps: (i) compute the residue contact pro-

pensity with PSICOV; (ii) compute the score of each possible b-strand
pairing; (iii) compute the b-sheet topology using an integer programming

optimization to find the best solution according to the b-pairing
scores and constraints. Below we report the details of these three major

steps.

2.6 Computing the residue contact propensity with

PSICOV

For sake of clarity, in this section we provide a brief description of the

PSICOVmethod. We refer to Jones et al. (2012) for further details about

the method.

Starting from an MSA with m columns, PSICOV first computes a

sample 21m-by-21m (also gaps are considered) covariance matrix C

using observed single and pair amino acid occurrence frequencies:

Ca, b
i, j ¼ fi, jða, bÞ � fiðaÞfjðbÞ ð1Þ

where fi,j(a,b), fi(a) and fj(b) are the sample relative frequency of

amino acid pair ab at sites ij, the relative frequency of amino

acid a at column i and the frequency of amino acid b at column j,

respectively.

The inverse of the sample covariance matrix is computed with the

graphical lasso method (Banerjee et al., 2008; Friedman et al., 2008).

This algorithm allows estimating a sparse inverse covariance matrix �

by minimizing the following objective function:

Xd
i, j¼1

Cij�ij � logdet�þ �
Xd
i, j¼1

�ij

�� �� ð2Þ

where C is a d-by-d covariance matrix, � is the inverse covariance matrix

and the last term is a regularization term (the ‘1-norm of the inverse

matrix) that governs the sparsity of the solutions. � is the sparsity

hyper-parameter: the greater is � the sparser is the solution.

The sparse inverse covariance matrix � is used, in turn, to derive a

contact score between residues at positions i and j by computing the

Table 1. Statistics of the datasets

Feature BetaSheet916a BetaSheet1452b

Number of chains 916 1452

Total number of residues 187 516 361 668

Total number of b-residues 48 996 88 352

Number of b-residue contacts 31 638 56 552

Number of b-strands 10 745 19 186

Number of b-strand pairs 8172 14 241

Number of anti-parallel b-strand pairs 4519 3937

Number of parallel b-strand pairs 2214 7892

Number of isolated b-bridges 1439 2412

Number of b-sheets 2533 4894

aDerived from Cheng and Baldi (2005).
bA non-redundant complement of the BetaSheet916 set comprising 1452 protein

chains deposited in the PDB after May, 2004 (see Section 2.2 for a complete

description).
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‘1-norm of the 20-by-20 sub-matrix of � corresponding to all possible

pairs of amino acid at position i and j:

Bi, j ¼
X
a, b

�a, b
i, j

���
��� ð3Þ

The raw contact score computed as in Equation 3 is finally corrected as

follows:

B
p
i, j ¼ Bi, j �

�Bi,�
�B�, j

�B
ð4Þ

where �Bi,�is the mean raw contact score between the i-th position

and all other positions (analogously �B�, j for the j-th position) and
�B is the overall mean contact score. This correction, referred to as

average product correction, allows reducing both entropic and

phylogenetic biases that are major source of noise in MSAs (Dunn

et al., 2008).

For each possible pairs of residues belonging to two different b-sheets,
we then adopt the score computed in Equation 4 as a measure of the

b-residue contact strength.

2.7 b-contact and b-sheet topology prediction

BCov consists of an integrated approach to predict both b-residue
contacts and b-sheet topology i.e. the specification of the b-strand pair-

ings, including the directions of interactions (parallel, antiparallel or

isolated b-bridge). The method takes advantage of b-contact scores as

computed by PSICOV and integer programming for b-sheet topology

prediction.

Consider a protein sequence with n distinct b-strands and m

b-residues. As mentioned earlier in the text, PSICOV is used to

compute contact scores between all residue pairs in the protein se-

quence (even for non-b residues). Then we extract the submatrix

obtained by considering only b-residue pairs. After this step, we

end up with an m-by-m symmetric matrix B whose Bi,j components

can be interpreted as a propensity value for b-residues i and j to form

a b-contact.
Our algorithm proceeds by computing an n-by-n matrix S whose

entries represent interaction scores between pairs of strands. The matrix

S is defined as follows:

Sij ¼

scoreparallelðsi, sjÞ if i5j
0 if i ¼ j
scoreanti�parallelðsi, sjÞ if i4j

8<
: ð5Þ

where, for strands si and sj with i5 j, Sij contains the best alignment

score between the two strands in the parallel direction, whereas Sji
stores the best alignment score in the antiparallel direction. Here,

without loss of generality, we use the upper diagonal part of S for

parallel scores and the lower diagonal part for antiparallel scores. To

compute alignments, we use b-contact propensities Bi,j obtained from

PSICOV as local residue match scores. We restrict the search space

for optimal alignments by considering only solutions that can be ob-

tained by sliding one strand along the other without gaps and with at

most one unmatched residue at the shortest segment ends. With these

constraints, for two strands of length r and t, respectively, assuming

r4t, there are 2� (r� tþ 3) possible alignments (see Fig. 1 for an

example).

Strand interaction scores stored in the matrix S are then used to assign

the b-sheet topology. Because a naı̈f approach that enumerates all pos-

sible b -sheet pairings is infeasible because of the combinatorial nature of

the problem (Zhang and Kim, 2000), several alternative solutions were

adopted such as graph matching or maximum spanning-tree algorithms

(Cheng and Baldi, 2005).

In this article, we tackle this problem using integer programming. In

particular, the optimal b-strand pairing pattern can be obtained by

solving the following integer program:

maximize :
Pn
i, j¼1

SijXij

subject to : c1 : 0 � Xij � 1 8i ¼ 1, . . . , n, j ¼ 1, . . . , n
c2 : 0 � Xij þ Xji � 1 8i ¼ 1, . . . , n, j ¼ 1, . . . , n

c3 : 1 �
Pn
j¼1

Xij þ
Pn
k¼1

Xki � 2 8i ¼ 1, . . . , n

c4 : Xii ¼ 0 8i ¼ 1, . . . , n

The solution X is an n-by-n integer matrix that maximizes the overall

b-sheet sum of scores. The matrix X is binary (c1 constraints) and its

non-zero entries identify interacting b-strands. c2 constraints ensure the

consistency of the solution by enforcing the assignment of either parallel

or antiparallel pairing direction for each strand pair (i, j). Furthermore, a

given b-strand can pair with at most two distinct b-strands (c3 and c4

constraints). Figure 2 shows an example of the overall procedure for a

protein with five b-strands. We also evaluate a version of BCov that takes

into consideration the geometric constraint of generating parallel b-sheets
at short sequence separation. In protein structures, the formation of par-

allel b-sheets with few interleaving residues between two strands is diffi-

cult and it requires a strong unfavorable free energy contribution. For

instance, in the Cheng and Baldi (2005) dataset almost all pairing

Fig. 2. Example of an assignment of the b-sheet topology for a protein

with five b-strands. (a) The weight matrix S of the integer programming

optimization. Each element of S corresponds to the strand interaction

score. Strands interaction scores may be derived from parallel (upper di-

agonal part of the matrix) or antiparallel (lower diagonal part of the

matrix) strand alignments. (b) The assigned b-sheet topology {(1,3,A),

(1,5,A), (2,4,P), (2,5,A)} (A¼ antiparallel, P¼ parallel) obtained from the

integer program solution and corresponding strand pairing directions

Fig. 1. All possible alignments of two b-strands of length 4 and 3,

respectively
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b-strands separated by56 residues are antiparallel. For this reason, we

introduce a modified version of our algorithm, referred to as BCov6,

which always assigns antiparallel directions to pairs of b-strands whose
sequence separation is56 residues.

2.8 Method implementation

BCov has been developed in the C programming language (available at

http://biocomp.unibo.it/savojard/bcov/bcov-1.0.tar.gz). The source code

is released under the terms of the GNU General Public License (GPL)

version 3. BCov is linked with the PSICOV source code (available at

http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/ and also released

under GPL terms) and the graphical lasso FORTRAN package for

sparse inverse covariance estimation (Friedman et al., 2008). For integer

linear optimization program, we used the C application program interface

of the GNU Linear Programming Kit (http://www.gnu.org/software/

glpk/).

2.9 Measures of performance

We evaluated the performance of the method at both b-residue contact

level (i.e. contact maps) and b-strand pairing level (coarse contact maps).

In either case, we computed the canonical scoring measures, which

include:

� Precision:

P ¼
TP

TPþ FP
� 100 ð6Þ

� Recall:

R ¼
TP

TPþ FN
� 100 ð7Þ

� F1-score:

F1 ¼
2� P� R

Pþ R
ð8Þ

� Matthews Correlation Coefficient:

MCC ¼
ðTP� TN� FP� FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ
p ð9Þ

where TP, TN, FP and FN are, respectively, true positives, true negatives,

false positives and false negatives. We also evaluate the methods using

qualitative measures introduced by Lippi end Frasconi (2009). In

particular,

� F1�70, which measures the percentage of chains for which b-strands
are predicted with F1 � 70% on coarse map,

� F1 on parallel strands,

� F1 on antiparallel strands,

� Correct directions: percentage of correct pairing directions over cor-

rectly predicted strand pairs,

� CbCC: percentage of correct b-sheet connected components.

3 RESULTS AND DISCUSSION

3.1 PSICOV performance on b-residue contacts

PSICOV has been described as one of the most promising meth-

ods to address the prediction of residue contact in proteins (Jones

et al., 2012). The accuracy of PSICOV depends on both the

number and the quality of the aligned sequences (Jones et al.,

2012). In the case of BetaSheet916 dataset, the number of se-

quences in each MSA ranged between 2 and 190576 (see Fig. 3).

Here, we address a slightly different goal, namely we want to

evaluate the predictions on the subsets of the contact map iden-

tified by the b-strand regions. In Table 2, we report the PSICOV

accuracy on the whole BetaSheet916 dataset and also on two

disjoint subsets: a subset of proteins whose number of aligned

sequences are �1000 and the subset of proteins whose number of

aligned sequences are51000. Results listed in Table 2 indicate

that a low number of aligned sequences can affect the accuracy.

The performances of PSICOV on this task are lower than those

obtained by the state-of-the-art methods (see Table 3, rows 1–4).

However, it must be noticed that PSICOV is an unsupervised

method (differently from the others) and that here we evaluate it

only on the portion of b-residue contacts.

3.2 BCov performance on b-residue contacts

As described in Section 2, BCov optimizes the PSICOV outputs

using integer programming approaches. BCov assigns the

b-sheet topology and also all segment pairings including

b-sheet directions. For each pair of b-strand partners the best

score obtained by the segment pairing (see Section 2.4) can be

used to assign b-residue contacts. With this procedure, the per-

formances are significantly higher than those obtained using

PSICOV alone (compare Table 2 with Table 3). When the pre-

dicted b-sheet contacts are used to reconstruct the corresponding

3D structures with FT-COMAR (Vassura et al., 2008), the im-

provement of BCov over PSICOV leads to a better reconstruc-

tion of the protein fold (see Supplementary Fig. S1 of the

Supplementary Materials).
In Table 3, we report the performances of BCov and BCov6

with respect to the state-of-the-art methods on the BetaSheet916

dataset. It is evident that when we do not allow parallel pairing

of b-strand segments whose sequence separation is56 residues

Fig. 3. Cumulative frequency distribution of the number of sequences in

MSAs. In all, 251 of 916 chains (�27%) in the BetaSheet916 dataset have

51000 aligned sequences in the corresponding MSA
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(a simple geometric constraint) the accuracy increases, as high-

lighted by the two percentage points of the correlation coefficient

(MCC). BCov and BCov6 performances compare well with

the single supervised methods (CMM, BetaPro, MLN) and

are slightly worse than the combination of two methods

(MLN-2S).

3.3 BCov performance at strand level

The evaluation of the methods at strand level (detecting the cor-

rect b-sheet topology and b-strand pairings) is the most relevant

benchmark, as this is the main goal of all the approaches de-

veloped so far (BetaPro, NLN, CMM). In Table 4, we report the

comparison of BCov with the state-of-the-art methods on the

BetaSheet916 dataset. It is worth noticing that in this task

BCov (which is not trained on the dataset) compares well with

the other methods achieving a correlation coefficient value of

0.56 (MCC). This indicates that the information extracted by

PSICOV is relevant also for the problem at hand, and if

coupled with an optimization procedure the overall accuracy

can improve significantly. Furthermore, it is evident that

when the number of aligned sequences is sufficiently high

(Bcov� 1000) the performances increases by 5 percentage

points and with an MCC of 7 percentage points higher than

the best state-of-the-art method. As a consequence, we may

expect that BCov performance will improve as new sequences

will be made available by mass sequencing efforts.
In Table 5, we show scoring of the different methods obtained

with the qualitative measures introduced by Lippi and Frasconi

(2009) (see Section 2.6). It is interesting to see that BCov outper-

forms all other methods with respect to all the reported indices

with the exception of the prediction of the correct directions of

the correctly predicted b-sheets. This indicates that with respect

to the other methods, BCov is better at guessing the segment

pairings and b-sheet topology but less effective at detecting the

contacts at residue level.

3.4 Performance on the CASP 2010 dataset

To evaluate the BCov performances at the strand level on an-

other benchmark, we used the CASP 2010 dataset. With this

choice we can also compare the BCov performance at the

strand level with other two state-of-the-art predictors (BetaPro

and CMM). We downloaded the protein structures provided

during the CASP 2010 experiment, and we followed the same

procedure described in Burkoff et al. (2013) to filter out se-

quences with a number of b-residues� 10. The final set consisted

of 92 protein chains. The results reported in Table 6 are really

encouraging, as it appears that BCov6 (an unsupervised method)

compares well with the state-of-the-art methods BetaPro and

CMM [as reported from the data taken from the supplementary

material of Burkoff et al. (2013)]. It is also worth noticing that

BCov6 MCC and F1 performances are almost unaffected by

the dataset change (compare Table 6 with indexes reported in

Tables 4 and 5).

3.5 Performance on the new BetaSheet1452 dataset

To evaluate the BCov performance on a larger and newer data-

set, in Table 7 we report the performances both at residue and at

strand level. It is encouraging that the performances are consist-

ent and comparable with those obtained using the classical

BetaSheet916 dataset (compare with Tables 3–5) and also the

CASP 2010 dataset (compare with Table 6). Because

BetaSheet1452 is larger than the previous dataset (far larger

than any CASP datasets, at least so far), the fact that the

Table 3. BCov and Bcov6 performances at residue level on the

BetaSheet916 dataset

Method R P F1 MCC

CMM 44.0 44.0 44.0 0.43

MLN-2S 42.7 47.3 44.9 0.44

MLN 39.3 46.1 42.4 0.42

BetaPro 44.1 38.0 40.8 0.40

BCov 42.4 40.9 41.6 0.40

Bcov� 1000 47.3 45.8 46.5 0.45

Bcov51000 27.7 26.5 27.1 0.25

Bcov6 43.9 42.4 43.1 0.42

Bcov6� 1000 48.7 47.2 47.9 0.47

Bcov651000 29.4 28.2 28.8 0.27

Note: The values of CMM, BetaPro and MLN are taken from the corresponding

articles. CMM¼Burkoff et al., 2013. BetaPro¼Cheng and Baldi, 2005.

MLN¼Lippi and Frasconi, 2009, MLN-2S¼BetaProþMLN Lippi and

Frasconi, 2009. BCov and BCov6 are also evaluated on the subsets of the proteins

whose number of aligned sequences (NAS) are �1000 or51000, respectively. For

the indices see Section 3.2.

Table 2. PSICOV performance on the b-residue contacts

Method P(2L) P(L) P(L/5) P(L/10)

AllSeqa 14 20 32 34

NAS� 1000b 16 23 36 38

NAS51000c 8 11 19 21

aThe whole BetaSheet916 dataset is used.
bThe score is evaluated only on the subsets of the proteins whose number of aligned

sequences (NAS) is �1000.
cThe score is evaluated only on the subsets of the proteins whose NAS is51000.

Note: P(L*x)¼ precision evaluated selecting the L*x highest scoring b-residue pairs.

Table 4. BCov performance at strand level on the BetaSheet916 dataset

Method R P F1 MCC

CMM 55.0 61.0 58.0 0.53

MLN-2S 59.8 58.4 59.1 0.54

MLN 55.5 59.8 57.6 0.53

BetaPro 59.7 53.1 56.2 0.51

BCov 62.0 59.5 60.7 0.56

Bcov� 1000 66.0 64.1 65.1 0.61

Bcov51000 48.9 45.2 47.0 0.39

Note: For the legend see Table 3.
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performances do not degrade indicates that BCov is a robust

predictor of b-sheet topologies. In Table 7 we also report the

performance of the most recently introduced CMM method

(Burkoff et al., 2013) that was trained on the BetaSheet916 data-

set. It is worth noticing that BCov6 performs similarly at residue

level, but generally better at strand level indicating that BCov

more efficient than CMM at locating the b-sheet segment pairing

(see MCC and F1 measure in Table 7).

4 CONCLUSIONS

In this article, we presented BCov, a new unsupervised method

which integrates correlated mutation analysis and integer pro-

gramming for b-sheet topology prediction. BCov well compares

with the performances of the state-of-the-art methods, such as

BetaPro, CMMs and MLNs. The main advantage of BCov is in

the identification of the b-strand pairing and the prediction of

the b-sheet topology. This is also confirmed when BCov is com-

pared with the most recently introduced method to address this

task (MCC by Burkoff et al., 2013) on the new BetaSheet1452

dataset (Table 7). It is also worth noticing that BCov might be

coupled or incorporated into more complex machine-learning

frameworks such as recurrent neural networks or MLNs, as all

the information used by BCov (or its components) is obtained at

the sequence level without training. Finally, all the experiments

carried out in this article showed once more the strength of the

correlated mutation analysis for residue contact prediction, espe-

cially when this is performed using a sparse inverse covariance

approach as the one implemented by PSICOV (Jones et al. 2012)

or related approaches (Cocco et al., 2013; Ekeberg et al. 2013;

Marks et al., 2011, 2012; Morcos et al., 2001; Weigt et al. 2009).
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