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ABSTRACT

Motivation: The abundance of many transcripts changes significantly

in response to a variety of molecular and environmental perturbations.

A key question in this setting is as follows: what intermediate molecu-

lar perturbations gave rise to the observed transcriptional changes?

Regulatory programs are not exclusively governed by transcriptional

changes but also by protein abundance and post-translational modi-

fications making direct causal inference from data difficult. However,

biomedical research over the last decades has uncovered a plethora

of causal signaling cascades that can be used to identify good can-

didates explaining a specific set of transcriptional changes.

Methods: We take a Bayesian approach to integrate gene expression

profiling with a causal graph of molecular interactions constructed

from prior biological knowledge. In addition, we define the biological

context of a specific interaction by the corresponding Medical Subject

Headings terms. The Bayesian network can be queried to suggest

upstream regulators that can be causally linked to the altered expres-

sion profile.

Results: Our approach will treat candidate regulators in the right bio-

logical context preferentially, enables hierarchical exploration of result-

ing hypotheses and takes the complete network of causal

relationships into account to arrive at the best set of upstream regu-

lators. We demonstrate the power of our method on distinct biological

datasets, namely response to dexamethasone treatment, stem cell

differentiation and a neuropathic pain model. In all cases relevant bio-

logical insights could be validated.

Availability and implementation: Source code for the method is

available upon request.

Contact: daniel.ziemek@pfizer.com

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The abundance of many transcripts changes significantly in

response to a variety of molecular and environmental perturb-

ations. To understand the details of the transcriptional response,

it is often useful to annotate the biological function of the chan-

ged transcripts using gene set enrichment methods. Ackermann

and Strimmer (2009) give a comprehensive overview and Naeem

et al. (2012) provide a recent performance assessment of many

methods. However, a key question often remains: what inter-

mediate molecular perturbations gave rise to the observed tran-

scriptional changes? The situation is complicated by the fact that

regulatory programs are not necessarily governed by transcrip-

tional changes but also by protein abundance and post-transla-

tional modifications. As changes beyond the transcriptional level

are rarely measured, direct inference of causal relationships is

difficult and an active field of research. A number of statistical

and network reconstruction methods have been used to identify

potential gene regulatory networks directly from the gene expres-

sion profiles and large-scale datasets (Dhaeseleer et al., 2000;

Schadt et al., 2005). Although these methods demonstrate

great potential for deciphering mechanisms of regulation, they

require a large number of expression profiles and genetic data.

Moreover, determining the sign and direction of the causality can

be challenging. Over the last decades, biomedical research has

uncovered a plethora of causal signaling cascades. Such prior

knowledge can be used to identify good candidates to explain

a specific set of transcriptional changes and point to others that

cannot be explained satisfactorily by current knowledge.
The use of prior network or pathway knowledge has received

considerable attention in recent years. Emmert-Streib and

Glazko (2011) provide a recent review. More closely related to

our method, Pollard et al. (2005) developed an approach based

on reasoning on structured collection of causal relationships to

analyze the most likely regulators of expression changes derived

from type 2 diabetes patients and recovered known key genes in

diabetes and proposed new regulators. Chindelevitch et al. (2012)

constructed a causal graph from a set of causal relationships

extracted from the biomedical literature and introduced a scoring

scheme to identify putative upstream regulators for any given

input dataset based on the set of causal relationships encoded

as the causal graph. Essentially, for each putative upstream regu-

lator, the method makes predictions of the downstream tran-

scriptional effects (upregulation or downregulation) using the

causal relationships. The predictions are then compared with

the observed data and based on the number of correct and

incorrect predictions, a score is assigned to the upstream*To whom correspondence should be addressed.
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regulator. The statistical significance of the scores is measured
using an analog of the Fisher’s exact test. Although this method

is able to distinguish the upstream regulator whose associated

transcripts have significantly different distribution form the
background, it does not take the full topology of the network

into consideration. More precisely, each regulator is considered

in isolation and the joint distribution of the network is not taken

into consideration. Moreover, the model makes no assumption
on the applicability of the causal relations in the context under

which the experiment is performed.
In this work, we construct a Bayesian network from the same

knowledgebase as in Chindelevitch et al. (2012), consisting of a

set of nearly 450000 causal relations extracted from nearly 65 000
peer review PubMed full articles. The Bayesian network can be

queried to suggest upstream regulators (hypotheses) that can be

causally linked to the altered expression profile in a manner that

takes the entire topology of the network as well as the context
under which the experiment is performed into consideration. The

noise in the observation is also taken into consideration directly.
Most methods integrating network data into the analysis pro-

cess differ in at least one key point from our Bayesian approach,

namely (i) the use of non-causal non-signed protein–protein inter-
action networks, (ii) the use of non-Bayesian approaches, (iii) a

focus on identifying active subnetworks or enriched gene sets, but

not the contextual prediction of upstream regulators active in a
given experiment. A potential problem with our and related

approaches is the availability of a suitable knowledgebase of

causal relationships. Fortunately, public repositories are starting

to appear. For our purposes, the OpenBEL portal (www.openbel.
org) is the most relevant example. It provides an open-source

framework to specify, parse and manipulate causal relationships

and also offers a test corpus under a Creative Commons license of
�70 000 causal statements manually extracted from 16000

PubMed articles. The biological examples in this work rely on a

licensed extended knowledgebase from commercial vendors, i.e.

Ingenuity (www.ingenuity.com) and Selventa (www.selventa.
com) that consists of about 450 000 statements. Selventa makes

a subset of their knowledge base available at the OpenBEL site.

2 METHODS

2.1 Construction of the directed acyclic graph

In this section, we present the construction of a causal graph from causal

relations extracted from the literature. We first need to introduce some

notations and terminology used throughout the article. We use bold char-

acters to denote vectors, upper case letters, such as X to denote a random

variable and lower case letters such as x to denote an instantiation of the

random variable. DðXÞ denotes the domain of the random variable

X. Subscripts are used to refer to individual random variables, whereas

superscripts are used to distinguish specific values of a random variable.

Pa(X) and Ch(X) denote the instantiated parents and the children of

the node X, respectively. Finally, we use a negative subscript ð�iÞ to

denote a vector whose i-th component is removed [e.g. x �ið Þ ¼

x1, :::, xi�1, xiþ1, :::, xnð Þ].

We are concerned with biological entities and the causal relations be-

tween them; statements such as an increase in X lead to a decrease in

Y. These statements are extracted from biomedical literature. Using these

statements, we construct a signed causal graph where the set of nodes X

consists of transcripts, proteins or compounds. An edge between nodes

X and Y indicates the existence of causal relation between the source node

X and the target node Y, whereas the sign of the edge specifies the dir-

ection of the regulation; ðþÞ if the regulation is positive, i.e. an increase in

X leads to an increase in Y and ð�Þ if the regulation is negative, i.e an

increase in X leads to a decrease in Y. Each edge in the causal network is

annotated with a PubMed id and the corresponding medical subject

headings (MeSH) terms. A regulator is a non-transcript node whose

value is not known a priori. An evidence node is generally a transcript

node whose value is determined from the gene expression data. However,

other nodes in the network can also serve as evidence node if there is prior

knowledge of their state.

The structure of the causal network reflects the dependencies and the

direction of causality between the biological entities. In this work, we only

consider the regulators that are directly connected to transcript nodes in

the causal graph and leave longer paths as future work. As a consequence

the graph is acyclic, but the remaining causal relationships in the network

may still be applicable in a certain biological context only (e.g. organism,

tissue, experimental conditions, etc.). Hence some of the edges of the

network may not be applicable in the context of the experimental gene

expression data. In the next section, we show how the gene expression

data can be used to define the context of the experiment and determine

the applicability of the remaining causal relations.

2.2 Defining the context

The causal relations (i.e edges) that are incident to nonzero transcript

nodes of the network, as determined by the gene expression profile,

provide a way to model the applicability of other edges of the network.

We refer to these edges as the ‘nonzero’ network.

MeSH provide a comprehensive controlled database of terms that

index the journal articles in PubMed. MeSH terms can serve to classify

and model the context under which the causal relations are applicable.

To define the context of the experiment, we performed an enrichment

analysis to identify MeSH terms that the nonzero network is enriched

with (see Supplementary Material for details). We used an False

Discovery Rate (FDR) adjusted P-value of 10�6 as a cutoff threshold

for determining the significant MeSH terms. To reduce the computation

time, the significant MeSH terms were restricted to those with no more

than 200 annotated edges in the network. An extra artificial MeSH term

was also defined and every edge in the nonzero network was annotated to

this MeSH term. As will be seen later, this is done to give the causal

relations in the nonzero network a higher probability of being applicable.

In the next section, we will show how these MeSH terms can be integrated

into the network and used to infer the ‘applicability’ of individual causal

relations.

2.3 Construction of the Bayesian network

2.3.1 Model We construct a Bayesian network from the signed causal

graph as follows. The nodes of the Bayesian network are discrete random

variables. There are five classes of nodes in the network.

� Transcript nodes Z ¼ Z1, . . . ,Zmf g: These are the transcripts whose

values are observed from the gene expression data. These nodes have

domain DðZÞ ¼ �1, 0, þ 1f g where �1 represents downregulated, 0

represents not differentially expressed and þ1 represents upregulated.

� True state of the transcripts H ¼ H1, . . . ,Hmf g: These nodes model

the true state of the genes. The value of these nodes is not known

a priori. These nodes are hidden and do not enter the computations

explicitly. These nodes have domain DðHÞ ¼ �1, 0, þ 1, af g where

the additional state a stands for ‘ambiguous’. This state is necessary

to model the conflict in the predictions for a node whose parents are

in disagreement in the direction of regulation.

� Regulator nodes X ¼ X1, . . . ,Xnf g: These are the proteins and

the compounds in the network that potentially regulate the

transcripts. Similar to transcript nodes, these nodes have domain
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DðXÞ ¼ �1, 0, þ 1f g, where �1 represents downregulated, 0 repre-

sents not regulated and þ1 represents upregulated.

� Applicability nodes A ¼ A1, . . . ,A‘f g: For each edge in the causal

graph, an applicability node is added to the network. The nodes are

connected to the corresponding true state nodes. The value of these

nodes determines the applicability of the corresponding edge. These

are binary nodes with domain DðAÞ ¼ 0, 1f g with 0 representing

‘inapplicable’ and 1 representing ‘applicable’.

� Context nodes C ¼ C1, . . . ,Ckf g: These correspond to the significant

MeSH terms obtained from the enrichment analysis. The context

nodes are connected to the applicability node of the edges that are

annotated to the MeSH term. Similar to applicability nodes, these

nodes are also binary with domain DðAÞ ¼ 0, 1f g with 0 representing

‘not in context’ and 1 representing ‘in context’.

Figure 1 illustrates the Bayesian network. In Bauer et al. (2010), a

somewhat similar model has been successfully applied to identify Gene

Ontology terms.

2.3.2 Conditional probabilities Let Ui denote either a regulator node

Xi or an applicability node Ai. The Markov blanket of the node Ui is

denoted by @Ui and is defined to be the set of the parents of Ui together

with its children and parents of its children. In a Bayesian network, the

node Ui is independent of the rest of the random variables when condi-

tioned on its Markov blanket, i.e. PrðUijUð�iÞÞ ¼ PrðUij@UiÞ. The

Markov blanket of Ui can be partitioned as @Ui ¼ ZUi
[ YUi

, where

ZUi
represents the set of transcript (evidence) nodes along with their

true state, and YUi
the set of regulator, applicability or context nodes

in @Ui. The transcript nodes and their corresponding true state nodes

are collapsed into one node. Note that for each Z 2 ZUi
,

PaðZÞ � YUi
[ fUig. In particular, note that Ui 2 PaðZÞ. Let

PaðZÞð�iÞ ¼ PaðZÞnfUig. The probability distribution PrðUi ¼ �j@UiÞ is

PrðUi ¼ �jPaðUiÞÞ
Q

Z2ZUi

PrðZ ¼ zjPaðZÞð�iÞ,Ui ¼ �Þ

P
u2DðUiÞ

PrðUi ¼ xjPaðUiÞÞ
Q

Z2ZUi

PrðZ ¼ zjPaðZÞð�iÞ,Ui ¼ uÞ
ð1Þ

Note that in the aforementioned equation, all of the variables in @Ui are

instantiated. We next define the conditional probabilities of the nodes

that can be used to model the state propagation of the nodes using

Equation (1).

Assume that Z is a transcript node with true stateH and nZ number of

parents. Assume that Pa(Z) is in the state xZ ¼ x1, . . .xnZ
� �

where

xj 2 DðXjÞ. Let s ¼ s1, . . . , snZ
� �

be the signs of the corresponding

edges. Then

PrðZ ¼ �jPaðZÞ ¼ xZÞ ¼
X

h2DðHÞ

PrðZ ¼ �jH ¼ hÞ�

PrðH ¼ hjPaðZÞ ¼ xZÞ

ð2Þ

The conditional probabilities PrðZjHÞ are defined according to

Table 1. These conditional probabilities are formulated to take the

false-positive (�) and false-negative (�) rates of the gene expression

data into consideration. In case where the true state of the gene is am-

biguous, the conditional probabilities are assigned to be equally likely.

The false-positive and false-negative rates of gene expression data are

known estimated values. In our computations we used � ¼ 0:05 and

� ¼ 0:1. As later will be seen, the inference does not show sensitive de-

pendence on � and � values.

The Markov blanket of Z consists of a set of regulators and their

corresponding applicability nodes. If an applicability node is assigned

to 0, then the corresponding regulator is inapplicable and hence it

should not have any influence on the value of Z (orH). Hence in defining

the conditional probability PrðHjPaðZÞÞ, only the regulators whose cor-

responding applicability nodes are nonzero will be taken into consider-

ation. Although this process will largely eliminate the ‘out of context’

edges, there is still a chance that the remaining edges are incorrect for

reasons that are not being taken into consideration by the model. For this

reason, each remaining edge is assigned a probability of being incorrect.

This probability is assigned according to the value of Z, Pc if Z 6¼ 0 and

Pa if Z ¼ 0. The dependence on Z is due to the fact that the applicable

Markov blanket is largely determined by the context nodes, which in turn

are obtained by enrichment analysis of the nonzero network. Hence an

applicable causal relation that invokes a zero transcript is more likely to

be incorrect for reasons not being considered by the model. The values

of these parameters can be integrated in the inference algorithm

Fig. 1. Illustration of the Bayesian network: for each causal relation, an applicability node is constructed. The MeSH terms associated with the PubMed

id of the article reporting the causal relation are used as context nodes that are then connected to the applicability node. To model the noise in

observation, the causal relations are split into two steps: from the regulator to the true (hidden) state of the gene and from the hidden state of the gene to

the observed value of the gene

Table. 1. Conditional probability table of Pr Z Hjð Þ

H ¼ �1 H ¼ 0 H ¼ 1 H ¼ a

Z ¼ �1 1� 2� � � 1/3

Z ¼ 0 � 1� 2� � 1/3

Z ¼ 1 � � 1� 2� 1/3
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(see Section 2.4) by introducing the corresponding parameter nodes in the

network and discretizing the parameter values. However, this will sub-

stantially increase the computation time. Therefore, we choose reasonable

values of Pa ¼ 0:7 and Pc ¼ 0:1 and confirmed on our trial datasets that

results were not sensitive to the exact choice.

The predicted H value is the vector V ¼ s1 � x1, . . . , sk � xnZ
� �

. Let n1
and n2 be the number of 1 and �1 elements in the vector V

and let n ¼ n1 þ n2 be the total number of parents in nonzero sates.

Define

PrðH ¼ ajPaðZÞ ¼ xZ,Z ¼ z, sÞ ¼
Xn1
k¼1

Xn2
‘¼1

n1

k

� �
n2

‘

� �
�

ð1� �Þkþ‘�N�ðkþ‘Þð1�
jk� ‘j

kþ ‘
Þ:

ð3Þ

where � ¼ ð1� jzjÞPc þ jzjPa. Here, we are combinatorially selecting k

applicable edges for the parents predicting a positive value for H and

‘ applicable edges for the parents predicting a negative value forH. These

edges each have probability ð1� �Þ of being correct. The last term of the

sum is a measure of the disagreement in the value ofH among the applic-

able parent nodes. Define

PrðH ¼ �1jPaðZÞ ¼ xZ,Z ¼ z, sÞ ¼ �ðnÞq� þ
Xn1
k¼0

Xn2
‘¼1

n1

k

� �
n2

‘

� �
�

ð1� �Þkþ‘�N�ðkþ‘Þ
� ‘jk� ‘j
ðkþ ‘Þ2

�
:

ð4Þ

Similarly, define

PrðH ¼ 1jPaðZÞ ¼ xZ,Z ¼ z, sÞ ¼ PðnÞc qþ þ
Xn1
k¼1

Xn2
‘¼0

n1

k

� �
n2

‘

� �
�

ð1� �Þkþ‘�N�ðkþ‘Þ
� kjk� ‘j
ðkþ ‘Þ2

�
:

ð5Þ

Here, q� and qþ are prior (background) probabilities of genes being

upregulated or downregulated, which can be estimated using the gene

expression data. Precisely, q� ¼ n�=m, qþ ¼ nþ=m where nþ and n� rep-

resent the number of upregulated and downregulated genes in the expres-

sion data and m represents the total number of available genes in the

network. The last two conditional probabilities in Equations (4) and (5)

are obtained by scaling the probability of not being ambiguous (i.e. jk�‘jkþ‘ )

with the proportions of �1’s [i.e. ‘
ðkþ‘Þ] and 1’s [i.e. k

ðkþ‘Þ], respectively. It is

straightforward to show that the

PrðH ¼ 0jPaðZÞ ¼ xZ, sÞ ¼ �
nq0: ð6Þ

Here, q0 ¼ n0=m is the prior probability of genes being not

regulated, where n0 ¼ m� ðnþ þ n�Þ. Intuitively, this means that the

only way that the nonzero applicable parents can predict a zero

state for H is when all the edges are incorrect, in which case the prob-

ability of a 0 true state is assigned according to the background model,

i.e. q0.

If Xi is a regulator node, the prior probability PrðXi ¼ �jPaðXiÞÞ is the

same as the prior probability of the regulator and is defined by

ð1� PzÞ=2, Pz and ð1� PzÞ=2 for states �1, 0, and 1, respectively.

Here, Pz denotes the prior probability of state 0 for the regulator. In

our calculations, we used the Pz ¼ 0:9. Intuitively, setting the prior prob-

ability of the state 0 for regulators to be high will impact the posterior

probabilities in the same direction unless there exists substantial evidence

to support the hypothesis that the regulator is active. If Xi is an applic-

ability node with context parents say, ðCi1 ; � � � ;Cip Þ in state ðci1 ; � � � ; cip Þ,

define

PrðXi ¼ 1jPaðXiÞÞ ¼
eW

1þ eW
ð7Þ

where W ¼
P

j wjcij . Here, wj is a set of weights assigned to the corres-

ponding context node. In our calculations, we set the wj ¼ 0:3. This is a

desirable way for defining the conditional probability for two reasons.

First, the probability of being in context increases as the number of

nonzero parents increases. Second, this conditional probability has a

transitional property: if the number of nonzero parents of an applicability

node exceeds a certain limit, then the node value will be 1 with high

probability.

Finally, for context nodes C, the conditional probability PrðC ¼ �j@CÞ

is given by

PrðC ¼ �Þ
Q

A2@C

PrðA ¼ ajPaðAÞð�CÞ,C ¼ �ÞP
x2DðCÞ

PrðC ¼ xÞ
Q

A2@C

PrðA ¼ ajPaðAÞð�CÞ,C ¼ xÞ
ð8Þ

where PrðA ¼ ajPaðAÞð�CÞÞ, is defined by Equation (7) and the prior

probability PrðC ¼ �Þ ¼ 0:5. The state of artificially added context node

is set to 1.

In the next section, we address the problem of inference from the

Bayesian network.

2.4 Inference

Since exact inference in Bayesian networks are often impractical due

to prohibitive time and memory demands, sampling techniques are

commonly used for approximate inference. We wish to generate

samples ut
� 	T

t¼1
from the joint probability distribution PrðUjZ ¼ zÞ.

Here, U ¼ U1, . . . ,Unð Þ represents the regulator (Xi), applicability (Ai)

or context (Ci) nodes and Z ¼ Z1, . . . ,Zmð Þ represents the evidence

(e.g. transcript) nodes. Note that the evidence node generally com-

prises the instantiated transcript nodes obtained from the gene expres-

sion data. However, the evidence node is not limited to transcripts

only. For instance, if there is evidence that a certain regulator is

active, or if a causal relation is inapplicable, the corresponding

nodes can be treated as evidence nodes with fixed prespecified

values. Using the generated samples, we can then approximate the

posterior marginal PrðUi ¼ uijZ ¼ zÞ of a given non-evidence node

Ui by

P̂rðUi ¼ uijzÞ ¼
1

T

XT
t¼1

�ðui, u
tÞ ð9Þ

where T denotes the total number of samples generated and �ðui, u
tÞ ¼ 1

if utðiÞ ¼ ui and 0 otherwise. In our computations, we used Gibbs sam-

pling, a Markov chain Monte Carlo method that is particularly well

suited to sample the posterior distribution from a Bayesian network.

All non-evidence nodes are first randomly initialized. The values of the

nodes are then updated iteratively using Equations (1), (7) or (8) depend-

ing on the node type. When generating the tth sample for the random

variable Ui, we use u
t
ð�iÞ ¼ ut1; . . . ; uti�1; u

t�1
iþ1 ; . . . ; ut�1n

� �
to instantiate @Ui,

where the random variables U1 to Ui�1 are instantiated with their tth

sample, and the random variables from Uiþ1 to Un are instantiated with

their previous sample, i.e. ðt� 1Þ th sample. Algorithm 1 summarizes the

inference procedure.

It can be shown that the sequence of samples comprises a Markov

chain whose stationary distribution is sought after distribution

PrðUjZ ¼ zÞ. We generated samples from the joint distribution by run-

ning multiple chains of the Gibbs sampler in parallel. Moreover, to in-

vestigate the existence of alternative regulators, we can run

the simulations in an iterative manner as follows. In the first iteration,

the inference is performed and top regulators are selected. Next, the

simulations are performed again while setting some or all of the previ-

ously selected regulators to 0. This iterative process can be continued for

either a specific number of times or until no further regulators are

produced.
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Input : The Bayesian network over U and the evidence Z ¼ z

Output : A set of samples ut
� 	T

t¼1

Initialization : Assign U to u0 ¼ u1, . . . , unð Þ where ui selected uniformly

at random from the state space of the random variables.

for t 1 to T do

for i 1 to n do

generate a sample uti from PrðUij@UiÞ;

set utðiÞ ¼ uti ;

end

end

ALGORITHM 1: Gibbs sampler

3 RESULTS

3.1 Simulated data

To test the performance of our method, we simulated data by
perturbing a single regulator in a specific context. In our test, we

used PPARG as an example of a protein with two distinct
biological functions, i.e. (i) its role in immune system regulation

and (ii) its function as a key enzyme of lipid metabolism and
adipogenesis (Tontonoz and Spiegelman, 2008; Zieleniak et al.,

2008). In each context, we selected related MeSH terms and the
corresponding causal relations and then simulated the gene

expression data at the false-positive rate � ¼ 0:05 and false-nega-
tive rate � ¼ 0:1, assuming upregulation of PPARG. Figure 2
illustrates the simulation. For each simulated input set, our

method correctly predicted PPARG as the only upstream cause
of the observed variation with high probability. Moreover, the

MeSH enrichment analysis and the subsequent inference cor-
rectly recover the majority of the MeSH terms. In contrast,

there were no significant regulators reported when generating
random expression profiles of the same size. We also assessed

the sensitivity of the predictions to parameters � and � by simu-
lating gene expression data using different values of these

parameters. We selected a grid 0 � �,� � 0:3 with step size

0.02, simulating a total of 256 datasets. The case � ¼ 1=3 and

� ¼ 1=3 corresponds to random data generation (see Table 1). In

prediction step, the fixed values � ¼ 0:05 and � ¼ 0:1 were used.

The simulation was performed in adipogenesis context where

more genes (171) are downstream of PPARG. In 253 cases of

256 simulation runs, PPARG was selected as the top ranking

regulator with high probability and in 201 of these cases

PPARG was the only predicted regulator. Other cases included

1 (50 cases), 2 (3 cases) or 3 (2 cases) extra predicted regulators,

mostly with low probabilities. See Supplementary Material for a

heat map of false positives.

3.2 Dexamethasone: recovering a known mode-of-action

To characterize the performance of our method on biological

data, we analyzed an experiment of Stojadinovic et al. (2007)

in which primary human keratinocytes were treated with

dexamethasone. The objective of the original study was to inves-

tigate the detailed mechanisms of glucocorticoid receptor signal-

ing in skin cells. The authors particularly highlight suppression

of interferon gamma (IFNG) and suppression of transforming

growth factor beta (TGFB) among the prominent pathways af-

fected. A significant indication of the performance of our method

is the concordance of the top regulators with the conclusions

from the original study (Table 2). The primary experimental per-

turbation, dexamethasone, ranked highest followed by decreased

lipopolysaccharide, a molecule commonly used experimentally to

induce inflammation perhaps a surrogate for the known gluco-

corticoid effect of decreased inflammation. Note that decreased

IFNG and decreased TGFB1 hypotheses follow closely among

the top ranking regulators. Interestingly, glucocorticoid receptor

itself (NR3C1) did not appear as a significant high ranking regu-

lator in the first iteration. However, after accepting the

Fig. 2. Figure on the left: simulation of gene expression by perturbing PPARG. A context is first selected and the associated MeSH terms are turned on.

The corresponding applicability nodes and the associated causal relations are selected and the gene expression data is simulated at the false-positive rate

� ¼ 0:05 and false-negative rate � ¼ 0:1. Figure on the right: part of the actual network of PPARG. Proteins and chemicals are colored in green.

Simulated gene values are colored in blue for downregulated genes, red for upregulated genes and light blue for not regulated genes
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dexamethasone as correct but wishing to find the molecule

through which it asserts its function, we removed dexamethasone

from consideration and ran a subsequent iteration. The activa-

tion of NR3C1, the primary target of dexamethasone, was cor-

rectly identified as the top regulator in this iteration. This

exemplifies the possibility of using our methods in iterations to

uncover the layers of signaling.
The inferred enriched MeSH terms are also in agreement with

the biological context of the regulators including terms such as

dexamethsone and glucocorticoid. Instances where MeSH terms

could provide additional context information include the

MeSH terms for TGFB1 where the most enriched term is

‘Dermis/drug effects’ consistent with the skin cell model used

in the experiment.

3.3 In vivo model of pain

To further evaluate the ability of our method to identify tran-

scriptional regulators of biological processes, we used a more

complex dataset with no single perturbation. Costigan et al.

(2009) undertook gene expression studies of dorsal horn tissue

from the spinal cord of rats subjected to a surgical procedure

designed to induce neuropathic pain. From this the authors

hypothesized and subsequently experimentally confirmed that

IFNG is required for the development of neuropathic pain. The

raw data from this study were Robust Multichip Average normal-

ized and limma was used to identify differentially expressed

genes. Genes were considered significant if their FDR corrected

P-value was 50:05 (204 genes upregulated and 3 genes down-

regulated). Our method determined IFNGþ to have the greatest

probability (0.958) and to correctly explain 48 of the gene

expression changes—clearly confirming one validated molecular

key aspect of the experiment.

3.4 Drivers of stem cell differentiation

Finally, we assessed our method by analyzing an in vitro differ-

entiation model of pancreatic beta cell development (D’Amour

et al., 2006; Gutteridge et al., 2013). At the time points analyzed

(day 8 and day 11) the cells transition from NEUROG3þ pan-

creatic progenitor cells to NKX2-2þ endocrine cells capable of

further differentiation into fully functional insulin producing

cells upon implantation into mice (Kroon et al., 2008). The top

causal regulators for this transition are shown in Table 3. The

gene identified as the top ranked regulator, NEUROG3, is a

bHLH family transcription factor that is known to be intimately

involved in the development of the pancreatic endocrine cell lin-

eage (Gradwohl et al., 2000; Rukstalis and Habener, 2009) and is

itself strongly expressed at these time points. The MesH terms

associated with NEUROG3 include ‘Pancreatic Ducts/embry-

ology’ confirming the link to pancreatic development.

Alongside NEUROG3, our method also highlights Beta-estradiol

signaling as the second highest ranked regulator. Beta-estradiol is

a hormone that is known to have an important role in both

pancreatic function (Tiano and Mauvais-Jarvis, 2012) and the

survival of insulin producing beta cells in particular (Nadal

et al., 2009). In ranking these two regulators at the top, our

method clearly shows that it is able to identify several of the

key regulators of this complex and clinically important develop-

mental process.

As well as entities with well-established links to pancreatic

development, the results also point toward perhaps surprising

roles for several inflammatory cytokines including IFNG, TNF

and IL6, upregulation of which are all proposed as causal drivers

during this stage of development. IFNG has long been known to

have a role, particularly in the context of type 1 diabetes, in

modulating beta cell function (Nielsen et al., 2001), and the

role of IL6 in pancreas function is supported by an emerging

body of literature (da Silva Krause et al., 2012). The

MeSH terms associated with IL6 include several relating to

Table. 2. Top regulators selected by BayesCRE in primary human kera-

tinocytes treated with dexamethasone

Regulator Regulation Probability Iteration

Dexamethasone Up 0.955 1

Lipopolysaccharide Down 0.948 1

TGFB1 Down 0.912 1

TNF Down 0.886 1

IFNG Down 0.815 1

CD 437 Up 0.659 1

TP53 Down 0.656 1

Retinoic acid Down 0.654 1

RHOA Up 0.602 1

NR3C1 Up 0.568 2

Decitabine Down 0.563 1

Hydrocortisone Up 0.538 1

IL6 Down 0.538 1

TP63 Down 0.518 1

MYC Up 0.503 1

Camptothecin Down 0.488 2

Note: Top regulators selected by BayesCRE as the upstream cause of the observed

variation in the gene expression data from primary human keratinocytes untreated

and treated with dexamethasone.

Table 3. Top regulators selected by BayesCRE in Viacyte hESC directed

differentiation cell model

Regulator Regulation Probability Iteration

NEUROG3 Up 0.968 1

Beta estradiol Up 0.954 1

CDKN1A Down 0.902 1

THAP1 Down 0.794 1

Retinoic acid Down 0.781 1

IFNG Up 0.772 1

TP53 Down 0.762 1

TNF Up 0.707 1

Calcitriol Down 0.625 1

1-alpha, 25-dihydroxy vitamin D3 Down 0.618 1

NEUROD6 Down 0.617 1

IL6 Up 0.616 1

PDGF Complex family Hs Up 0.598 1

Note: Top regulators selected by BayesCRE as the upstream cause of the observed

variation in the gene expression data from Viacyte hESC directed differentiation cell

model.
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trypsin/chymotrypsin inhibition, which is a function of the
pancreas. Recent experiments made directly on the model used
here have shown a role for IL6 in the in vitro development of
pancreatic endocrine cells (Gutteridge et al., 2013) confirming the

BayesCRE prediction.
Interestingly IFNG is selected as a top regulator in all three

experiments (upregulated in the model of pain and stem cell dif-

ferentiation and downregulated in dexamethasone). In each case,
the inferred MeSH term provides information on the
context of the experiment. In the case of the dexamethasone,

‘Dexamethasone/antagonists & inhibitors’ is one of the top
inferred MeSH terms, clearly distinguishing the experiment. In
the case of stem cell differentiation, MeSH terms include ‘dia-

betes mellitus’ as well as ‘insulin like growth factor’ and
‘adrenomedullin’, indicating the association with beta cell differ-
entiation and pancreas. These terms do not appear in other
experiments. In the case of the model of pain, the inferred

IFNG associated MeSH term is mostly related to IFNG function
as an immune mediator. This is expected, given that the model of
pain is a more generic whole animal system with no single obvi-

ous point of intervention.

4 DISCUSSION

In this article, we present a Bayesian methodology capable of

identifying specific, plausible and testable biological hypothesis
consistent with the observed gene expression data. We do this by
reasoning over a massive knowledge base of prior biological

knowledge extracted from the literature. Our method is an ex-
tension of the approach developed by Chindelevitch et al. (2012).
There, the statistical significance of upstream regulators is tested
in isolation, i.e. the existence of alternative regulators is not taken

into consideration when assessing the significance. Our method
generalizes this by constructing a Bayesian network from the
knowledge base and considering the joint probability distribution

of the possible molecular drivers of the observed expression pro-
file (see Supplementary Material for benchmark results).
Additionally, our new method models the context of the experi-

ment by introducing the enriched MeSH terms of the network of
differentially expressed genes as nodes in the Bayesian network.
This will significantly remove the noise and redundancy in the

network.
In conclusion, we find that our new method is well able to

identify the key regulators in simulated and actual biological
data. The nature of the output is well suited for the direct pro-

posal of novel testable hypotheses, such as a role for IL6 of
endocrine pancreas development or the causal aspect of IFNG
in a system as noisy as a surgical in vivo model of pain. We are

currently pursuing an extension of our method that will integrate
higher-level causal drivers in the network. Finally, our method
provides a natural framework for integrating omic-scale dataset

with prior biological knowledge to identify concise, coherent and
testable biological hypothesis.
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