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Abstract

A commonly observed neural correlate of working memory is firing that persists after the 

triggering stimulus disappears. Substantial effort has been devoted to understanding the many 

potential mechanisms that may underlie memory-associated persistent activity. These rely either 

on the intrinsic properties of individual neurons or on the connectivity within neural circuits to 

maintain the persistent activity. Nevertheless, it remains unclear which mechanisms are at play in 

the many brain areas involved in working memory. Herein, we first summarize the palette of 

different mechanisms that can generate persistent activity. We then discuss recent work that asks 

which mechanisms underlie persistent activity in different brain areas. Finally, we discuss future 

studies that might tackle this question further. Our goal is to bridge between the communities of 

researchers who study either single-neuron biophysical, or neural circuit, mechanisms that can 

generate the persistent activity that underlies working memory.
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OVERVIEW

Working memory (WM), in which information about an external stimulus is stored by the 

brain for several seconds after that stimulus goes away, is a key cognitive function. For 
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example, to remember a phone number or infer causal relationships, one needs to recall the 

ordering of a sequence, and that ability hinges on WM. Decades of physiological studies 

have identified persistent firing as a neural correlate of WM. In the early, landmark studies 

in this field, monkeys were presented with a transient stimulus and trained to report that 

stimulus after a delay period in which no stimulus was present. Recordings in the monkeys’ 

prefrontal cortices (PFCs) showed that some neurons showed sustained, elevated firing rates 

during the delay period and that the delay period firing rates depended systematically on the 

identity of the previously presented stimulus (Fuster 1973, Kubota et al. 1974). Subsequent 

studies similarly observed stimulus-tuned delay period activity in the PFC (Barak et al. 

2010, Brody et al. 2003, Funahashi et al. 1989, Goldman-Rakic 1995, Miller et al. 1996, 

Rainer et al. 1998, Rao et al. 1997, Romo et al. 1999, Shafi et al. 2007) as well as in various 

other parts of the monkey brain: the temporal cortex (Bisley et al. 2004, Fuster & Jervey 

1981, Miller et al. 1993, Miyashita & Chang 1988, Zaksas & Pasternak 2006), parietal 

cortex (Gnadt & Andersen 1988, Pesaran et al. 2002, Shafi et al. 2007), auditory cortex 

(Gottlieb et al. 1989), visual cortex (Super et al. 2001), somatosensory cortex (Zhou & 

Fuster 1996), presupplementary motor area (Vergara et al. 2016), and medial premotor 

cortex (Hernández et al. 2002). Recent work has expanded to rodents, in which genetic tools 

allow neural activities to be manipulated as well as recorded. That work has focused on 

rodent homologs of the primate brain areas involved in memory and movement planning, 

including the parietal cortex, PFC, anterior lateral motor cortex (ALM), frontal orienting 

fields (FOF), and superior colliculus (SC) (Harvey et al. 2012, Kopec et al. 2015, Li et al. 

2016, Liu et al. 2014). In rodents, elevated delay period firing is observed as in the monkey, 

but relatively few cells are active for the entire delay period. Instead, most cells fire only in 

particular time windows. Those time windows tile the delay period, leading to observations 

of sequentially activated neurons (Harvey et al. 2012, MacDonald et al. 2011, Pastalkova et 

al. 2008), with the sets of sequentially activated neurons indicating the upcoming behavioral 

outcome (Harvey et al. 2012).

Supporting the role of elevated delay period firing in WM, this elevated firing is typically 

extinguished once the animal reports the remembered stimulus—at which point the 

information is no longer needed for the memory task (Funahashi et al. 1989, Fuster & Jervey 

1981). Moreover, the delay period activity is preferentially tuned to those stimulus features 

that are needed for the subsequent behavior (Rainer et al. 1998, Rao et al. 1997), as opposed 

to those stimulus features that are less task-relevant. To causally test the role of delay period 

activity in WM, recent work has focused on single-trial analyses of neural activity and 

behavior and on the impact of optogenetic perturbations on the behavioral reports at the end 

of the delay period; as argued by Panzeri et al. (2017), these two techniques provide 

powerful tests of the causal role of neural activities in driving behavior. This work shows 

that, even over trials in which the animal had to remember the same presented stimulus, 

differences in the delay period activities are predictive of subsequent differences in the 

behavior (Kopec et al. 2015, Li et al. 2016, Vergara et al. 2016, Wimmer et al. 2014). 

Moreover, optogenetic perturbations to the neural activities during the delay period cause 

predictable changes in the subsequent behavior (Kopec et al. 2015, Li et al. 2016, Liu et al. 

2014). Collectively, this body of work points to elevated neural firing during the delay period 

as an active process through which the brain stores information. The mechanisms underlying 
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this persistent activity are the focus of this review (see the sidebar titled Key Phrases 

Defined).

KEY PHRASES DEFINED

Persistent activity: neural firing that continues after the triggering stimulus goes away.

Bistability and multistability: forms of persistent activity in which a brief stimulus 

initiates a step-like change in firing rate. In bistable neurons, the change typically is from 

quiescence (no spontaneous spiking) to a quasi-constant firing rate. Multistable cells are 

capable of maintaining different stable firing rates.

Afterdepolarization: a response to a depolarizing stimulus in which the membrane 

potential does not return immediately to the prestimulus potential (it remains depolarized 

for some time, typically from several hundred milliseconds to several seconds). If large 

enough and if the resting membrane potential is close enough to the action potential 

threshold, the afterdepolarization can trigger persistent spiking.

Plateau potential: a classic term for an afterdepolarization response in which the 

membrane potential moves to a new (more depolarized) potential following a stimulus for 

several seconds before decaying back to the resting potential. Plateau potentials are often 

generated by noninactivating inward currents mediated by VGCCs.

Window current: current through an ion channel that occurs in the window between the 

membrane potential at which the ion channel activates but does not fully inactivate.

Feedforward connectivity: a pattern of connectivity in which the principal cells in one 

layer (or one brain region or subfield) do not form synaptic connections with each other. 

All lateral interactions among principal cells are mediated by interneurons.

Recurrent connectivity: connectivity between neurons that is not strictly feedforward 

because it includes connections between neurons of the same type (e.g., neocortical 

pyramidal cells that synapse onto other pyramidal cells). This connectivity allows for 

loops such as A→B→A and A→B→C→A that are required for attractor network 

models.

Discrete attractor model: a neural circuit model in which a discrete set of stable neural 

firing rate patterns are generated. Upon stimulation, the network settles into one of these 

patterns: The specific pattern that arises depends on the stimulation applied to the circuit.

Continuous attractor model: similar to a discrete attractor model, but with a continuum 

of stable firing rate patterns.

Network eigenvalue: a number that quantifies the strength with which the recurrent 

circuitry in a neural network maintains a particular pattern of neural firing rates (that 

pattern is known as the eigenvector associated with the eigenvalue). This number 

quantifies the fraction of the amplitude of the neural firing rate pattern that is regenerated 

by the recurrent circuitry. Values less than 1 mean that the firing rate pattern decays over 

time, values of exactly 1 mean that the pattern is maintained at a constant level, and 

values above 1 mean that the amplitude of the pattern increases over time owing to the 

recurrent circuitry.
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Fine-tuning: the observation that, for many neural circuit models of persistent activity 

based on recurrent connectivity, small deviations to the network connectivity (in either 

the pattern of connections or the connection weights) destroy the persistence.

Before we review the mechanisms that might underlie active WM, it is important to note that 

there are mechanisms through which information can be stored passively, without sustained 

neural spiking. For example, researchers have proposed that, when a stimulus evokes spiking 

activity in a neural circuit, short-term activity-dependent synaptic plasticity modifies that 

circuit so that it is primed to generate the same activity pattern again later (Mongillo et al. 

2008, Santos et al. 2012). Consequently, the stimulus-evoked pattern is remembered by the 

pattern of synaptic modifications. Depending on the dynamics underlying the synaptic 

changes, this information can be maintained for relatively long periods of time (Benna & 

Fusi 2016, Fusi et al. 2005, Lahiri & Ganguli 2013). Models of this type are reviewed in 

more detail elsewhere (Barak & Tsodyks 2014), and so here we focus instead on the active 

mechanisms that involve persistent spiking.

Despite decades of study—see, for example, prior reviews on this subject (Brody et al. 2003, 

Chaudhuri & Fiete 2016, Compte 2006, Durstewitz et al. 2000, Hasselmo & Stern 2006)—

we still lack a comprehensive understanding of which mechanisms generate the persistent 

activity that appears to underlie active WM. For example, is the persistent activity an 

intrinsic property of the neurons themselves (so that they keep spiking once they are 

appropriately activated; Egorov et al. 2002, Fraser & MacVicar 1996), does the persistence 

rely on the connectivity within the neural circuit to extend the representation beyond the 

timescale of activity in isolated neurons (Compte et al. 2000, Druckmann & Chklovskii 

2012, Goldman 2009, Hopfield 1982, Lim & Goldman 2013, Seung 1996), or does the 

persistence depend instead on a combination of these mechanisms (Goldman et al. 2003, 

Koulakov et al. 2002)? Why have these questions not yet been answered? Several factors 

appear to be at play. First, multiple mechanistic models can give rise to similar observable 

neural activity patterns and (in some cases) to similar impacts of optogenetic perturbation on 

WM function. This degeneracy makes it hard to rule out specific mechanistic causes in favor 

of others. Moreover, several mechanisms may coexist within a brain area, and some 

mechanisms may exist only under certain neuromodulatory conditions, making it hard to say 

with certainty which ones are necessary, sufficient, or both. Finally, different brain areas 

might express these different mechanisms differentially, challenging attempts to apply the 

findings from one brain area to another.

To encourage progress on understanding the neurobiology of WM, we review here the 

palette of different cellular and network mechanisms that can give rise to persistent neural 

activity. We then discuss recent experiments that are beginning to test predictions from 

different potential mechanisms during WM. Finally, we discuss the types of future 

experimental and theoretical studies that appear most likely to resolve the long-standing 

questions posed above.
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CELL-AUTONOMOUS BIOPHYSICAL MECHANISMS FOR GENERATING 

PERSISTENT ACTIVITY AND SIMPLE MEMORY-ENCODING CIRCUITS

Many central nervous system (CNS) neurons contain biophysical mechanisms that enable 

them to continue to discharge after the triggering input has subsided. One of the first critical 

insights to emerge from the first decade of intracellular recordings from acute brain slices 

was the discovery that individual neurons could generate all-or-none bursts of action 

potentials that prolonged responses to brief synaptic input, shown in hippocampal pyramidal 

cells and subsequently in other cell types (summarized in Traub & Jefferys 1994). These 

stereotyped discharges, comprising 3–6 spikes, closely resembled interictal discharges 

observed in animal models of epilepsy (Traub & Jefferys 1994, Wong et al. 1986).

The surprising insight that emerged from this early work was that a defining feature of at 

least one type of epileptic discharge was normally present in a subset of neurons that 

generated all-or-none bursts in nonepileptic animals. This initial experimental work led to a 

remarkably accurate set of predictions from realistic computer models of hippocampal 

networks (Miles & Wong 1987, Traub & Wong 1982, Wong et al. 1986) that a change in 

inhibitory circuits enabled interictal epileptic activity by allowing all-or-none bursts in one 

cell to percolate through the network. This classic work on burst transduction helped define 

a general theme in which regenerative biophysical currents are combined with recurrent 

synaptic connections to generate a collective network behavior.

As discussed below, this theme provides an important model for assimilating recent progress 

in understanding how another emergent network behavior—persistent firing during WM 

tasks—occurs. In this section, we review the three major classes of biophysical mechanisms 

that can enable persistent firing (voltage-gated Ca2+ and Na+ currents, inward currents that 

track intra-cellular Ca2+, and Ca2+-triggered long-term changes in neuronal excitability). As 

with interictal bursting, the origin of persistent firing in the cortical regions where it is most 

often studied (e.g. prefrontal and temporal neocortex, the hippocampus and entorhinal 

cortex) is likely to include both synaptic circuit and intrinsic biophysical components. The 

potential involvement of intrinsic conductances in generating persistent firing comes, in part, 

from the common observation that simple intracellular depolarization can initiate firing that 

outlasts the stimulus even when synaptic transmission is blocked pharmacologically 

(Fransén et al. 2006, Jochems & Yoshida 2013, Knauer et al. 2013, Navaroli et al. 2012, 

Pressler & Strowbridge 2006). Most of these studies involved adding exogenous modulators 

(typically drugs that activate muscarinic receptors, such as carbachol) that function to 

enhance excitability, perhaps mimicking the normal enhanced release of acetylcholine and 

other neuromodulators during heightened attention conditions associated with WM (see 

below). Neurons in subcortical areas, including regions involved in the control of eye 

movement (Arnold & Robinson 1997, Joshua & Lisberger 2015), also exhibit persistent 

firing rates in response to transient stimuli. The brainstem neurons involved in the 

vestibuloocular reflex appear to modulate their firing rates through network interactions, as 

direct depolarization of individual neurons (through intracellular recording pipettes) fails to 

evoke persistent discharges (Aksay et al. 2001).
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The situation in cortical areas is less clear, with evidence (discussed below) supporting both 

the capability of individual neurons to fire persistently through biophysical mechanisms and 

the existence of recurrent excitatory synaptic connections among principal cells (Douglas & 

Martin 2004, Miles & Wong 1986)—proving the potential components for intrinsic- and 

synaptic circuit–mediated persistent activity. As the experimental and mathematical tools 

necessary to disambiguate these mechanisms are rapidly progressing, our primary aim is to 

provide a view of the evidence supporting different potential mechanisms as well as the new 

approaches that are beginning to yield insights into how and when they likely participate in 

memory-related sustaining firing modes.

Bistability Mediated by Voltage-Gated Inward Currents

One of the best-studied biophysical mechanisms for extending firing beyond the initiating 

stimulus is through plateau potentials mediated by regenerative Ca2+ or Na+ currents. 

Plateau potentials in some types of CNS neurons appear to be generated by L-type voltage-

gated Ca2+ channels (VGCCs) and can persist for many seconds (Otsuka et al. 2001, Perrier 

et al. 2002, Russo & Hounsgaard 1996). Even weak depolarizing inputs, such as a few 

summating excitatory postsynaptic potentials (EPSPs), can activate L-type VGCCs, leading 

to an inward Ca2+ current that depolarizes the neuron. This initial small Ca2+ current causes 

more VGCC activation, further depolarization, and eventually repetitive spiking. This 

biophysical mechanism takes advantage of the same regenerative properties that generate 

action potentials where inward currents amplify weak excitatory inputs. While the 

constellation of currents that generate action potentials includes outward currents, such as 

the delayed rectifier K+ currents in neurons, that curtail the regenerative depolarizing 

response, the functional influence of these K+ currents appears to be less in plateau-

generating neurons. One potential mechanism for enabling regenerative plateau potentials, 

therefore, is to segregate clusters of inward and outward currents in different dendritic 

compartments, reducing the ability of outward currents also activated by synaptic inputs to 

abort regenerative plateau responses. Dendritic segregation of different subclasses of ionic 

currents also appears to be critical for the generation of all-or-none intrinsic burst responses 

(Goldman et al. 2003, Pinsky & Rinzel 1994).

The long duration of plateau potentials in spinal motoneurons likely reflects the minimal 

inactivation of L-type VGCCs during sustained depolarizations (Perrier et al. 2002). 

However, long-duration plateau potentials can also be mediated by inward currents that 

show pronounced inactivation, such as T-type Ca2+ channels and even voltage-gated Na+ 

channels. In both cases, inactivation is incomplete, permitting a range of membrane 

potentials that can create steady-state inward currents through the generation of a window 

current. In thalamic neurons, the voltage range for triggering depolarization mediated by 

window currents through T-type Ca2+ channels is near the resting membrane potential 

(Crunelli et al. 2005, Hughes et al. 1999), enabling relatively weak synaptic stimuli to 

trigger persistent firing.

Recent work from Yamada-Hanff & Bean (2013) extended this model to explain long-lasting 

firing patterns observed in hippocampal neurons tested when intrinsic excitability is 

enhanced through pharmacological activation of cholinergic receptors. Whereas voltage-
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gated Na+ channels show rapid and nearly complete inactivation following only a few 

milliseconds of strong depolarizing stimuli, the remaining persistent Na+ current can trigger 

prolonged firing. Like the run-away depolarization that underlies the action potential, the 

recruitment of subthreshold Na+ current is regenerative—the effects of a weak triggering 

depolarization are amplified by triggering intrinsic Na+ current, which then recruits more 

subthreshold Na+ current. This cycle continues until firing begins. Individual neurons can 

exhibit different firing modes likely supported, at least in part, by subthreshold Na+ current 

and reflecting different initial intrinsic physiological conditions (Kass & Mintz 2006).

One defining feature of persistent firing mediated by noninactivating inward currents is high 

sensitivity to hyperpolarizing input. In all three well-studied examples of this phenomenon 

(mediated by L-type channels, window currents through T-type Ca2+ channels, and 

subthreshold Na+ currents), interrupting persistent firing by injecting hyperpolarizing current 

abolishes firing rapidly (Otsuka et al. 2001). Once abolished, persistent firing does not 

resume if the initial triggering stimulus has subsided. This sensitivity to hyperpolarizing 

input [or to synaptic inhibition (Anderson & Strowbridge 2014)] distinguishes intrinsic 

persistent responses mediated by noninactivating voltage-gated currents from the other two 

major biophysical mechanisms supporting persistent firing: Ca2+-activated inward currents 

and modulation of slow intrinsic currents.

Calcium-Dependent Intrinsic Mechanisms

Persistent firing responses in many types of cortical neurons (including pyramidal cells in 

entorhinal cortex, hippocampus, and neocortex) can be triggered by depolarizing stimuli but 

likely involve a second messenger that activates the underlying depolarizing response. The 

primary evidence for an indirect pathway is the sensitivity of persistent firing to chelation of 

Ca2+ ions (Lei et al. 2014, Rahman & Berger 2011). Simple biophysical mechanisms, such 

as triggering regenerative inward Ca2+ or Na+ currents, are triggered directly by depolarizing 

stimuli and therefore should not be abolished by blockade of the intracellular signaling 

function of Ca2+ ions. In many neurons that exhibit intrinsic persistent activity [e.g., Blanes 

cells in the olfactory bulb (Pressler & Strowbridge 2006)], uncaging Ca2+ can depolarize the 

membrane potential, potentially triggering the same second-messenger responses as 

depolarizing stimuli that cause Ca2+ accumulations.

The identity of the Ca2+-dependent current that enables cortical neurons to remain 

depolarized following stimuli has remained elusive despite several decades of effort from 

many laboratories. One potential mechanism is a form of Ca2+-activated nonselective cation 

current (ICAN) (Pace et al. 2007, Rubin et al. 2009). Although the molecular identity of the 

ion channel mediating this response is unknown, it appears to be gated by Ca2+ (or Ca2+ ions 

bound to an accessory protein), is permeable to Na+ and Ca2+, and is sensitive to flufenamic 

acid (FFA; Haj-Dahmane & Andrade 1999, Lei et al. 2014, Rahman & Berger 2011, 

Tahvildari et al. 2008, Zhang et al. 2011), a nonsteroidal anti-inflammatory agent. Several 

groups have hypothesized that a subtype of transient receptor potential (TRP) channels may 

mediate ICAN responses, based on pharmacological studies (Lei et al. 2014, Reboreda et al. 

2011, Petersson & Fransén 2012) and tests of peptides that interfere with TRP channel 

function (Yan et al. 2009, Zhang et al. 2011). However, thus far no direct evidence has 
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demonstrated that persistent firing and the associated afterdepolarization response are 

abolished in TRP channel knockout animals [although Lei et al. (2014) found partial 

blockade in TRPM5 knockout mice]. Given the wide diversity of TRP channels (Reboreda et 

al. 2011), fully testing this hypothesis may require generating mice that are null for many 

different TRP subunits.

There are two main challenges in determining the underlying mechanism of intrinsic 

persistent firing in cortical neurons. First, the most commonly used blocker, FFA, is 

nonspecific, with effects reported on a wide variety of ion channels, including K+ channels 

(Guinamard et al. 2013). Blockade of persistent firing typically requires high concentrations 

of FFA, compounding concerns about its specificity. Second, the activation of a Ca2+-

dependent inward current such as ICAN should be accompanied by an obvious decrease in 

input resistance. Although it is straightforward to monitor input resistance by injecting weak 

current test pulses or applying ramp protocols, interpreting the results from these 

experiments is difficult because the normal input resistance of most cortical neurons changes 

depending on the membrane potential (e.g., Yamada-Hanff & Bean 2013). In neocortical 

neurons tested under conditions in which depolarizing stimuli trigger persistent activity 

(cholinergic receptor activation), brief depolarizing stimuli triggered an apparent increase in 

input resistance—the opposite response expected from an ICAN mechanism (Haj-Dahmane 

& Andrade 1996). However, the authors interpreted the resistance change as more likely 

consistent with an inwardly rectifying ICAN mechanism, based on a failure of the response to 

reverse near the K+ equilibrium potential and a sensitivity to manipulations of extracellular 

ions other than K+. More recent work has repeated the input resistance test and found an 

increase in input resistance even when compensating for expected change in input resistance 

during the afterdepolarization response (Cui & Strowbridge 2016, 2017), leaving open the 

possibility that alternative Ca2+-triggered ionic mechanisms may be responsible for the 

afterdepolarization and persistent firing in neocortical neurons.

One intriguing aspect of the ICAN hypothesis is that it explained the ability of entorhinal 

neurons to generate graded persistent activity, in which multiple depolarizing stimuli 

presented in succession each increased the frequency of persistent firing (Egorov et al. 2002, 

Fransen et al. 2006). ICAN-mediated responses presumably continuously reflect changes in 

intracellular Ca2+, as the underlying conductance is gated by Ca2+. Although intracellular 

Ca2+ dynamics are complex, the ICAN hypothesis predicts that second (and later) 

depolarizing inputs should increase the frequency of persistent firing as long as the stimulus 

is strong enough to trigger intracellular Ca2+ accumulation and ICAN current is not saturated 

or inactivated.

There are two important caveats to the ICAN hypothesis, beyond the absence of an 

established molecular identity for the ion channel mediating ICAN. First, the classic study 

(Egorov et al. 2002) that demonstrated graded persistent firing used sharp microelectrodes 

instead of the now-ubiquitous whole-cell patch clamp recording method. Subsequent studies 

using patch clamp recordings did not observe graded persistent firing when the amplitude of 

the depolarizing step amplitude (Rahman & Berger 2011 in neocortex and Pressler & 

Strowbridge 2006 in the olfactory bulb) or step duration (Knauer et al. 2013 and Jochems & 

Yoshida 2013 in the hippocampus) was varied [although Navaroli et al. (2012) is an 
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exception], perhaps reflecting the role of a key intracellular signaling molecule that is lost 

through diffusion in whole-cell recordings. Sharp microelectrode recordings also introduce 

potential complications, primarily related to lower input resistance due to current leakage 

around the microelectrode, leaving open the question of which intrinsic firing mode (bistable 

or graded/multistable) is most likely to occur endogenously.

The second caveat is that when tested experimentally in both entorhinal and neocortical 

neurons, the frequency of persistent firing does not appear to track intracellular Ca2+ 

concentration. Pausing persistent firing long enough for intracellular Ca2+ concentrations to 

subside to near basal levels [for more than 4–5 s, given the approximately 1-s decay time 

constant for intracellular Ca2+ transient following muscarinic receptor activation (Cui & 

Strowbridge 2016, Rahman & Berger 2011)] should abolish firing because the underlying 

ICAN-mediated depolarization should be strongly attenuated. When hyperpolarizing steps are 

applied after triggering persistent firing, they typically fail to abolish persistent firing, which 

resumes at only slightly lower frequencies after the hyperpolarization step ends [e.g., figure 

1 in Fransén et al. (2006) with approximately 20-s firing pauses applied to entorhinal 

neurons]. Injecting hyperpolarizing pulses to pause firing for 5–10 s also fails to abolish 

persistent firing in neocortical neurons (Cui & Strowbridge 2016, Navaroli et al. 2012). But 

multiple studies also find that injecting very strong hyperpolarizing steps—more than 

required to simply pause firing—often does abolish, or strongly reduce, persistent firing 

(Egorov et al. 2002, Fransén et al. 2006, Knauer et al. 2013, Navaroli et al. 2012). Although 

the origin of the blocking effect with very strong hyperpolarization remains to be 

determined, failure of long-duration firing pauses to abolish persistent firing suggests that 

intracellular Ca2+ transients trigger a long-lasting change in intrinsic excitability. Rather 

than employing an ICAN depolarizing response that continuously tracks intracellular Ca2+ 

concentration, the biophysical mechanism underlying persistent activity may reflect a 

covalent modification (e.g., phosphorylation of an ion channel) that effectively decouples the 

dynamics of the triggering stimulus from the resultant persistent firing.

If intrinsic persistent firing reflects a long-lasting change in excitability, how does it occur? 

Hasselmo and colleagues (Fransen et al. 2006) hypothesized that the channels mediating 

ICAN responses could exist in two states that differ in conductance. Similar to the auto-

activation mechanism proposed to explain state changes in calmodulin-dependent protein 

kinase II activity (Lisman & Goldring 1988), this model proposes that the Ca2+ influx from 

the triggering stimulus not only opens ICAN channels but also initiates a biochemical cascade 

that makes the channels generate larger currents in response to Ca2+, facilitating long-lasting 

changes in excitability (Fransen et al. 2006). Because the channels mediating responses 

attributed to ICAN have not been determined, this proposal has remained untested, although 

there are phosphorylation sites on candidate TRP channels that affect their function (Zhang 

et al. 2011) and could mediate long-lasting changes in excitability. What is still missing, 

though, are molecular or more specific pharmacological experiments that link TRP channels 

definitively to ICAN and persistent firing.

Although less often studied in relation to persistent firing, a reduction in a standing (or leak) 

K+ current also could mediate a long-lasting change in excitability and would explain the 

increase in apparent input resistance observed following depolarizing stimuli in cortical 
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neurons (Cui & Strowbridge 2016, 2017; Haj-Dahmane & Andrade 1996). Persistent firing 

is often studied in experimental conditions in which some leak K+ current has been reduced, 

as muscarinic receptor agonists attenuate I-M (Jentsch 2000). Transient Ca2+ accumulations 

could trigger a further decrease in I-M or another type of K+ current active near the resting 

potential, causing depolarization and persistent firing. One potential candidate leak K+ 

channel that has been shown to be attenuated through a Ca2+-dependent signaling cascade is 

ether-à-go-go-related gene channel (ERG) (Cockerill et al. 2007, Pessia et al. 2008). Recent 

work demonstrated that three different ERG blockers abolish both the stimulus-triggered 

increase in apparent input resistance and persistent firing in neocortical pyramidal cells (Cui 

& Strowbridge 2016, 2017). The slow activation of ERG currents may contribute to the 

normal slowing of firing in response to depolarizing steps (Pessia et al. 2008). Strong 

depolarizing stimuli combined with muscarinic receptor activation appears to trigger a long-

lasting attenuation of ERG-mediated K+ current, leading to less spike frequency adaptation 

during the stimulus and a subsequent 10–15-s period of hyperexcitability. Relatively little is 

known about ERG function in CNS neurons in vivo, which is difficult to probe by applying 

ERG blockers systemically because of the critical role ERG currents play in cardiac cells. 

Determining the functional role of ERG currents will likely entail using either molecular 

approaches or focal delivery of specific blockers. Unlike the relatively nonspecific blocker 

FFA, which also attenuates ERG currents (Guinamard et al. 2013), highly specific blockers 

are available for ERG channels, including a potent peptide toxin made endogenously by 

scorpions (Nastainczyk et al. 2002).

Although significant gaps remain in our understanding of the biophysical details, recent 

work has identified three major classes of mechanisms that could support intrinsic persistent 

activity (voltage-gated Na+ and Ca2+ currents, Ca2+-tracking nonselective cation currents, 

and long-lasting state changes in either K+ or cation currents that function to depolarize 

neurons). We currently have much better experimental methods for determining which of 

these types of mechanisms operate in specific neurons than we have for determining the 

actual underlying ion channel. Persistent activity resulting from voltage-gated ion channels 

is generally easily abolished by even brief hyperpolarizations and is not strongly affected 

when intracellular Ca2+ transients are attenuated using Ca2+ chelators. Repetitive 

depolarizing stimuli and long-duration hyperpolarizing steps can be used to differentiate 

between mechanisms that rely on intracellular Ca2+ signaling to modulate ion channels 

rapidly (e.g., direct modulation of ICAN currents by Ca2
+) or to effect a state change in 

excitability (e.g., via covalent modulation of ICAN or leak K+ channels).

Memory Functions Created by Embedding Neurons with Intrinsic Bistability in 
Feedforward Networks

When viewed from the single-cell perspective, neurons that generate cell-autonomous 

persistent firing represent simplistic, binary memory. However, once embedded in even 

simple feedforward networks, the resulting system can generate circuit-specific 

representations of biological information reliably. The memory-encoding function of these 

circuits relies on two critical factors: divergent projections from the intrinsically bistable 

neurons onto a population of downstream neurons, and nonuniform activation of bistable 

neurons by orthodromic synaptic input patterns (Figure 1). These features enable different 
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inputs presented to the network to trigger distinctive changes in the spontaneous synaptic 

tone. With a large enough fan-out from the bistable neurons, the memory of the input pattern 

presented can be deduced by monitoring the rate of spontaneous EPSPs in a small subset of 

downstream neurons—often a much easier experimental task than locating and monitoring 

the actual memory-originating bistable neurons. If the bistable neurons are excitatory, the 

stimulus-specific changes in synaptic tone could also generate distinctive patterns of action 

potentials that would be revealed using standard extracellular or optical recording methods.

The first biological example of this type of memory encoding was demonstrated in the 

dentate gyrus, an evolutionary old brain region containing a small population of glutamate 

neurons that generate VGCC-dependent plateau potentials [semilunar granule cells (SGCs)] 

(Williams et al. 2007). SGCs are excited by perforant path inputs originating from entorhinal 

cortex and project to mossy cells and interneurons contained in an adjacent subfield (the 

dentate hilus; Larimer & Strowbridge 2010, Williams et al. 2007), enabling different stages 

of this feedforward circuit to be assayed independently. Stimulating different subgroups of 

perforant pathway axons triggered plateau potentials in different subgroups of SGCs, leading 

to EPSP barrages in downstream hilar neurons that could be assayed up to 10 s later to 

determine which pathway was activated (Hyde & Strowbridge 2012, Larimer & Strowbridge 

2010). Because excitatory hilar mossy cells only very rarely form recurrent connections 

(Larimer & Strowbridge 2008), this form of short-term memory almost certainly does not 

involve any of the recurrent circuit topologies described below. Despite its simplicity, this 

intrinsic/feedforward network hybrid can encode contextual information, such as the order 

of temporal sequences (Hyde & Strowbridge 2012). In more complex cortical brain regions 

such as neocortex, the physiology of neurons with the capacity for intrinsic bistability is 

under modulatory control, and those cells are intermixed with nonbistable cells. Excitatory 

neo-cortical pyramidal cells also form relatively abundant recurrent connections (e.g., 

Morishima et al. 2011), making it difficult to know if similar stimulus-specific changes in 

synaptic tone result from dentate-like intrinsic/feedfoward hybrid networks or from more 

complex circuit architectures.

NEURAL CIRCUIT MECHANISMS FOR GENERATING PERSISTENT 

REPRESENTATIONS

Neural circuit mechanisms capable of generating persistent representations have been 

reviewed extensively elsewhere (Brody et al. 2003, Chaudhuri & Fiete 2016, Compte 2006, 

Durstewitz et al. 2000, Hasselmo & Stern 2006, Major & Tank 2004, Wang 2001), and so 

we provide a brief summary here. The key challenge for these models is that synaptic 

responses in most cortical neurons (i.e., those not expressing the persistent currents 

described above) decay within 10–20 ms, and so these models seek patterns of connectivity 

within the circuit that will extend these very short-term representations such that they last for 

hundreds of milliseconds, up to tens of seconds, or more. There are two main ways to 

achieve this. First, the circuits can have attractor states, leading to activity patterns that are 

stable in time. Alternatively, the circuits can display time-varying neural activities for which 

certain combinations of neural firing rates nevertheless remain fairly constant and thus can 

represent the inputs persistently. For example, if some neurons’ firing rates increase over 
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time while others decrease, the summed firing rates of the population can remain stable even 

as the individual neural firing rates vary. Both of these classes of mechanisms have some 

experimental support and are thus apparently biologically plausible. In what follows, we 

briefly describe each mechanism and then discuss the experimental evidence for, or against, 

said mechanism.

Networks with Attractor States—Theoretical Ideas

The classic way to achieve persistent representations is for the neural population to have 

specific patterns of activity that are reinforced by the synaptic connectivity in the network 

(Hopfield 1982); we refer to these as privileged activity patterns. These activity patterns, 

once generated, are stably reinforced by the reverberant synaptic inputs to the active 

neurons, and the network structure is such that, from any initial pattern of activation, the 

population activities evolve gradually toward one of these privileged patterns (Figure 2). We 

first consider models with discrete numbers of privileged activity patterns and discuss 

models with continua of such patterns below.

As a simple example, consider a network where neurons are divided into two groups (A and 

B). Neurons within each group strongly excite each other and strongly inhibit neurons 

within the other group. If the network initially has more active neurons in group A than in 

group B, mutual excitation between group A neurons drives up activity in that group, and 

inhibition drives down activity in group B neurons. Similarly, if the network initially has 

more activity in group B than A, the network evolves so that most or all group B neurons are 

active, and few group A neurons are. Accordingly, this network has two privileged activity 

patterns (“A on” or “B on”), and the one that gets activated depends on the initial state of the 

network. This initial state can be determined by external inputs. The privileged patterns are 

known as attractor states because the network activity naturally evolves towards them. 

Although our illustrative example has two attractor states, with appropriately chosen patterns 

of connectivity, neural circuits can have as many attractor states as they do neurons (Hillar et 

al. 2012). Attractor networks of this sort have, from the outset, been studied with spiking (or 

binary) neuron models (see the sidebar titled Different Classes of Computational Neuron 

Models for descriptions of the different types of neuron models) (Amit & Brunel 1997, 

Hopfield 1982).

DIFFERENT CLASSES OF COMPUTATIONAL NEURON MODELS

Spiking neuron models are the most biologically realistic of the computational neuron 

models considered here. They describe the evolution of the neuron’s membrane potential 

over time and the corresponding generation of action potentials. In the simplest such 

models—known as integrate and fire models—a single membrane potential variable 

(presumably the somatic voltage) is considered, and whenever that value crosses the 

spiking threshold, the neuron emits an action potential. Thereafter, the membrane 

potential is reset to its resting value, from which it can subsequently be depolarized by 

appropriate synaptic inputs. This neuron model is used, for example, in the bump 

attractor network model of Compte et al. (2000). More complex (and correspondingly 

more realistic) spiking neuron models compute the membrane potential at many different 
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parts of the cell and include a range of different ionic currents and cellular compartments. 

An example of this type of model can be found in Traub & Wong (1982).

Instead of explicitly modeling the dynamical evolution of the neurons’ states, binary 

neuron models take—at each time point in the simulation—a weighted combination of 

their inputs and compare the results to a threshold. If the input is superthreshold, the 

neuron emits a spike (giving an output value of 1), and if the input is subthreshold, the 

neuron does not spike (giving an output value of 0). These models capture the discrete 

nature of interneuronal communication but do not capture any of the temporal properties 

of the way neurons integrate their inputs because all inputs are considered to arrive at the 

cell at the same time. This type of neuron model is used in the discrete attractor network 

of Hopfield (1982).

In rate-based models, instead of modeling the sequences of action potentials emitted by 

the neurons, the models instead describe each neuron by a continuous-valued rate 

variable that changes over time in response to inputs from other neurons. These 

continuous variables are meant to describe the firing rates of the modeled neurons. Rate-

based models do not capture the discrete nature of the interneuronal communication via 

action potentials and typically do not describe any of the complex biophysical properties 

of the neurons. Nonetheless, they are more amenable to mathematical analysis than are 

the more complex neuron models described above, and so they are often used in 

theoretical studies. Examples include Seung (1996) and Druckmann & Chklovskii 

(2012).

The above discussion describes networks with discrete numbers of attractor states, which 

means that they can store only finite numbers of different inputs. In practice, especially for 

spatial WM tasks, it is desirable to store continuous-valued information (the coordinates of 

the stimulus): Other WM tasks also involve remembering continuous-valued information 

(Romo et al. 1999, Zaksas & Pasternak 2006). This motivated the development of models 

with continuous attractors that could stably maintain a range of input values (Burak & Fiete 

2009, Compte et al. 2000, Ganguli et al. 2008, Seung 1996). Here, instead of a discrete set 

of privileged attractor states, the network connectivity is such that there is a continuum of 

attractor states. As an illustrative example, we consider the bump attractor models (Amari 

1977, Compte et al. 2000). The idea here is that the spatial position that the animal needs to 

remember is encoded by activating the neurons that respond preferentially to that position. 

When the neurons are sorted by their preferred positions (so that, for visualization, neurons 

with similar preferred positions are placed near each other), this activation corresponds to a 

bump of activity: The bump position describes the stimulus location that is being 

remembered. Connectivity in the network is such that neurons with similar preferred 

positions excite each other, and those with dissimilar preferred positions inhibit each other. 

This pattern of connectivity sustains the bump of activity after it is triggered. Because the 

activity bump could be at any different position, this is an example of the continuous class of 

attractors. Whereas early continuous attractor models used rate-based neurons (Amari 1977, 

Seung 1996), more recent work has shown that the same ideas apply to the more realistic 

spiking neuron models (Compte et al. 2000).
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In practice, much fine-tuning of the network connectivity is needed in order to form 

continuous attractors. For example, the bump attractors described above require that the 

connectivity between cells be translation invariant, such that all pairs of cells with the same 

spacing between their preferred positions have the same strength of synaptic connectivity. 

Without this symmetry, the bump is not stably maintained at all positions and instead tends 

to drift toward the positions corresponding to the most strongly excited (and least strongly 

inhibited) cells. Other types of continuous attractors, such as the line attractor model of 

Seung (1996), require that the matrix describing connectivity between pairs of cells has a 

very precise mathematical property (namely, the largest eigenvalue must be equal to 1). 

When the largest eigenvalue is less than 1, the network activity gradually decays, instead of 

being stably maintained, and so the memory information is lost over time. And when the 

largest eigenvalue exceeds 1, the network activity continually increases, eventually running 

away to extremely large values.

As a solution to this fine-tuning problem, networks have been proposed with multiple, finely 

spaced discrete attractors (for which the required synaptic weight and/or wiring precision is 

less) and that combine intrinsic neuronal persistence with network mechanisms, so as to 

improve the system’s robustness (Goldman et al. 2003, Kilpatrick et al. 2013, Koulakov et 

al. 2002). Networks that incorporate bistable neurons can tolerate changes in synaptic 

weights of up to 20% without losing memory function. Other work has explored plasticity 

mechanisms that adjust the network connectivity dynamically to maintain the required 

precision (MacNeil & Eliasmith 2011, Renart et al. 2003).

Another potential problem faces continuous attractor networks: perfectly tuned networks can 

be sensitive to random fluctuations. For example, synaptic failures (Branco & Staras 2009), 

ion channel fluctuations (Goldwyn & Shea-Brown 2011, White et al. 2000), and ongoing 

noisy inputs from other brain areas (Churchland et al. 2010) or from the sense organs (Field 

et al. 2005, Zylberberg et al. 2016a) can cause random changes in the inputs experienced by 

cortical neurons. For perfectly tuned bump attractors, this noise will cause the activity bump 

to move randomly, changing the remembered position; similar statements apply to other 

types of continuous attractors. Here again, networks with multiple finely spaced discrete 

attractors are more robust than true continuous attractors (Cain et al. 2013, Goldman et al. 

2003, Kilpatrick et al. 2013, Koulakov et al. 2002) because relatively small perturbations 

that do not move the activity between adjacent attractor states will not have a long-lasting 

effect.

Finally, it is important to note that because attractor networks rely on reverberant 

interactions within the network, they are sensitive to the different timescales of excitation 

relative to inhibition (Wang 1999): If reverberant excitation is much faster than reverberant 

inhibition, the neural firing rates could become very large before inhibition has a chance to 

catch up. Theoretical work shows that, owing to the relatively slow dynamics of NMDA 

receptor synapses, NMDA receptor–mediated excitation could be critical to the generation 

of stable persistent activity in neural circuits (Tegnér et al. 2002, Wang 1999). Other 

mechanisms might also exist that could delay or slow the buildup of persistent activity 

through the dynamics of modulations associated with the high attention states that are often 
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behaviorally linked with WM. Understanding how neuromodulation-related dynamics 

interplay with circuit ramp-up is likely to be defined in the near future using optogenetics.

Networks with Attractor States—Experimental Evidence

Recent studies of the sensory systems, and of the hippocampus, have made observations that 

are consistent with the existence of a discrete set of attractor states (Bathellier et al. 2012, 

Niessing & Friedrich 2010, Wills et al. 2005). Over large neural populations, activity 

patterns tended to cluster into a small number of states (Bathellier et al. 2012), and during 

continuous (smooth) changes in the environment, neural activities tended to switch abruptly 

between discrete states (Niessing & Friedrich 2010, Wills et al. 2005) as opposed to showing 

a smooth variation.

Although the above studies were not done explicitly in the context of WM, other work used 

optogenetics to more directly test whether discrete attractors are implicated in WM. Kopec 

et al. (2015) used optogenetics to transiently inactivate neurons in the FOF of mice at 

different times during the delay period of a memory-guided orienting task: Mice could turn 

left (L) or right (R) after the delay period to report their memory. Inactivation during the 

early phases of the delay period had a larger effect than inactivation in the later portion of 

the delay period, leading the authors to argue in favor of a discrete attractor mechanism. 

Specifically, Kopec et al. (2015) postulate two attractor states, one corresponding to each 

possible choice. The intuition is that, at the start of the delay period, neural activities are 

near the boundary between the states that will evolve either to the L activity state or the R 

one. Consequently, small perturbations at this early stage can push the neural activities 

across the boundary, changing the subsequent behavioral outcome. For contrast, later in the 

delay period, after the neural activities have evolved away from that boundary, toward the L 

or R states, the same magnitude of perturbation is unable to push the population activity 

state across the boundary. Although this experiment does show clearly that something about 

the upcoming decision crystallizes within the network during the delay period, and the data 

are recapitulated by a computational model with two attractor states, the data nevertheless do 

not prove unambiguously that the neural circuit has an attractor structure. For example, the 

circuit could contain bistable neurons of the types discussed above, for which the persistent 

firing states take a while to be activated. In that case, perturbation early in the delay period 

would affect the cells before the persistent firing states get fully activated and would thereby 

have a much larger effect than would later perturbation, after the persistent firing has been 

established.

With regards to continuous attractor models, observations of grid cells in the entorhinal 

cortex show what appear to be continuous attractor dynamics (Yoon et al. 2013). More 

closely related to WM, observations have been made in monkey lateral intraparietal cortex 

during a decision-making task that are consistent with the neural activities converging 

towards a (continuous) line attractor (Ganguli et al. 2008).

Moreover, Wimmer et al. (2014) argued that data from monkey PFC during a spatial WM 

task support the bump attractor hypothesis described above. Notably, even over sets of trials 

in which the same stimulus was presented to the animal, the trial-by-trial differences in the 

delay period neural activity were predictive of the differences in the animals’ subsequent 
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behavioral outcomes. Furthermore, the levels of trial-to-trial variability in the delay period 

activities, and the correlations between different neurons’ delay period activities, depended 

systematically on the location of the presented stimulus. All these effects could be predicted 

by the bump attractor model, wherein the animal’s memory is encoded by a bump of neural 

activity that moves about during the delay period. This drift in the activity bump is 

presumably caused by either task-irrelevant network inputs that differ slightly between trials 

or random noise (Churchland et al. 2010, Faisal et al. 2008, White et al. 2000). Because the 

recurrent bump attractor model can successfully predict both the relation between trial-

specific neural activity fluctuations and behavioral deviations, and the statistical properties 

of the delay period activities, the Wimmer et al. (2014) results are perhaps the strongest 

argument for persistent activity arising from precisely wired recurrent networks as opposed 

to simpler feedforward networks that include neurons with intrinsic persistence.

Models with Persistent Representations Despite Time-Varying Neural Firing Patterns—
Theoretical Ideas

The attractor models described above all have one thing in common: In response to an input, 

they settle into their attractor activity patterns and stay there. In other words, these models 

predict that, after an initial transient, neural activities should be constant during the delay 

period of a WM task. Although some neurons have been observed with nearly constant 

activities during these delay periods (Constantinidis et al. 2001, Funahashi et al. 1989, 

Fuster & Jervey 1981, Myashita & Chang 1988), other observations show more variable 

delay period activity (Barak et al. 2010, Brody et al. 2003, Shafi et al. 2007, Zaksas & 

Pasternak 2006). Moreover, observations of persistent activity in feedforward neural circuits 

(Hyde & Strowbridge 2012, Larimer & Strowbridge 2010) bring up the question of whether 

recurrent circuitry—a key feature of the attractor models—is necessary in the neural circuits 

that generate persistent activity. These experimental findings motivate new circuit models 

that relax the requirements of the attractor models while maintaining the ability to generate 

persistent representations.

The first such class of models removes the need for constant delay period neural activity by 

exploiting the fact that, even if individual neurons’ firing rates fluctuate, appropriate 

combinations of those firing rates can remain constant. Recent work by Druckmann & 

Chklovskii (2012) shows that recurrent circuits can indeed have this property. This model 

takes advantage of the likely distributed nature of memory representations in cortical 

networks. Whereas some cells are strongly tuned to only one (remembered) stimulus feature, 

often, individual cells are selective for many features, and multiple cells code for each 

feature (Rigotti et al. 2013). The Druckman & Chklovskii (2012) model exploits this 

redundant coding to create stable representations by combining the outputs of different 

single units into weighted sums (Figure 2). For these combinations of neural firing rates to 

remain constant, this approach requires fine-tuned network connectivity and will not work 

with random connectivity. [Specifically, the matrix describing recurrent connectivity in the 

network must have an eigenvalue very near to 1: The corresponding eigenvector describes 

the weighting of the neurons in the weighted sum that remains constant even as the neural 

activities vary. This is the same tuning requirement displayed by the original line attractor 
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networks (Seung 1996).] Similar models have been studied elsewhere in the context of WM 

and neural integrators (Boerlin et al. 2013, Murray et al. 2016, Schwemmer et al. 2015).

Other studies asked whether recurrent connectivity is needed at all. That work revealed that 

feedforward chains can extend the representation beyond the timescale of single-neuron 

activation (Ganguli & Latham 2009, Goldman 2009). The idea is that after the stimulus goes 

away, excitation continues to propagate through the chain from one cell (or cell group) to the 

next, in a manner reminiscent of the older concept of synfire chains (Abeles 1991). So long 

as this chain is long enough, the input can be maintained for an extended period (intuitively, 

for a period of approximately N τ, where N is the length of the chain, and τ is the single-

neuron time constant). These feed-forward chains can be embedded within recurrently 

coupled networks (Goldman 2009, Trengove et al. 2013): Even in circuits with recurrent 

connectivity, there can be “hidden” feedforward chain structures. These can be revealed by 

appropriate mathematical analysis of the connectivity matrix (Goldman 2009) or by 

observing the sequentially activated neurons. Neuronal networks can learn via synaptic 

plasticity to generate the sequential activations (Rajan et al. 2016, Savin & Triesch 2014).

Finally, whereas all the above-reviewed mechanisms require specially constructed network 

connectivity, another body of work has investigated the functions that can be performed by 

networks of randomly (or nearly randomly) connected neurons. That work shows that, so 

long as there is an appropriate balance between excitation and inhibition in the circuit, 

information about the network’s inputs will be maintained after those inputs go away 

(Bertschinger & Natschläger 2004, Buonomano & Maass 2009, Laje & Buonomano 2013, 

Maass et al. 2002, Singh & Eliasmith 2006, Toyoizumi & Abbott 2011). Similar to the work 

of Druckmann & Chklovskii (2012), an appropriate readout of the neural activities can thus 

yield a stable representation, even if the neurons’ activities vary in time (Barak et al. 2013).

Models with Persistent Representations Despite Time-Varying Neural Firing Patterns—
Experimental Evidence

Experiments in brain slices and in vivo provide supporting evidence for models of 

dynamical neural activities, in which certain combinations of firing rates nevertheless remain 

constant (Li et al. 2016, Murray et al. 2016, Zylberberg et al. 2016b). Of particular note is 

the recent work by Murray et al. (2016), who compared neural recordings from monkey PFC 

during the delay period of both a spatial WM task and a parametric WM task to the 

predictions of several different computational models. Of the models considered, the 

constant combination of firing rates model (Druckmann & Chklovksii 2012) was found to be 

most consistent with the electrophysiology observations. Relatedly, Li et al. (2016) analyzed 

delay period activity to identify weighted sums of neural activity that best predict the 

upcoming behavioral report (similar to the notion of the coding line in Figure 2c). They then 

used optogenetics to inhibit neural activity for part of the delay period of their WM task. 

Surprisingly, after release of optogenetic inhibition, the behaviorally relevant weighted sums 

of neural activity recovered to resemble their values on trials without optogenetic 

perturbation; other combinations of neural activities (those that did not appear to encode 

task-relevant information) showed much less recovery.
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At the same time, other work in rodents shows instead sequentially activated neurons during 

the delay period (Harvey et al. 2012, MacDonald et al. 2011, Pastalkova et al. 2008), 

providing support for the synfire chain–like model of Goldman (2009). However, other 

mechanisms (besides the feedfoward chains) can also give rise to sequentially activated 

neurons, and so the experimental findings are not unambiguous. For example, consider a set 

of bistable neurons, as reviewed above, all with different durations of their triggered periods 

of persisting spiking. Downstream cells that respond to the turning off of these cells’ 

persistent firing will show sequential activation, without requiring chain-like connectivity.

EXPERIMENTS SUGGESTING PRINCIPLES UNDERLYING THE ROLE OF 

PERSISTENT ACTIVITY IN WORKING MEMORY

The experiments above hint at specific mechanisms underlying persistent activity in neural 

circuits. Two other studies deserve discussion here precisely because rather than pointing at 

specific mechanisms, they may reveal more general principles underlying WM.

First, Li et al. (2016) measured both behavioral responses and neural activities after 

optogenetic perturbation during the delay period of a WM task. In this task, mice reported 

their choice by licking either the left or right port at the end of the delay period. Neural 

recordings and optogenetic perturbations were done in ALM, an area known to be involved 

in planning licking movements. Transient optogenetic silencing in one hemisphere of ALM 

abolished activity in that hemisphere’s ALM. After the perturbation, activity recovered to be 

similar to that observed on trials without optogenetic perturbation. This observation casts 

doubt on the notion that there is a simple recurrent network, localized within one ALM 

hemisphere, that sustains the persistent activity: In that case, the activity would be unlikely 

to rebound after the end of the optogenetic manipulation. Instead, the data suggest that there 

are either multiple redundant circuits, extending beyond the scale of a single ALM 

hemisphere, or intrinsic mechanisms—such as the Ca2+-dependent ones reviewed above—

that can restore the persistence after optogenetic manipulation has ended.

Supporting the notion of multiple redundant circuits, the activity rebound following optoge-

netic perturbation was not observed after bilateral ALM silencing (both hemispheres) or 

unilateral ALM silencing in animals with severed corpus callosum. That redundancy across 

functional modules may be key to robust WM function. At the same time, as demonstrated 

by Li et al. (2016), many different WM mechanisms within individual ALM hemispheres 

can account for the observations, so long as the two ALM hemispheres both redundantly 

encode the memory information and share it via callosal projections.

Second, Liu et al. (2014) investigated the delay period activity in mouse PFC, both while the 

mice were learning the WM task and after the animals were well trained. They found that, 

during learning, PFC neurons’ delay period firing rates were more strongly modulated than 

they were after the animals were well trained. Those neurons whose firing rates increased 

during the delay period (relative to the cue period) had higher delay period activity during 

learning than after the animals were well trained, and those neurons whose firing rates 

decreased during the delay period (relative to the cue period) had lower delay period activity 

during learning, as compared to when the animals were well trained. These observations 
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suggest that PFC delay period activity might be more important in learning than in 

performing well-trained WM tasks. Further supporting that assertion, Liu et al. (2014) 

performed optogenetic manipulations in the PFC during the delay period. Similar to the 

neural recordings described above, they performed these perturbations either during the 

experimental sessions in which the mice were learning the task, or during those experimental 

sessions after the prolonged learning period, when the mice were well trained. They found 

that manipulations of PFC delay period activity had a profound effect on the animals’ 

abilities to learn the task, but that after learning, the task performance was robust to the 

optogenetic perturbations. These surprising observations emphasize that not all persistent 

delay period activity is task relevant, and so caution is warranted in relating delay period 

activity to WM. Moreover, the Liu et al. (2014) findings imply different roles for delay 

period activity under different contextual conditions (novel versus familiar task). It will be 

interesting going forward to understand how learning alters the mechanisms that support 

WM.

FUNCTIONAL CONSTRAINTS ON PERSISTENCE-GENERATING 

MECHANISMS

The preceding sections of this review focused on our current understanding of the palette of 

potential biophysical and circuit mechanisms that could generate persistent activity. Going 

forward, an important task will be to explore how these mechanisms function in vivo, during 

normal behaviors such as WM tasks, and how they might be involved in clinically important 

pathologies. Understanding how persistently active networks function involves more than 

testing for candidate mechanisms but will likely need to include research on how modulatory 

systems enable persistence (e.g., how cholinergic receptor activation during periods of 

heightened attention affects intrinsic excitability) and how the dynamics of persistent spiking 

responses are controlled by inhibitory synaptic input and biochemical feedback pathways. 

Further challenges are to understand how tightly controlled persistent networks can remain 

stable under a wide variety of neuromodulatory conditions, how synaptic plasticity can carry 

out the formation and maintenance of WM networks, and how these networks remain robust 

against synaptic failures and other biological sources of variability.

The first challenge is that modulators can change the effective connectivity of a neural 

circuit substantially. For example, blocking I-M–type K+ currents (by activating muscarinic 

receptors) can increase the input resistance of neurons en masse. That strengthens the 

effective synaptic connections between those cells, allowing the same input currents to cause 

larger changes to the membrane potentials. This means that a network that was previously 

fine-tuned to form a continuous attractor will no longer do so. Even for the nonattractor 

models wherein persistent representations are formed despite time-varying neural activities 

(Druckmann & Chklovskii 2012), fine-tuned connectivity is still required. Thus, it remains 

unclear how these circuits would maintain function in the broad spectrum of 

neuromodulatory environments likely present in vivo.

Relatedly, synaptic plasticity changes the strengths of interneuronal connections constantly 

(Abbott & Nelson 2000). Unless the changes caused by the synaptic plasticity support the 
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WM function (i.e., retune the network dynamically to better generate persistent activity), 

then that function may be lost quickly. Consequently, an important line of inquiry, with some 

advances already made (Litwin-Kumar & Doiron 2014, Renart et al. 2003, Savin & Triesch 

2014, Zenke et al. 2015), is to understand how ongoing synaptic plasticity can create reliable 

and long-lasting WM networks.

Finally, although theoretical models typically contain perfectly reliable synapses, in practice, 

biology offers few synapses with this level of robustness. Instead, most synapses (especially 

those in cortex) are characterized by high failure rates (Branco & Staras 2009). Because the 

persistent activity networks demand relatively precise patterns of synaptic connection, and 

the biological variability means that effective connectivity changes rapidly and seemingly 

randomly, it remains somewhat mysterious how the WM networks can function in the real 

biological setting. Future work that addresses this issue will be most informative.
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Glossary

WM working memory

PFC prefrontal cortex

ALM anterior lateral motor cortex

FOF frontal orienting fields

SC superior colliculus

CNS central nervous system

VGCC voltage-gated Ca2+ channel

EPSP excitatory postsynaptic potential

ICAN Ca2+-activated nonselective cation current

FFA flufenamic acid, an anti-inflammatory drug that also blocks a wide variety of 

ion channels

TRP transient receptor potential

I-M M-current, a type of noninactivating K+ current that is attenuated by 

signaling cascades initiated by muscarinic receptors

ERG ether-à-go-go-related gene channel
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Figure 1. 
Memory function created by embedding bistable neurons in feedfoward networks. A 

network is modeled on the dentate gyrus, which contains a set of bistable excitatory neurons 

(semilunar granule cells) (Larimer & Strowbridge 2010, Williams et al. 2007) that generate 

divergent projections onto downstream cells (hilar neurons in the dentate gyrus). Different 

input patterns can trigger bistable responses in different subsets of bistable cells, leading to 

different combinations of synaptic input barrages in the downstream neurons. Which input 

was presented can be determined by monitoring changes in the synaptic tone in a small 

subgroup of downstream neurons (as in Hyde & Strowbridge 2012 and Larimer & 

Strowbridge 2010).
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Figure 2. 
Network models capable of generating persistent representations. (a) In discrete attractor 

models, a population of neurons is described by their firing rates (axes of the diagram). The 

network dynamics cause movement within this space: At each point, the small arrows 

indicate the direction in which the population activities move. (This is known as a direction 

field in mathematics, and one can visualize trajectories of the population by connecting 

neighboring arrows in a head-to-tail fashion.) Here, all direction arrows point toward either 

point αor point β, and so the network activity patterns will evolve toward one of these two 

activity patterns. Which of these patterns gets generated depends on whether the inputs push 

the network to the left of the marked boundary or the right. This boundary is known as a 

separatrix. (b) Continuous attractor models are similar to the model in panel a, but now the 

direction arrows all point toward a continuous line. The network dynamics cause the activity 

patterns to evolve to points (patterns) on the marked line. (c) In models displaying 

continuous representations despite time-varying neural activities, the remembered stimulus 

value is assumed to be encoded in a combination of neural firing rates: in other words, by 

the projection of the population firing rate vector onto a line (coding line) in the space of 

neural activities. Here, the dynamical evolution of the neural activities is orthogonal to that 

coding line, and so the changes in neural firing rates do not change the projection of the 

firing rate vector onto that line. Consequently, the representation is stably maintained.
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