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ABSTRACT

Triple negative breast cancer (TNBC) is a heterogeneous disease with distinct 
molecular subtypes that differentially respond to chemotherapy and targeted agents. 
The purpose of this study is to explore the clinical relevance of Lehmann TNBC subtypes 
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by identifying any differences in response to neoadjuvant chemotherapy among 
them. We determined Lehmann subtypes by gene expression profiling in paraffined 
pre-treatment tumor biopsies from 125 TNBC patients treated with neoadjuvant 
anthracyclines and/or taxanes +/- carboplatin. We explored the clinicopathological 
characteristics of Lehmann subtypes and their association with the pathologic complete 
response (pCR) to different treatments. The global pCR rate was 37%, and it was 
unevenly distributed within Lehmann’s subtypes. Basal-like 1 (BL1) tumors exhibited 
the highest pCR to carboplatin containing regimens (80% vs 23%, p=0.027) and were 
the most proliferative (Ki-67>50% of 88.2% vs. 63.7%, p=0.02). Luminal-androgen 
receptor (LAR) patients achieved the lowest pCR to all treatments (14.3% vs 42.7%, 
p=0.045 when excluding mesenchymal stem-like (MSL) samples) and were the group 
with the lowest proliferation (Ki-67≤50% of 71% vs 27%, p=0.002). In our cohort, 
only tumors with LAR phenotype presented non-basal-like intrinsic subtypes (HER2-
enriched and luminal A). TNBC patients present tumors with a high genetic diversity 
ranging from highly proliferative tumors, likely responsive to platinum-based therapies, 
to a subset of chemoresistant tumors with low proliferation and luminal characteristics.

INTRODUCTION

Triple negative breast cancer (TNBC) includes 
a heterogeneous subgroup of tumors accounting for 
approximately 15-20% of all breast cancers. TNBC is 
clinically defined by the absence of expression of estrogen 
receptor (ER), progesterone receptor (PR), and human 
epidermal growth factor receptor 2 (HER2) amplification/
overexpression. TNBC presents a more aggressive natural 
history and worse disease-specific outcomes than other 
breast cancer subtypes. Anthracycline and taxane-based 
chemotherapy has been traditionally the mainstay of 
therapy for TNBC patients. Nevertheless, platinum-based 
chemotherapy, with a DNA-damaging mechanism of 
action, has been incorporated into the neoadjuvant and 
metastatic settings. Patients with TNBC do not benefit 
from targeted therapies such as endocrine therapy or 
trastuzumab, and no appropriate molecular targets have 
been identified yet [1, 2].

Neoadjuvant chemotherapy has been historically 
used to downstage unresectable tumors for better loco-
regional control and higher conservative surgery rate. 
The neoadjuvant approach also represents an excellent in 
vivo test of tumors´ biological sensitivity and of drugs´ 
clinical efficacy. Therefore, it facilitates cancer research 
and works towards personalized medicine [3, 4]. After 
receiving neoadjuvant chemotherapy, about 30% of TNBC 
patients present a complete absence of residual invasive 
tumor or pathologic complete response (pCR). Achieving 
a pCR improves these patients´ prognoses to the point 
that their disease-free survival and overall survival are 
similar to patients with less aggressive tumors. However, 
TNBC patients with residual disease after chemotherapy 
have worse survival and prognosis than those non-triple 
negative [5-7]. In TNBC, pCR is therefore considered a 
potential surrogate marker for survival [7].

Gene expression analysis studies have contributed 
to unveil TNBC heterogeneity by demonstrating that it is 

composed of all the intrinsic subtypes, being basal-like 
the most common subtype (70%) [8]. Thus, not all triple 
negative are basal-like by gene expression and not all 
basal-like are triple negative by immunohistochemistry. 
Recently, Lehmann and colleagues performed a more 
thorough dissection of TNBC into 7 distinct subtypes 
based on gene expression profiling. This classification 
included 6 stable subtypes consisting in: two basal-
like (BL1 and BL2), an immunomodulatory (IM), a 
mesenchymal (M), a mesenchymal stem-like (MSL), and a 
luminal androgen receptor (LAR) subtype; and an unstable 
(UNS) subtype. These subtypes were reproduced and 
pharmacologically targeted in breast cancer cell lines as 
proof of concept that they can inform therapy selection [9]. 
However, the clinical relevance of the subtyping defined 
by Lehmann et al. is still unclear and more research is 
needed to clarify its impact on TNBC treatment decisions.

We believe there is a need for proper validation of the 
value of TNBC subtyping regarding response to treatment 
and survival outcome. Thus, a first highly valuable step 
would be testing how Lehmann´s classification predicts 
tumor pCR in the neoadjuvant setting. The main aim of this 
study was to assess the clinical relevance of these 7 molecular 
subtypes by ascertaining their correlation with pCR, as 
a surrogate marker for overall survival, in a cohort of 125 
TNBC patients treated with anthracyclines and/or taxanes 
+/- carboplatin in the neoadjuvant setting. In addition, we 
evaluated the activity of platinum salts in BL subtypes, given 
that drugs with DNA-damaging mechanisms of action have 
proven to be effective in tumors with DNA repair defects that 
characterize these subtypes [9].

RESULTS

Characteristics of the TNBC population

Patients’ clinicopathological characteristics in the 
global population (N=125) are shown in Table 1. Patients 
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were mainly pre-menopausal (56%), with positive lymph 
nodes (59%), high histological grade (63% had grade 
3) and high proliferation (median Ki-67 index of 65%, 
range 5-100%). Close to a third of the patients (27%) 
received carboplatin in the global population, being 
this percentage substantially higher in patients from the 
GEICAM/2006-03 clinical trial (56%). The pCR rate in 
the global population was 37% although it was unevenly 
distributed across Lehmann subtypes.

TNBC subtyping and clinicopathological 
variables

Lehmann subtypes

Of the 125 TNBC patients with evaluable pathologic 
response after neoadjuvant chemotherapy, RNA with 
sufficient quantity and quality for Lehmann subtyping 
was collected from 119 (95%) of them. Of these, 102 
(86%) were classified as stable and 17 (14%) as unstable 
(UNS) (Table 1). A more detailed description of the 
clinicopathological variables in every Lehmann subtype 
is shown in Table 2. Ki-67 index (dichotomized using a 
cut-off >50%) was associated with Lehmann subtyping 
(p=0.002). BL1 samples had the highest proliferation rates 
(88.2% of BL1 patients vs. 63.7% of patients with other 
subtypes had Ki-67>50%, p=0.02) and LAR the lowest 
(71% of LAR patients vs. 27% of patients with other 
subtypes had Ki-67≤50%, p=0.002).
Intrinsic subtypes

We further classified 110 (88%) of the tumor 
samples into intrinsic subtypes. Of these, 104 (94.5%) 
were classified as basal-like and 6 (5.4%) as non-basal-
like (Table 1). Non-basal-like samples included 5 HER2-
enriched and 1 luminal A; due to this low number we 
combined these 6 samples into a group of non-basal-
like samples for further analyses. As highlighted in 
the methodology, 36% of the tumors in this study were 
collected as part of the GEICAM/2006-03 trial, which 
eligibility criteria included the core basal definition, 
a more restrictive triple negative definition (triple 
negative status plus EGFR-positive and/or CK5/6-
positive). The fact that all these samples were already 
basal by immunohistochemistry could have caused an 
overrepresentation of basal-like tumors compared to the 
triple negative-only definition. However, we observed a 
comparable proportion of samples classified as basal-like 
when excluding this subset of core basal samples defined 
by immunohistochemistry (94.5% of basal-like samples 
in the global cohort vs. 92.2% in the triple negative-only 
cohort, p=0.56).
Correlation between Lehmann and intrinsic subtyping

We found a strong concordance between Lehmann 
and intrinsic subtyping (p<0.001, Table 2) mainly because 
the only stable group with non-basal-like samples is the 

LAR subtype. The distribution of Lehmann subtypes into 
basal-like and non-basal-like intrinsic subtypes is shown 
in Figure 1. Of the 5 LAR samples classified as non-
basal-like, 4 were HER2-enriched and 1 was luminal A. 
We had enough tumor tissue to successfully determine the 
expression of the androgen receptor (AR) in the luminal 
A and three out of four HER2-enriched tumors; all 
overexpressed AR and were histopathologically consistent 
with apocrine carcinomas.

Pathological complete response to different 
neoadjuvant treatments

We first analyzed the association between the 
different clinicopathological variables and the pathological 
complete response (pCR) to neoadjuvant treatment in the 
global sample. High expression of Ki-67 (using a cut-off 
>50%, p=0.037) and bigger clinical tumor size (≤2cm vs. 
>2cm, p=0.024) were associated with higher number of 
pCRs achieved. Clinical tumor size was the only variable 
that remained associated with pCR when performing a 
multivariate analysis (p=0.002).
pCR to overall neoadjuvant treatment by Lehmann 
subtype

Next, we analyzed the pCR rates achieved by 
Lehmann subtype (see Figure 2). As recently Prat and 
colleagues highlighted that Lehmann subtyping ignores 
TNBC samples that are highly contaminated with normal 
breast tissue, which are mostly classified as MSL [10], 
we performed all analyses with and without the MSL 
group to avoid missing relevant associations between 
clinicopathological variables and Lehmann subtypes.

We found no statistically significant association 
between Lehmann subtypes and pCR to overall 
neoadjuvant treatment (p=0.571) in spite of the wide 
range of pCR observed (from 47.1% in BL1 to 14.3% 
in LAR). LAR patients were the most chemoresistant 
(14.3% of pCR in LAR vs. 41.9% in the remaining 
subtypes combined, p=0.077) and when excluding MSL 
samples, this difference in response appeared to be more 
pronounced (14.3% of pCR in LAR patients vs. 42.7% in 
the remaining groups except MSL, p=0.046).
pCR to the different treatments in overall sample and 
by Lehmann subtype

We found no differences in pCR rates in the global 
population (without subtyping) when comparing patients 
treated with and without carboplatin (40.9% vs. 32.3% of 
pCR, respectively; p=0.521).

When analyzing the pCR response to the 
different treatments received by Lehmann subtype, we 
did not observe a difference in pCR rates to standard 
chemotherapy (sequential anthracyclines and/or taxanes) 
by Lehmann subtypes (p=0.556). When comparing the 
pCR rates in patients treated with carboplatin in each of 
the Lehmann subtypes, we observed that patients with 
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Table 1: Patients’ characteristics

Characteristics N (%)

Age at diagnosis (years)

  Median 48

  Range 29-76

Tumor size (cm)

  <2 9 (7.2%)

  2-5 90 (72%)

  >5 24 (19.2%)

  NA 2 (1.6%)

Lymph node status

  N0 38 (30.4%)

  N+ 74 (59.2%)

  NA 13 (10.4%)

Histological grade

  1 3 (2.4%)

  2 28 (22.4%)

  3 79 (63.2%)

  NA 15 (12%)

Ki-67 (%)

  ≤50 39 (31.2%)

  >50 83 (66.4%)

  NA 3 (2.4%)

Intrinsic subtypes

  Basal 104 (83.2%)

  Non-basal 6 (4.8%)

  NA 15 (12%)

Lehmann subtypes

  BL1 17 (13.6%)

  BL2 15 (12%)

  M 22 (17.6%)

  MSL 9 (7.2%)

  IM 25 (20%)

  LAR 14 (11.2%)

  UNS 17 (13.6%)

  NA 6 (4.8%)

Treatment

  A and/or T 91 (72.8%)

  A+T+Cb 34 (27.2%)

(Continued)
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BL1 tumors were the most benefited of the addition of 
carboplatin (80% of pCR in BL1 patients vs. 23% of pCR 
in the remaining groups, p=0.027).

DISCUSSION

Triple negative breast cancer (TNBC) is a 
commonly used umbrella term for a histologic group 
of tumors which, from a molecular perspective, are 

vastly heterogeneous. In fact, TNBC includes a wide 
range of entities differing in biology and response to 
chemotherapy and targeted therapies, and, thus, leading 
to different clinical outcomes. Recently, several TNBC 
classifications have been published illustrating the 
existing inconsistencies both in the definition of disease 
subgroups and of their corresponding clinical outcomes 
[9, 11-13]; only the subtypes termed as LAR appear to 
be consistent across all the studies, though it is unclear 

Characteristics N (%)

pCR

  Yes 46 (36.8%)

  No 79 (63.2%)

Abbreviations: N0, No node involvement; N+, node involvement; NA, not available; A, anthracyclines; T, taxanes; Cb, 
carboplatin.

Figure 1: Distribution of Lehmann subtypes within intrinsic subtypes. (A) Distribution of Lehmann subtypes in molecular 
basal-like tumors. (B) Distribution of Lehmann subtypes in molecular non-basal-like tumors.

Figure 2: Percentage of pCR associated to the different Lehmann subtypes by treatment. The green horizontal line represents 
the comparison of the percentage of pCR to sequential anthracyclines and taxanes plus carboplatin of BL1 versus the rest of patients and its 
associated p-value. The number of patients receiving every treatment within each Lehmann subtype can be found at Table 2. Abbreviations: 
A, anthracyclines; T, taxanes; Cb, carboplatin.
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Table 2: Patients’ characteristics by Lehmann subtype, N (%) and p-values of the comparison between all subtypes 
and all subtypes except MSL

Characteristics BL1(N=17) BL2(N=15) M(N=22) MSL(N=9) IM(N=25) LAR(N=14) UNS(N=17) p all 
subtypes

p 
excluding 

MSL

Age (years)

  <50 10 (58.8%) 9 (60%) 12 (54.5%) 3 (33.3%) 20 (80%) 6 (42.9%) 10 (58.8%)

  ≥50 7 (41.2%) 6 (40%) 10 (45.5%) 6 (66.7%) 5 (20%) 8 (57.1%) 7 (41.2%) 0.1791 0.2686

Tumor size (cm)

  <2 3 (17.6%) 0 3 (13.6%) 0 2 (8%) 0 1 (5.9%)

  2-5 13 (76.5%) 13 (86.7%) 16 (72.7%) 7 (77.8%) 17 (68%) 9 (64.3%) 11 (64.7%)

  >5 1 (5.9%) 2 (13.3%) 2 (9.1%) 2 (22.2%) 6 (24%) 4 (28.6%) 5 (29.4%) 0.5033 0.3979

  NA 0 0 1 (4.6%) 0 0 1 (7.1%) 0

Lymph node 
status

  N0 8 (47.1%) 4 (26.7%) 5 (22.7%) 4 (44.4%) 7 (28%) 3 (21.4%) 6 (35.3%)

  N+ 8 (47.1%) 8 (53.3%) 12 (54.6%) 5 (55.6%) 16 (64%) 10 (71.4%) 10 (58.8%)

  NA 1 (5.8%) 3 (20%) 5 (22.7%) 0 2 (8%) 1 (7.2%) 1 (5.9%) 0.7903 0.7449

Histological 
grade

  1 0 1 (6.7%) 0 0 0 1 (7.1%) 1 (5.9%)

  2 5 (29.4%) 0 7 (31.8%) 2 (22.2%) 5 (20%) 5 (35.7%) 3 (17.6%)

  3 10 (58.8%) 13 (86.6%) 11 (50%) 4 (44.5%) 18 (72%) 7 (50.1%) 11 (64.7%)

  NA 2 (11.8%) 1 (6.7%) 4 (18.2%) 3 (33.3%) 2 (8%) 1 (7.1%) 2 (11.8%) 0.1438 0.0912

Ki-67 (%)

  ≤50 1 (5.9%) 4 (26.7%) 9 (40.9%) 5 (55.6%) 4 (16%) 10 (71.4%) 5 (29.4%)

  >50 15 (88.2%) 11 (73.3%) 13 (59.1%) 4 (44.4%) 21 (84%) 4 (28.6%) 12 (70.6%)

  NA 1 (5.9%) 0 0 0 0 0 0 0.0015* <0.001*

Intrinsic 
subtypes

  basal 16 (94.1%) 15 (100%) 20 (90.9%) 8 (88.9%) 25 (100%) 5 (35.7%) 12 (70.6%)

  non-basal 0 0 0 0 0 5 (35.7%) 1 (5.9%)

  NA 1 (5.9%) 0 2 (9.1%) 1 (11.1%) 0 4 (28.6%) 4 (23.5%) <0.001* <0.001*

Treatment

  A and/or T 12 (70.6%) 12 (80%) 18 (81.8%) 7 (77.8%) 17 (68%) 10 (71.4%) 12 (70.6%)

  A+T+Cb 5 (29.4%) 3 (20%) 4 (18.2%) 2 (22.2%) 8 (32%) 4 (28.6%) 5 (29.4%) 0.9447 0.8916

pCR

  Yes 8 (47.1%) 7 (46.7%) 9 (40.9%) 3 (33.3%) 10 (40%) 2 (14.3%) 7 (41.2%)

  No 9 (52.9%) 8 (53.3%) 13 (59.1%) 6 (66.7%) 15 (60%) 12 (85.7%) 10 (58.8%) 0.5714 0.4539

Abbreviations: NA, not available; N0, No node involvement, N+, node involvement. NA, not available A, anthracyclines; 
T, taxanes; Cb, carboplatin.
* p≤0.05.
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whether these classifications are predictive of treatment 
efficacy.

In this report, we analyzed a combined dataset 
of TNBC patients treated with anthracyclines and/or 
taxanes +/- carboplatin in the neoadjuvant setting. First, 
we classified them into the TNBC Lehmann subtypes 
and evaluated their clinicopathological characteristics 
and, second, we explored the chemosensitivity of 
these subtypes to the different neoadjuvant treatments 
administrated. To our knowledge, this is the first study 
evaluating the prognostic role of Lehmann TNBC 
subtypes in the neoadjuvant setting of patients treated with 
and without platinum salts.

Based on our results, LAR is the least proliferative 
tumor subtype and the most chemoresistant one. 
Despite its significantly lower response to neoadjuvant 
chemotherapy in comparison to the other subtypes, LAR 
has been associated with a favorable prognosis when 
defined by immunohistochemistry as AR-positive [14-16]. 
This may be, in part, because LAR is the only subtype 
including non-basal-like tumors [17, 18] which could 
explain the low proliferation and pCR rates observed 
in our study. However, there are controversial results in 
the literature when LAR is defined by gene-expression, 
having the best [19, 20] or worse prognosis [9, 21] within 
TNBC and when analyzing all breast cancer subtypes [22]. 
As expected, our LAR samples expressed AR and were 
histologically consistent with apocrine carcinomas [23]. 
Recently published early phase II clinical trials results 
suggest that antiandrogen therapy may target the AR-
positive subset of TNBCs [24-26].

In our study, BL1 subtype appeared to be 
particularly sensitive to chemotherapy regimens including 
a platinum agent. This is of major significance because in 
the past few decades there has been considerable interest 
in platinum salts as treatment for TNBC given that 
homologous recombination deficiency (HRD) sensitizes 
tumor cells to these agents inducing cell death. Although, 
results from phase II studies involving unselected TNBC 
patients in the neoadjuvant setting have been conflicting 
[27-29], TNBC tumors harboring a high HRD score seem 
to benefit from platinum-based therapy [30].

The results of this study should be interpreted in 
the context of its limitations. First, the actual number of 
samples analyzed under each Lehmann subtype is limiting; 
second, we used formalin-fixed paraffin-embedded 
(FFPE) samples for gene expression analysis, which could 
present differences when compared to analysis performed 
in fresh/frozen tissue; and, third, patients did not receive 
homogeneous neoadjuvant treatments, although all 
patients did receive anthracyclines and/or taxanes +/- 
carboplatin regimes.

In conclusion, our results confirm the high genetic 
diversity within TNBC tumors, although, rather than falling 
into discreet categories, TNBC disease may be considered 
a spectrum of tumors with varying clinically-relevant 

characteristics. On one extreme of this spectrum, we 
would have BL1 tumors, a highly proliferative subtype 
with its likely deficiencies in HRD resulting in a high pCR 
to platinum salts-based therapies. On the other side, we 
would find LAR, a tumor subtype characterized by a low 
proliferation and a low response to standard chemotherapy. 
In between, we would find patients with TNBC tumors 
that cannot be classified into any subgroup further than 
the standard definition of TNBC. These results may have 
important implications in the design, implementation, 
and evaluation of future clinical trials aimed at further 
exploration of the clinical utility of TNBC subtyping.

MATERIALS AND METHODS

Patients and samples

We performed a retrospective analysis on 125 
patients with invasive TNBC including 45 (36%) 
from a randomized phase II trial (GEICAM/2006-03, 
ClinicalTrials.gov: NCT00432172) with a prospective 
collection of FFPE tumor samples and associated 
clinical data, and 80 (64%) patients for whom we had 
retrospectively collected FFPE tumor samples and data 
from four collaborating hospitals. GEICAM/2006-03 study 
was the first to investigate whether adding carboplatin to 
one of the most commonly used standard chemotherapy 
combinations (neoadjuvant epirubicin/cyclophosphamide 
followed by docetaxel) increased the pCR rate in basal-
like breast cancer patients. Further information about this 
trial can be found elsewhere [27].

To be included in this retrospective study, patients 
had to be over 18-years old females with histologically 
confirmed invasive TNBC (ER-negative, PR-negative, 
HER2-negative). All patients received standard 
neoadjuvant chemotherapy consisting of anthracyclines 
and/or taxanes with or without carboplatin. Patients 
included in the study had already undergone surgery 
during which data on their pathological response was 
assessed and collected in every collaborating hospital from 
the restrospective cohort and centrally in the GEICAM 
cohort. pCR was defined as the absence of invasive 
carcinoma in the breast and lymph nodes according to the 
Miller & Payne criteria [31]. Samples were managed and/
or provided by the Málaga Hospital-IBIMA Biobank and 
GEICAM Biobank. All patients participating in the study 
provided written informed consent and study protocols 
were approved by the corresponding institutional ethical 
committees.

Samples processing

Immunohistochemistry

Analyses were performed with FFPE biopsies 
obtained before neoadjuvant treatment. Immunostaining 
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was performed and assessed in every collaborating hospital 
using estrogen receptor (ER, Clone SP1), progesterone 
receptor (PR, Clone Y85), cytokeratin 5/6 (CK5/6, Clone 
D5/16B4), Ki-67 (Clone SP6) (Master Diagnóstica, 
Granada, Spain), epidermal growth factor receptor (EGFR, 
Clone 2-18C9), androgen receptor (AR, Clone AR441), 
and human epidermal growth factor receptor 2 (HER2, 
HercepTest) (DakoCytomation, Glostrup, Denmark). 
Samples from all patients were defined as triple negative by 
immunohistochemistry as ER-negative, PR-negative, and 
HER2-negative. AR status was assessed only in the samples 
classified as non-basal-like by PAM50 in order to evaluate if 
they were compatible with apocrine carcinomas. ER, PR and 
AR status were considered negative if <1% of cells stained 
positively [32]. HER2 status was considered negative if either 
immunohistochemical results were 0 to +1, or were +2 and 
FISH results were negative [33]. All GEICAM/2006-03 
samples were CK5/6-positive and/or EGFR-positive by 
immunohistochemistry and therefore defined as core basal 
[34]. CK5/6 and EGFR tumor immunoreactivity was 
determined only in the GEICAM cohort and categorized 
as negative (immunohistochemical score 0), and positive 
(immunohistochemical score 1-3). Information about Ki-
67 was collected as a continuous variable as well as a 
dichotomized variable defined by a cut-off point of 50% [35].
RNA extraction

Hematoxylin and eosin staining of a slide-mounted 
tumor section were reviewed, by independent pathologists 
for the GEICAM and non-GEICAM collections, to 
identify the area of invasive breast carcinoma. Tumor 
area was manually macrodissected to obtain an enriched 
tumor RNA. Extraction and purification was performed 
with the RNeasy FFPE Kit (Qiagen) from 3-6 sections 
of 10μm and quality assessment was conducted using a 
2100 Bioanalyzer (Agilent Technologies) and a Nanodrop 
spectrophotometer (Thermo Scientific).
TNBC subtyping

Gene expression analyses to classify samples into 1 
of the 4 intrinsic subtypes (luminal A, luminal B, HER2-
enriched, basal-like) were performed on an nCounter 
Analysis System (NanoString Technologies). For further 
analyses, we grouped samples as basal-like and non-basal-
like (luminal A, luminal B and HER2-enriched); as the 
majority of triple negative breast tumors are basal-like we 
expected a low number of the remaining subtypes. Samples 
from the GEICAM/2006-03 clinical trial were profiled 
using the PAM50 classifier and analyzed by means of a 
clinical algorithm for subtype prediction [36], discarding 
samples classified as normal-like. The retrospective 
collection of patients was classified according the Prosigna 
assay [37], which includes a proprietary algorithm based on 
the PAM50 gene signature [38].

RNA processing and microarray analysis performed 
to classify the samples into Lehmann TNBC subtypes 

were performed at the Microarray Analysis Service 
(SAM) core facility from Hospital del Mar Medical 
Research Institute (IMIM), using exclusively Affymetrix 
Technology (Affymetrix, Santa Clara, CA). RNA was 
amplified and labelled using the SensationPlus™ FFPE 
Amplification and WT Labeling kit. The resulting cDNA 
was hybridized to the GeneChip® Human Transcriptome 
Array 2.0. Data were normalized with the Robust 
Multichip Analysis (RMA) algorithm in the Affymetrix 
Expression Console (EC, v.1.4.1). Data were annotated 
in the statistical computing environment R (v.3.2.3) using 
hg19 human genome built and duplicated genes were mean 
summarized. Gene expression data are available in the 
GEO repository (accession GSE106977), at https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106977. 
Subtypes were identified with the web-based tool 
TNBCtype [39].

Statistical analyses

Pearson’s chi-square test was used to perform 
contingency table and goodness-of-fit tests, and 
Fisher’s exact test when any of expected values in cells 
were less than 5. Student’s t-test was also used to test 
the null hypothesis under the assumption of the two 
populations having equal means. A logistic regression 
multivariate analysis was performed, using a stepwise 
forward and backward selection procedure to select 
the most important variables of the model based on 
the Akaike information criterion (AIC). All statistical 
analyses were conducted in the statistical computing 
environment R (v. 3.3.1). Because the Lehmann’s MSL 
subtype can have an overrerpresentation of normal 
breast tissue [10], we performed all analysis both 
including and excluding the MSL subtype to avoid 
missing relevant associations.

Abbreviations

AR Androgen receptor
BL1 Basal-like 1
BL2 Basal-like 2
CK5/6 Cytokeratin 5/6
EGFR Epidermal growth factor receptor
ER Estrogen receptor
FFPE Formalin-fixed paraffin-embedded
HER2 Human epidermal growth factor receptor 2
HRD Homologous recombination deficiency
IM Immunomodulatory
LAR Luminal-androgen receptor
M Mesenchymal
MSL Mesenchymal stem-like
pCR Pathological complete response
PR Progesterone receptor
TNBC Triple negative breast cancer
UNS Unstable.
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