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Abstract

Copper amine oxidases (CAOs) are a class of enzymes that contain Cu2+ and a tyrosine-derived 

quinone cofactor, catalyze the conversion of a primary amine functional group to an aldehyde, and 

generate hydrogen peroxide and ammonia as byproducts. These enzymes can be classified into 

two non-homologous families: 2,4,5-trihydroxyphenylalanine quinone (TPQ)-dependent CAOs 

and the lysine tyrosylquinone (LTQ)-dependent lysyl oxidase (LOX) family of proteins. In this 

review, we will focus on recent developments in the field of research concerning human CAOs and 

the LOX family of proteins. The aberrant expression of these enzymes is linked to inflammation, 

fibrosis, tumor metastasis/invasion and other diseases. Consequently, there is a critical need to 

understand the functions of these proteins at the molecular level, so that strategies targeting these 

enzymes can be developed to combat human diseases.
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INTRODUCTION AND REACTION MECHANISM OF TYROSINE-DERIVED 

QUINONE COFACTORS

Copper amine oxidases (CAOs) are copper- and quinone-dependent enzymes that catalyze 

the oxidative deamination of primary amine functional groups to aldehydes, concomitantly 

producing hydrogen peroxide and ammonia. Currently, they are grouped into two 

nonhomologous subgroups based on the nature of their organic cofactors, namely 2,4,5-

trihydroxyphenylalanine quinone (TPQ)-dependent CAOs and the lysine tyrosylquinone 

(LTQ)-dependent lysyl oxidase (LOX) family of proteins (1). A number of reviews of CAOs 

and LOXs are available (1-11), including an excellent recent review by Klema and Wilmot 

that focuses on structural biology studies of the mechanisms of TPQ biogenesis and catalysis 

of amine oxidation in the TPQ-containing bacterial and yeast CAOs (12). In the present 

review, we will first briefly summarize the current understandings of the mechanisms of 1) 

TPQ and LTQ biogenesis and 2) amine oxidation by CAOs and LOX. We will also discuss 

their commonly used in vitro inhibitors. We will then highlight recent research developments 

concerning human CAOs and the human LOX family of proteins, with an emphasis on their 

proposed roles in disease and health defects.
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Tyrosine-derived Quinone Cofactors: TPQ and LTQ

TPQ and LTQ (Figure 1) were discovered by Klinman and coworkers as the respective 

organic cofactors of a CAO isolated from bovine plasma and a LOX isolated from bovine 

calf aorta (13,14). Both cofactors are post-translationally derived from a conserved active-

site tyrosine residue via an autocatalytic mechanism requiring only Cu2+ and O2 (15,16). 

Dopaquinone (DPQ) is proposed to be the common intermediate during the biogenesis of 

TPQ and LTQ, where the 1,4-addition of either water or the ε-amino side chain of a peptidyl 

lysine residue to DPQ yields TPQ or LTQ, respectively (13,14) (Figure 2). A careful 

inspection of the reaction product of TPQ biogenesis in the presence of H2
18O and 18O2 by 

resonance Raman spectroscopy revealed that the C2 oxygen of TPQ is from solvent water, 

rather than O2 (17). In the same study, substantial electron delocalization between the C2 

and C4 oxygens of the TPQ cofactor was observed, whereas the C5=O bond had more 

carbonyl character. These results support a solution study demonstrating that the 

delocalization directs the addition of substrate amine at the C5 carbonyl group (18).

X-ray snapshot analysis of TPQ biogenesis revealed that the precursor tyrosine and the 

biogenesis intermediates (i.e. DPQ and the trihydroxybenzene form, i.e. TPQred) are all 

ligated to Cu2+ (i.e. “on-copper” forms) at their O4 oxygen atoms (19). In the last O2-

oxidation step of TPQred to TPQ, the TPQ ring finally moves away from the Cu2+ binding 

site and becomes trapped in a hydrophobic wedge-like cavity in the active site; this is the 

“off-copper” conformation (Figure 3)(described in greater detail under Reaction 
Mechanism). The conformational change of TPQ is critical for optimal catalytic activity of 

CAOs, since the on-copper form of TPQ is unable to interact with substrate amines 

(7,20,21). The factor that drives TPQ to move off Cu2+ in the final step of biogenesis 

remains to be elucidated.

In contrast to TPQ, the details of the LTQ biogenesis mechanism (Figure 2) have not been 

explored, mainly due to the unavailability of diffracting crystals suitable for X-ray 

crystallography. However, to gain some insight in the intermediacy of DPQ in the biogenesis 

of TPQ and LTQ, a lysine residue was incorporated into the active site of a bacterial CAO by 

site-directed mutagenesis, replacing the conserved Asp residue located at the far end of the 

wedge (22). In this mutant, an LTQ-like quinone was produced instead of TPQ, where the 

covalent bond between the lysine side chain and DPQ was confirmed by X-ray 

crystallography (Figure 4). These results not only support the hypothesized common 

intermediacy of DPQ in the biogenesis of TPQ or LTQ (7,23), but also suggest that at room 

temperature the DPQ intermediate has sufficient motional flexibility to swing out of the 

Cu2+ site and interact with the ε-amino group of the lysine side chain in the wedge (Figure 

4).

Reaction Mechanism of CAOs and LOX in Amine Oxidation

The reaction mechanism of CAOs in the oxidation of primary amines follows a classical 

ping-pong mechanism involving covalent intermediates formed between TPQ and amines, as 

well as oxidoreduction reactions of the TPQ cofactor (Figure 5) (7,8,12). A conserved Asp 

residue acts as an active site base to remove an α-proton from the first covalent intermediate 

between TPQ and the substrate amine (i.e. a substrate Schiff base), and also serves as a 
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proton sink to regulate the protonation state of the substrate and the TPQ-derived reaction 

intermediates, which are essential for optimal catalytic activity (24-26) (Figure 6). The 

protonation state of the reaction intermediates is also carefully controlled by the two 

conserved Asn and Asp residues (flanking the conserved precursor Tyr residue in the Asn-

Tyr-Asp/Glu consensus sequence)(27,28) and water molecules in the active site (29). The 

reaction mechanism of amine oxidation by LOX is expected to be similar to CAOs, where an 

unidentified active site residue with pKa ~ 7.6 is thought to be the catalytic base for a LOX 

isolated from bovine aorta (30).

TPQ is expected to have some motional flexibility in the active site, since it is connected to 

the peptide backbone by a single covalent bond. In the on-copper conformation, the O4 of 

TPQ ligates to the active site Cu2+ and the active carbonyl group at C5 of TPQ faces away 

from the substrate entry channel and the active site base (Asp)(Figure 3). Therefore, the on-

copper TPQ form of CAOs is catalytically inactive. To prevent this, the mobility of the TPQ 

cofactor and TPQ-derived intermediates is carefully modulated in the active sites of CAOs 

by hydrogen bonding interactions among the O4 of TPQ, a conserved Tyr in the active site, a 

conserved Asp (the active site base), and the surrounding hydrophobic wedge-like cavity 

(Figure 3). These interactions maintain optimal activity by preventing the O4 of the TPQ 

ring from directly ligating to copper (i.e. by retaining TPQ in the off-copper conformation) 

(7,26,31-33). In contrast to TPQ, the LTQ cofactor of LOX is covalently linked to the 

peptide backbone at two positions, and is consequently fixed in one conformation.

Known Inhibitors of CAOs and LOX

CAOs and LOX can be inhibited irreversibly by hydrazine derivatives that form a hydrazone 

adduct with the active carbonyl group of TPQ and LTQ, mimicking the Schiff base reaction 

intermediates in the catalytic cycle (Figure 7). The most commonly used in vitro inhibitors 

for these proteins are phenylhydrazine and its derivatives, such as 4-phenylhydrazine, 2,4-

phenylhydrazine and 2-hydrazinopyridine.

CAOs can also be inhibited by semicarbazide, which forms a semicarbazone adduct with the 

TPQ cofactor; therefore, CAOs are often classified as semicarbazide-sensitive amine 

oxidases (SSAOs) to distinguish them from other amine oxidases, such as monoamine 

oxidases A and B (maoA and maoB). However, it should be noted that semicarbazide also 

inhibits LOX from bovine aorta (IC50 = 30 μM), which is similar to CAOs from bovine and 

human plasma (IC50 = 50, 100 μM, respectively) (34). Additionally, semicarbazide-induced 

inactivation of LOX has been shown to induce abnormality in arterial structure and function 

in mice (35). These experiments indicate that the members of the LOX family of proteins are 

also likely to be SSAOs.

For the LOX family of proteins, β-aminopropionitrile (BAPN) is one of the most commonly 

used small molecule inhibitors for in vitro and in vivo experiments. BAPN is considered a 

LOX-specific inhibitor (Ki = 6 μM)(36) because it does not inhibit CAOs or flavin-

dependent maoA or maoB (34). The IC50 for LOX isolated from chick embryo and bovine 

aorta were reported to be 10 mM and 25 μM, respectively (37,38), while the IC50 for LOX-

like 2 (LOXL2, a member of the LOX family of proteins) produced in murine myeloma cells 

was reported to be 3-5 μM (39). For both LOX and LOXL2, the mode of inhibition is 
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competitive. However, there has been some controversy over the specificity of BAPN toward 

the LOX family of proteins, as a few groups have reported that BAPN does not inhibit 

LOXL2 in cell culture (39-42).

Sequences of Human CAOs and the LOX Family of Proteins

Humans have four genes encoding CAOs: AOC1 (diamine oxidase), AOC2 (retina-specific 

amine oxidase), AOC3 (vascular adhesion protein-1, VAP-1), and AOC4 (a pseudo-gene, 

truncated in the active site). The translated sequences of AOC2 and AOC3 share 65% 

identity, but AOC1 only shares ~38% identity with either AOC2 or AOC3 (43). The Tyr 

precursor for TPQ, the active-site base (Asp), three His for the copper-binding site, and a Tyr 

residue that has a hydrogen bond interaction with the TPQ cofactor are all conserved 

(44-46). AOC1 and AOC2 contain predicted secretion signals at their N-termini, while 

AOC3 does not contain a secretion signal, but has a helical transmembrane (type II) domain.

Humans also possess five genes encoding the LOX family of proteins: lox (LOX), loxl1 

(lysyl oxidase-like 1, LOXL1), loxl2 (lysyl oxidase-like 2, LOXL2), loxl3 (lysyl oxidase-

like 3, LOXL3), and loxl4 (lysyl oxidase-like 4, LOXL4). The LOX family of proteins can 

be grouped into two subgroups based on the nature of their N-terminal domains: LOX and 

LOXL1 contain a highly basic peptide at their N-termini (termed the propeptide), whereas 

LOXL2, LOXL3 and LOXL4 each contain four scavenger receptor cysteine-rich (SRCR) 

domains (Figure 8)(2). There is a conserved bone morphogenetic protein-1 cleavage site 

between the propeptide and the LOX catalytic domain of LOX and LOXL1 (47), but this site 

is not conserved in LOXL2, LOXL3 and LOXL4. Moreover, the C-terminal LOX catalytic 

domains of LOX and LOXL1 share 77% identity and 88% homology, while the C-terminal 

LOX catalytic domains of LOXL2, LOXL3 and LOXL4 share 71-72% identity and 84-88% 

homology. The LOX catalytic domains of the two subgroups share 51-54% identity and 

64-68% homology. The precursor residues of the LTQ cofactor (Lys and Tyr) and the 

predicted Cu2+-binding site (His-X-His-X-His) are conserved in all five family members. 

Additionally, all LOX family members possess an N-terminal secretion signal, but lack 

predicted transmembrane domains; therefore, they are generally considered to be secreted 

proteins. Whereas CAOs are known to be homodimers (reviewed in (12)), the oligomeric 

status of the LOX-family of proteins has not been characterized.

AMINE OXIDASE (COPPER-CONTAINING) FAMILY

Amine oxidase, copper-containing 1, AOC1 (EC1.4.3.22)

AOC1 was first described as a histaminase in 1929 (48), and is synonymous with diamine 

oxidase (DAO1), kidney amine oxidase (KAO), amiloride-sensitive amine oxidase precursor, 

and amiloride-binding protein (ABP1). AOC1 is mainly expressed in the kidney, placenta, 

intestine, thymus, and seminal vesicles (49), and is proposed to be released from the kidney 

and intestinal epithelial cells through basolateral vesicles at the plasma membrane in 

response to an external stimulus, such as heparin (50). AOC1 is the main enzyme 

responsible for metabolism of ingested histamine, and is implicated in histamine intolerance 

(51). Additionally, AOC1 is highly expressed in the placenta during a healthy pregnancy 

(1000-fold higher than in other organs), and low AOC1 activity has been linked to high-risk 
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pregnancies (52). A recent mice study indicated that AOC1 plays a critical role in 

homeostasis of histamine and putrescine levels (preferred substrates of AOC1, see below), 

which is essential for decidualization (i.e. remodeling of the endometrium in preparation for 

embryo implantation) and embryo implantation itself (53). In that study, the expression of 

AOC1 was shown to be under the control of estrogen via CCAAT/enhancer-binding protein.

The biochemistry of AOC1 has been studied mostly using recombinant protein produced in 

insect cells (49). The preferred substrates for AOC1 are histamine (Km = 2.8 ± 0.07 μM), 1-

methylhistamine (Km = 3.4 ± 0.3 μM), and putrescine (Km = 20 ± 1 μM) (Table 1). Longer 

polyamines, such as benzylamine (a common in vitro substrate for serum CAOs and LOX) 

and spermidine, are poor substrates for AOC1 (Table 1).

The X-ray crystal structure of AOC1 was solved at 1.8 Å resolution (43,54), using a 

template model (AOC3, PDB entry 2c10 (55)) and a sequence alignment of AOC1 and 

AOC3 using CHAINSAW (56). AOC1 is a homodimer of two 85-kDa subunits, and the 

crystal structure revealed the presence of an intermolecular disulfide bridge linking Cys736 

of the A and B subunits. This intermolecular disulfide bridge has been detected in the crystal 

structures of AOC3 and a plant CAO, but is absent in bacterial and yeast CAOs.

By modeling histamine as the off-copper TPQ-Schiff base intermediate, it was discovered 

that Asp186 might be within hydrogen bonding distance (3.2 Å) of the imidazole nitrogen of 

histamine (43). Therefore, it was postulated that Asp186 might play an important role in 

binding diamine substrates in the active site of AOC1, though further studies are necessary 

to evaluate this hypothesis. The crystal structure also confirmed that AOC1 is N-

glycosylated at Asn110, Asn538 and Asn745 (three of the four predicted N-glycosylation 

sites), and the electron density suggests that Asn168 (the remaining predicted site) is not N-

glycosylated (43). The importance of the N-linked glycans for the biochemical and 

physiological functions of AOC1 has not been examined.

Crystal structures of AOC1 complexed with berenil (Ki = 13 ± 1 nM) or pentamidine (Ki = 

290 ± 19 nM) have also been solved (43). Berenil and pentamidine are two antiprotozoal 

aromatic diamidine pharmaceutical compounds that noncovalently inhibit AOC1 in mixed 

fashions (43). In the active sites of the two inhibited forms of AOC1, the TPQ cofactor was 

detected in the inactive, on-copper conformation. Whether the binding of these inhibitors 

induces the conformational change of TPQ from off-copper (active) to on-copper (inactive) 

was not discussed.

Amine oxidase, copper-containing 2, AOC2 (EC 1.4.3.21)

AOC2 was originally cloned from the retina in 1997 (44). The mRNA of AOC2 has also 

been detected in adipose tissue and was found to be upregulated during in vitro adipocyte 

differentiation (57,58). Additionally, AOC2 has also been detected at the mRNA level in 

many tissues (lung, brain, kidney, cartilage, tonsil, and heart); however, AOC2 amine 

oxidase activity (using tyramine as a substrate) has only been detected in the retina (59). 

Therefore, AOC2 is alternatively known as retina-specific amine oxidase (RAO).
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A recombinant form of AOC2 (rAOC2) produced in human embryonic kidney (HEK293) 

cells was detected at the cellular surface (59). In that study, crude cell lysates were used to 

conduct kinetic studies. The preferred in vitro substrates for AOC2 were 2-

phenylethylamine, tryptamine and p-tyramine, instead of methylamine and benzylamine (the 

preferred substrates of AOC3, see below). AOC2 does not oxidize histamine (the preferred 

substrate for AOC1) or spermidine (Table 1).

Since AOC2 shares 65% sequence homology with AOC3, homology modeling based on the 

structure of AOC3 (60) was performed to create a structure model for AOC2 (depicted in 

Figure 4 of (59)). The monomers of AOC2 and AOC3 superimpose with a root mean square 

deviation (RMSD) of 0.91 Å. The active site of AOC2 appears to be much larger than 

AOC3, most likely because Val205 and Asn388 in the active site of AOC2 are smaller than 

the corresponding residues, Met211 and Tyr394, in that of AOC3 (Figure 4B and 4C in 

(59)). Not surprisingly, the differences in active site size and structure of AOC2 and AOC3 

help explain their substrate preferences. For example, docking experiments revealed that the 

aromatic ring of benzylamine is sandwiched between Tyr384 and Leu469 in AOC3 (Figure 

4D in (59)). However, in the AOC2 model, benzylamine is stabilized only by Tyr378, due to 

the replacement of Leu469 by Gly463 (Figure 4E in (59)). Additionally, 2-

phenylethylamine, a good in vitro substrate for AOC2 (but not AOC3), fits generously into 

the modeled active site cavity of AOC2, due to the extra space generated from the Leu469 to 

Gly463 substitution (Figure 4G in (59)). However, 2-phenylethylamine (Figure 4F in (59)), 

p-tyramine, and tryptamine cannot be docked in the same position in the AOC3 active site; 

the additional -CH2- groups makes their hydrocarbon chains longer, so that the aromatic ring 

collides with the surroundings.

Amine oxidase, copper-containing 3, AOC3 (EC 1.4.3.21)

AOC3 is the most studied of the three human CAOs, and has been reviewed previously 

(5,11,61-63). Alternative names for AOC3 are semicarbazide-sensitive amine oxidase 

(SSAO), vascular adhesion protein-1 (VAP-1), plasma amine oxidase (PAO) and primary 

amine oxidase. AOC3 is found in adipocytes, smooth muscle cells and endothelial cells, and 

is highly expressed in the lung, aorta, liver and ileum. AOC3 is a type II membrane-bound 

protein; soluble AOC3 is released upon proteolytic cleavage of the C-terminus by a 

metalloprotease (64). Healthy humans have a low level of soluble AOC3 activity in their 

sera, while an elevated level of AOC3 activity has been observed in the sera of patients 

suffering from diabetes, congestive heart failure, and liver disorders. The affected organs are 

thought to be the source of the soluble AOC3 (65,66).

Recombinant forms of AOC3 (rAOC3) have been produced in Chinese hamster ovary 

(CHO) cells (46,60), Ax endothelial cells (67), HEK293 cells (68,69), and Drosophila S2 

cells (70). Recombinant AOC3s produced in HEK and S2 cells were expressed without the 

transmembrane domain (i.e. residues 29-763 were expressed). In addition to the currently 

known endogenous substrates for AOC3 (i.e. methylamine and aminoacetone (71,72)), 

rAOC3 oxidizes benzylamine in vitro, but does not oxidize the diamines histamine or 

putrescine, unlike rAOC1 (Table 1)(49,70).
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The AOC3 monomer has six predicted N-linked and three putative O-linked glycosylation 

sites. A series of rAOC3s with single mutations at each of the 9 glycosylation sites were 

transiently-expressed in Ax cells (a rat high endothelial venule-derived cell line)(67). rAOC3 

was shown to be glycosylated at all six putative N-linked glycosylation sites, while no O-

linked glycosylation was detected. Among the six N-linked glycans, three N-linked 

carbohydrates are located on the top of the “cap” of AOC3, and could modulate AOC3-

mediated lymphocyte adherence to the endothelium: when two or all three apical N-linked 

glycans were omitted from AOC3, the consequent lymphocyte adhesion to the endothelium 

was reduced by 25–35% under non-static assay conditions. Further, the glycosylation was 

shown to affect the catalytic activity of rAOC3. It was hypothesized that removal of the 

apical highly sialylated carbohydrates would effect changes in the charge of the rAOC3 

molecule, thereby affecting the structural flexibility of rAOC3 and altering its enzymatic 

activity.

Recently, two independent detailed biochemical studies were conducted on a rAOC3 

produced in HEK293-EBNA1 cells and insect cells (68,70). These rAOC3s were purified to 

>95% homogeneity from serum-free media and were detected as a single band at ~ 100 kDa 

(68,70). The stoichiometric amount of titratable TPQ cofactor was ~19% and ~6%, 

respectively, for the rAOC3s produced in HEK cells and insect cells. Incubation of the 

partially biogenized rAOC3 from HEK cells in buffer containing excess Cu2+ or O2 did not 

change the amount of titratable TPQ. It was concluded that either 1) Cu2+ was replaced by 

another metal (most likely Zn2+, which does not support TPQ biogenesis (73)) in a large 

fraction of the purified rAOC3, or that 2) the TPQ cofactor was somehow not able to react 

fully with phenylhydrazine.

Recombinant AOC3 produced in insect cells accepted a variety of primary amines with 

different chemical properties (i.e. nonphysiological branched-chain and aliphatic amines), 

with apparent (kcat/Km) values on the order of 102 to 104 M−1s−1 (70). The Km(O2) 

approximated the partial pressure of oxygen found in the interstitial space. The apparent 

(kcat/Km) values for most of the screened amines only differed 3- to 4-fold between purified 

murine and human rAOC3; however, human rAOC3 was ~10-fold more active towards 

methylamine and aminoacetone (70).

The pH-dependency curve of the steady-state kinetic parameters of rAOC3 produced in 

HEK cells was fit using nonlinear regression (68). A bell-shaped curve was fit to the 

apparent kcat versus pH plot, with two macroscopic pKa values (7.0 ± 0.2 and 10.0 ± 0.4) 

representing ionizable groups in the rAOC3-substrate complex. The pH-dependency of the 

apparent (kcat/Km) revealed a single pKa value (9.0 ± 0.1) that was assigned to the primary 

amino group of benzylamine.

A kinetic isotope effect (KIE) of 6 to 7.6 was obtained on apparent (kcat/Km) over the pH 

range of 6 to 10 using d2-benzylamine. The KIE on apparent kcat was found to be close to 

unity over the same pH range. The unusual KIE values on (kcat/Km) were explained by a 

mechanistic scheme including multiple isotopically sensitive steps (typical of CAOs). 

Analysis of quantitative structure-activity relationships (QSAR) using para-substituted 

protiated and deuterated phenylethylamines was also conducted. With phenylethylamines, a 
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large KIE on apparent kcat (8.01 ± 0.28 with phenylethylamine) was observed, indicating 

that C–H bond breakage is limiting for TPQ reduction. Poor correlations were observed 

between steady-state rate constants and QSAR parameters.

The X-ray crystal structure of rAOC3 expressed in CHO cells was solved and refined to 2.9 

Å (60), and the structures of two forms of rAOC3 expressed in HEK293 cells (i.e. the wild-

type (WT) and 2-hydrazinopyridine (2-HP)-inhibited forms) were solved and refined to 2.5 

Å and 2.9 Å, respectively (55). The major difference between the WT-rAOC3s produced in 

CHO and HEK cells is the conformation of the TPQ cofactor, i.e. on-copper (inactive) 

versus off-copper (active) TPQ. TPQ cofactor is known to have some mobility in the active 

site, and depending on the crystallization conditions, these two forms have been detected 

routinely (7,12,21). An additional disparity is that the structure of WT-rAOC3 produced in 

HEK293 cells contains an intermolecular disulfide bridge between Cys41 and Cys748; 

however, the authors acknowledged the possibility that this was an artifact from the 

crystallization procedure (55).

Overall, the crystal structures of the rAOC3s expressed in CHO and HEK cells are very 

similar to each other while differing from other CAOs in some important ways. As 

mentioned above, rAOC3 possesses an active site cavity that is markedly smaller than that of 

AOC2, owing to the presence of three active site amino acids with much bulkier side chains 

than those found in AOC2 (59). Additionally, the much narrower substrate entry channel of 

rAOC3 distinguishes it from human rAOC1 and CAOs from lower organisms. In both 

rAOC3 structures, Leu469 is proposed to function as a gate, controlling substrate access to 

the active site cavity (55,60). Leu468 and Leu469 are located at the bottom part of the 

substrate entry channel ‘funnel,’ which might sterically hinder larger substrates from 

entering the active site cavity. This is likely to contribute to the preference of AOC3 for 

small amine substrates (e.g. methylamine and aminoacetone) over larger amines (e.g. 

benzylamine and phenylethylamine) (Table1).

In addition to Leu469, Met211 and Tyr394 reside at the bottleneck of the substrate entry 

channel (Figure 7A in (74)), and a triple mutant form (M211V/Y394N/L469G) of rAOC3 

exhibited substrate specificity similar to that reported for rAOC2 (59). In order to understand 

which of the three residues is critical for defining the substrate specificity of AOC3, single 

mutants (M211V, Y394N, or L469G) were transiently expressed in CHO cells, and crude 

cell lysates were used to obtain kinetic parameters (74). Leu469 and Met211 (but not 

Tyr394) were found to be critical for substrate recognition, and mutation of either of Leu469 

or Met211 to the corresponding amino acids in AOC2 (i.e. L469G or M211V) changed the 

substrate specificity of AOC3. It was proposed that the larger active site of the M211V and 

L469G mutants and the absence of large hydrophobic side chains make the correct 

positioning of methylamine (a small substrate) difficult.

Despite these important differences between AOC3 and other CAOs, the active site 

configuration of the 2-HP-inhibited form of rAOC3 is very similar to a previously 

characterized 2-HP-inhibited form of a CAO from E. coli (31,32), and confirmed that 

Asp386 is the active site base for AOC3 and that the pyridine ring of the 2-HP is involved in 
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π-stacking interactions with Tyr (Tyr384). This Tyr residue is also conserved in AOC1 

(Tyr371) and AOC2 (Tyr378) (43,59).

More recently, X-ray crystal structures of two imidazole-bound forms (on-copper and off-

copper TPQ) of the soluble, proteolytically cleaved form of native AOC3 isolated from 

human serum were solved to 2.6-2.95 Å resolution (74). The overall structures of the 

imidazole-bound forms are largely similar to those of rAOC3s, except that Cys748 is 

reduced in the structures of the native AOC3, whereas Cys748 is involved in either an 

intermolecular or intramolecular disulfide bridge in the rAOC3 structures (55,60,75). It was 

found that at high concentration (100 mM), imidazole could covalently bind to the active 

carbonyl group of TPQ at C5. The saturation state of the bond between the N1 nitrogen of 

imidazole and TPQ was not clear at 2.95 Å resolution; however, imidazole most likely forms 

a substrate Schiff base-like adduct. The N3 of imidazole was within the necessary distance 

to hydrogen bond with Asp386, the active site base. The imidazole-bound (TPQ off-copper) 

form of AOC3 could not be derivatized with p-nitrophenylhydrazine and was inactive toward 

oxidation of substrate amines. Subsequently, it was determined that imidazole inhibits 

competitively, with an IC50 of 1.28 – 8.6 mM. A second molecule of imidazole was also 

seen in the AOC3 active site, away from TPQ and was involved in hydrogen bonding 

interactions with Tyr394 and the main chain nitrogen of Thr212 (through a water molecule), 

and hydrophobic interactions with Leu469 and Tyr176. Based on these observations, the 

authors noted the potential for inhibitor design based on secondary amine inhibition and/or 

the selectivity of inhibitors bridging the active site and the secondary imidazole binding site, 

which appears to be unique to AOC3.

In addition to the CAO catalytic domain, AOC3 has an adhesion domain that targets 

leukocytes for transmigration (76). Both sites and the amine oxidase activity of AOC3 are 

critical for AOC3-mediated induction of leukocyte rolling, adhesion and transmigration in 

response to inflammatory stimuli (77). Inhibition of AOC3 has been shown to be effective in 

mice models of inflammation (in the eyes, carrageenan-injected air pouch, and lungs), 

rheumatoid arthritis, liver fibrosis, and stroke (78,79). These results indicate that AOC3 has 

potential as a therapeutic target for inflammation and fibrosis. Consequently, several 

pharmaceutical companies have developed alkylhydrazino-, guanidine-, and imidazole-

derivatives as AOC3 inhibitors with therapeutic potential (reviewed in (63)). An alternative 

strategy is to use monoclonal antibodies against AOC3 to disrupt its role in leukocyte 

trafficking (reviewed in (61)). In vitro and in vivo experiments show that genetically 

engineered chimeric monoclonal mouse-human antibodies can block sites used by AOC3 to 

promote leukocyte transmigration in humans without leading to side effects caused by 

immunogenecity or activation of effector functions (80). BTT-1023 (81), a fully human 

monoclonal antibody that specifically binds to AOC3, has been developed and has shown 

promising efficacy and safety in early clinical studies in rheumatoid arthritis and psoriasis 

patients, and in a range of preclinical models of inflammatory diseases, including chronic 

obstructive pulmonary disease (COPD), certain neurological conditions, and certain niche 

liver inflammatory fibrotic diseases. Currently, it is undergoing phase 2 clinical trials.
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LYSYL OXIDASE FAMILY

Protein-lysine 6-Oxidase, LOX (EC.1.4.3.13)

Protein-lysine 6-oxidase, which is more commonly referred to as lysyl oxidase, is expressed 

highly in the heart, placenta, skeletal muscle, kidney, lung and pancreas (82). LOX is 

initially translated as pre-pro-LOX containing an N-terminal secretion signal (pre), a highly 

acidic propeptide (pro) and the C-terminal catalytic domain (LOX) (Figure 8). LOX is 

proposed to be N-glycosylated at the predicted N-glycosylation sites (Asn81, Asn97, and 

Asn144) in the propeptide domain (83). There are no N- or O-glycosylation sites predicted 

in the LOX catalytic domain. After being secreted from cells, the propeptide is 

proteolytically cleaved by bone morphogenetic protein-1 (BMP-1), releasing mature LOX 

(47,84).

Recombinant forms of secreted LOX have been prepared from CHO and RFL cell growth 

media (83,85), and biochemical characterization of LOX has been conducted using crude 

cell lysate and/or crude medium, with the cell lysate or medium from mock-transfected cells 

serving as negative controls (83,85). For LOX activity assays conducted using crude lysate/

media, the activity is generally expressed in terms of BAPN-inhibitable amine oxidase 

activity, since BAPN is specific for the LOX-family of proteins, and does not inhibit CAOs 

or maoA or maoB (34). Studies have implicated that pro-LOX is catalytically latent, so 

processing by BMP-1 has been proposed to be essential for the LOX amine oxidase activity 

(47). However, no biochemical study using purified proteins has yet compared the relative 

activities of pro-LOX and mature LOX.

In order to assess the importance of N-glycosylation of the propeptide for secretion and 

protein maturation, a triple mutant form (N81Q/N97Q/N144Q) of pro-LOX was expressed 

in CHO cells (83). The triple mutant was secreted into the medium and underwent BMP-1 

cleavage, suggesting that N-glycosylation of the propeptide is not essential for secretion or 

proteolytic activation. Intriguingly, the catalytic activity of the triple mutant in the crude 

medium was ~ 40% of that of WT-LOX. Because the propeptide and the associated N-linked 

glycans are not retained by mature LOX, these results suggest that the N-linked glycans in 

the propeptide may play an important role in LTQ biogenesis prior to secretion.

When the propeptide domain was omitted altogether by fusing the catalytic domain of LOX 

to the signal peptide, LOX was not secreted; instead, it was rapidly degraded in the cells via 

endoplasmic reticulum-associated protein degradation (ERAD)(83). These data indicate that 

the propeptide is essential for proper folding and secretion of LOX. Interestingly, the 

propeptide may also play a role in the recognition of LOX substrates in the extracellular 

milieu. To support this, the propeptide domain of pro-LOX was shown to be essential for 

deposition of pro-LOX onto elastic fibers produced in cultures of rat lung fibroblast cells 

(RFL-6) (85). Additionally, when the pre-propeptide without the C-terminal LOX catalytic 

domain was expressed in RFL-6 cells, it was secreted into the medium and still co-localized 

with elastic fibers.

Aberrant expression of LOX has been linked to many diseases. Downregulation or decreased 

activity of LOX is associated with connective tissue disorders, such as cutis laxa (86) or 
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occipital horn syndrome (87), Menkes’ syndrome (87), myocardial ischaemia (88), and 

pelvic organ prolapse (89,90). Upregulation of LOX has been associated with liver cirrhosis 

(91), Alzheimer’s and non-Alzheimer’s dementia (92), Wilson’s disease and primary biliary 

cirrhosis (41), and metastatic/invasive colorectal, breast, head and neck, prostate, and renal 

clear cell cancers (Table 2). Much of the recent study of LOX in disease has focused on 

elucidating its role in promoting the invasion/metastasis of breast cancer cells. Because LOX 

catalyzes the crosslinking of extracellular matrix (ECM) proteins such as collagen and 

elastin, LOX thus promotes stiffening of the ECM, leading to alteration of cellular 

mechanotransduction and activation of oncogenic signaling pathways such as the FAK/Src 

and Akt/PI3K pathways (93,94). Alternatively, LOX is proposed to regulate breast cancer 

cell migration and adhesion via activation of FAK/Src signaling pathways through H2O2 

produced as a byproduct of ECM substrate oxidation (95).

In an apparent paradox to the metastasis/invasion-promoting function of LOX in breast 

cancer cells, lox has been identified as a tumor suppressor gene in ras-transformed murine 

fibroblast cells (96). Additionally, in human gastric cancers, lox is inactivated by 

methylation and loss of heterozygosity (97). The silencing of lox has also been observed in 

colon, lung and ovarian cancer cell lines (97), and LOX is absent in basal and squamous cell 

carcinomas (98). The mechanism by which LOX suppresses tumors at the molecular level is 

not completely understood. For ras-related tumors, it was originally proposed that the amine 

oxidase activity of LOX is essential for tumor suppression, based on the observation that 

BAPN can block tumor suppression (96). In recent years, the propeptide rather than the 

catalytic domain has been proposed to play critical roles in tumor suppression by inhibiting 

Ras signaling. Ectopic expression of the propeptide has been shown to inhibit the 

transformed phenotype of breast, pancreatic, lung, and prostate cancer cells in vitro 
(99-102), and also inhibits the formation of tumors by human epidermal growth factor 

receptor 2 (Her-2/neu)-driven breast cancer cells in vitro (103,104). Most recently, it was 

proposed that the propeptide functions as a tumor suppressor via interaction with Hsp70 and 

c-Raf to inhibit the ras-induced MEK signaling pathway (104). In vitro results demonstrate 

that the propeptide of LOX, but not the catalytic domain, can function as a tumor suppressor 

(104). An immunofluorescent study demonstrated that when exogenous propeptide is added 

to the culture medium of fibroblast cells, it translocates into the cytosol within 20 min and 

localizes to the perinucleus (105). The mechanism whereby the propeptide domain (~25 

kDa) enters the cells has not been defined. Alternatively, pro-LOX is proposed to function in 

tumor suppression in the cytosol prior to secretion (106). In any case, the substrate in tumor 

suppression is currently unknown. Therefore, intracellular functions of LOX at the 

molecular level remain undefined.

Lysyl Oxidase Homolog 1, LOXL1 (EC.1.4.3.-)

LOXL1 is strikingly similar to LOX: it contains a secretion signal peptide, a propeptide, and 

a highly conserved LOX catalytic domain (77% identity and 88% homology) (Figure 8). 

Like LOX, LOXL1 is catalytically activated upon propeptide cleavage by extracellular 

BMP-1 (107). Recombinant LOXL1 has been produced in RFL-6 cells, and similar to LOX, 

its propeptide was shown to be essential for depositing the LOX catalytic domain onto 

elastic fibers, as the catalytic domains of LOX and LOXL1 were unable to interact with 
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elastic fibers when the propeptides were absent (85). However, unlike LOX, the catalytic 

domain of LOXL1 could be secreted into the medium even when the propeptide was absent. 

Given the high degree of homology between LOX and LOXL1, this is an intriguing and 

unexpected finding, and merits further investigation. Importantly, no biochemical studies 

have been conducted yet to compare the catalytic activities and substrate specificities of 

LOX and LOXL1.

LOXL1 is expressed in ocular tissues, including the ciliary body, lens, optic nerve, retina, 

and especially in the iris. LOXL1 has gained some attention due to the fact that SNPs of 

loxl1 are associated with 99% susceptibility to exfoliation syndrome (XFS) in Scandinavian 

males over 60 years old (108). XFS is a disorder characterized by accumulation of abnormal 

fibrillar deposits in the anterior segment of the eye. A risk haplotype includes two LOXL1 

coding non-synonymous SNPs (R141L and G153D) and one intronic SNP (108).

Recently, aberrant expression of LOXL1 has been associated with diseases involving female 

reproductive tissues. A microarray study revealed that LOXL1 was significantly upregulated 

among the ~15,000 genes and expressed sequence tags (ESTs) in peripheral blood 

lymphocytes isolated from patients with endometriosis (109). In a different study, a role for 

LOXL1 in elastic fiber renewal in adult tissues was proposed, based on high incidence of 

pelvic organ prolapse (POP) and permanent damage to the pelvic floor in post partum 

LOXL1-null mice (110). Subsequent studies of human populations have produced 

conflicting data regarding the role of LOXL1 in POP: one group has reported an increase in 

LOXL1 mRNA and protein in the uterosacral ligaments of patients with POP (111), while 

others report that expression of LOXL1 mRNA (89,112,113) and protein (114,115) are 

significantly down-regulated in the pelvic connective tissues of POP patients. While the 

majority of the data support the hypothesis that LOXL1 plays a critical role in elastin 

maturation, additional investigation is needed to resolve this discrepancy.

It has been also suggested that LOXL1 has a tumor suppressor function in bladder cancer 

cells, where it was discovered that LOXL1 was epigenetically silenced, predominantly by 

promoter methylation (116). Reintroduction of LOXL1 in bladder cancer cells was shown to 

inhibit colony formation and antagonize Ras-mediated activation of the extracellular signal-

regulated kinase (ERK) signaling pathway (116).

Lysyl Oxidase Homolog 2, LOXL2 (EC.1.4.3.13)

Lysyl oxidase homolog 2, also known as lysyl oxidase-like protein 2 (LOXL2), lysyl 

oxidase-related protein 2, or lysyl oxidase-related protein WS9-14, contains a secretion 

signal, four SRCR domains and a LOX catalytic domain (Figure 8). LOXL2 contains no O-

linked glycosylation sites and three potential N-linked glycosylation sites (Asn-X-Ser/Thr): 

Asn288, Asn455 and Asn644. LOXL2 is expressed in many tissues, with the highest 

expression observed in reproductive tissues, e.g. the placenta, uterus and prostate (117). 

LOXL2 is also upregulated in many cancer cells and tissues (Table 2). LOXL2 is a direct 

transcriptional target of HIF1A and its expression is induced by hypoxia (118,119).

LOXL2 is generally expected to function similarly to LOX in regard to ECM crosslinking 

and stiffening. LOXL2 expression is linked to upregulation of tissue inhibitor of 
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metalloproteinase-1 (TIMP-1) and matrix metalloproteinase-9 (as also proposed for LOX), 

thereby promoting ECM degradation and dissemination of metastatic breast cancer cells 

(95,120). However, there has been no in vitro biochemical study to directly compare the 

respective activities of LOX and LOXL2 in ECM stiffening.

An allosteric inhibitor of LOXL2, AB0023 (an antibody specific for the 4th SRCR domain of 

LOXL2), has been developed to target secreted LOXL2 (39). AB0023 has been shown to be 

effective in preventing tumor and fibrotic microenvironment formation, and reduces the 

metastatic potential of tumor cells in mice (40). Use of AB0023 as a research tool has also 

led to the discovery that inhibition of the enzymatic activity of secreted LOXL2 may not be 

sufficient as a therapeutic strategy in every pathological context in which LOXL2 is 

implicated. This realization originated from data demonstrating that mutant LOXL2 with 

abrogated enzymatic activity was still capable of preventing keratinocyte differentiation and 

promoting the development of squamous cell carcinomas (121). The capacity of LOXL2 to 

inhibit keratinocyte differentiation was subsequently traced to the 4th SRCR domain, and 

treatment with AB0023 was effective in relieving repression of involucrin, a marker of 

differentiation.

Recombinant LOXL2s lacking either the first three or all four SRCR domains (i.e. 

Δ1-3SRCR-LOXL2 or Δ1-4SRCR-LOXL2) have been expressed in the culture medium of 

Drosophila Schneider 2 (S2) cells stably-transfected with the corresponding expression 

constructs. Using these truncated secreted LOXL2s, N-linked glycosylation at Asn455 and 

Asn644 was recently confirmed; additionally, the N-linked glycans at these sites were shown 

to be independently important for proper protein folding and secretion from S2 cells 

(122,123). The N-glycosylation site at Asn644 in the LOX catalytic domain is conserved in 

the SRCR domain-containing LOXLs (LOXL2, LOXL3 and LOXL4), but is not conserved 

in LOX or LOXL1 (Figure 8). The LOX catalytic domains of LOX and LOXL1 (comparable 

to Δ1-4SRCR-LOXL2) were also expressed in S2 cells; however, the proteins were only 

produced as inclusion bodies, suggesting that there are some important differences between 

the structures of the LOX catalytic domains of LOXL2 and LOX/LOXL1, even though they 

share 50% sequence identity. The LTQ cofactor and its precursor residues (Lys653 and 

Tyr689) in LOXL2 were also identified by mass spectrometry (122,123).

The two truncated rLOXL2s were catalytically competent toward amine oxidation in vitro, 

and could oxidize LOX substrates such as tropoelastin (Km ≈ 0.6 μM; kcat ≈ 0.7-2.0 min−1 

at pH 8.0, 37 °C)(123). The Km values are very similar with or without the 4th SRCR 

domain, but the kcat value is ~3-fold higher when the 4th SRCR domain is present, 

supporting the proposal that the 4th SRCR domain positively regulates the catalytic activity 

of LOXL2 (39). The parameters are mostly comparable to those determined for bovine LOX 

(124,125), where the kcat was reported in min−1, confirming that the LOX-family of proteins 

comprises intrinsically “slow” enzymes.

In addition to the proposed extracellular roles of LOXL2, some intracellular functions have 

also been postulated, since a perinuclear expression pattern of LOXL2 has been observed in 

basal-like breast and larynx squamous carcinomas (126-128). Snail1 transcription factor and 

trimethylated Lys4 of histone H3 (H3K4(me3)) have been proposed as intracellular 
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substrates (129,130). When LOXL2 and Snail1 were transiently co-overexpressed in HEK 

cells, LOXL2 was shown to interact with and stabilize Snail1 protein (130). LOXL2 was 

proposed to oxidize Lys98 and/or Lys137 of Snail1 to induce some conformational change 

that protects Snail1 from GSK3β-catalyzed phosphorylation, subsequent ubiquitinylation, 

and proteasomic degradation Similarly, the interaction of LOXL2 and H3K4(me3) was 

detected in HEK cells, and the downregulation of methylated H3K4 was observed upon 

ectopic expression of LOXL2 in MCF-7 cells (129). However, in that study, two 

unprecedented roles (i.e. demethylation and alcohol oxidation) were proposed for LOXL2. 

Finally, it has also been suggested that LOXL2 regulates cell polarity in basal breast cancer 

cells by transcriptionally downregulating tight junction proteins independently of E-cadherin 

(127).

Recently, secreted full-length LOXL2 (~100-kDa) was shown to be N-glycosylated at 

Asn455 and Asn644, whereas intracellular LOXL2 (~75-kDa) was nonglycosylated, N-

terminally processed, and primarily associated with the cell nucleus. Particularly in cells 

expressing nuclear-associated nonglycosylated (~75-kDa) LOXL2, Snail1 protein was 

stabilized in a LOX amine oxidase-dependent fashion. This Snail1 stabilization induced 

EMT by downregulation of epithelial markers and upregulation of mesenchymal markers, 

and additionally promoted in vitro invasion via upregulation of vimentin, fibronectin and 

MT1-MMP. In contrast, cells expressing secreted N-glycosylated LOXL2 exhibited an 

epithelial phenotype and relatively low invasiveness under the reported in vitro experimental 

conditions (131).

Lysyl Oxidase Homolog 3, LOXL3 (EC.1.4.3.-)

Commonly known as lysyl oxidase-like protein 3, LOXL3 is the least studied member of the 

LOX family of proteins. Like LOXL2 and LOXL4, LOXL3 contains a signal peptide, four 

SRCR domains and a C-terminal LOX catalytic domain (Figure 8). There are five potential 

N-glycosylation sites in LOXL3: Asn111, Asn266, Asn390, and Asn481 in the SRCR 

domains, and Asn625 in the LOX catalytic domain. The actual extent of N-glycosylation of 

LOXL3 has not yet been examined. LOXL3 expression has been detected in many tissues 

and is most highly expressed in the placenta, heart, ovary, testis, small intestine and spleen 

(132,133). Decreased expression of LOXL3 has been observed in POP and breast cancer 

effusions (89,134).

Lysyl Oxidase Homolog 4, LOXL4 (EC.1.4.3.-)

LOXL4 is commonly called lysyl oxidase-like protein 4 or lysyl oxidase-related protein C 

(LOXC). LOXL4 is expressed in many tissues, with the highest levels being in the skeletal 

muscle, testis, pancreas, and cartilage (135,136). The protein consists of a secretion signal, 

four SRCR domains and a C-terminal LOX catalytic domain (Figure 8). The four SRCR 

domains may be essential for LOXL4 secretion, since the catalytic domain of LOXL4 by 

itself could not be secreted from endothelial cells (137). There are two potential N-

glycosylation sites in LOXL4: Asn198 in the second SRCR domain and Asn629 in the LOX 

catalytic domain. However, the actual extent of N-glycosylation of LOXL4 has not been 

examined.
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LOXL4 has a variety of recognized roles in human disease. Like LOXL1, LOXL4 is 

epigenetically silenced in bladder cancer cells, and overexpression of either protein in 

bladder cancer cells has been shown to inhibit Ras/ERK signaling pathways (116). In 

PLC/PRF/5 cells (liver cancer), LOXL4 was identified as the only gene in the LOX family 

whose expression was induced by transforming growth factor-β1 (TGF-β1)(138). TGF-β1-

induced overexpression of recombinant LOXL4 in PLC/PRF/5 cells restricted cell migration 

through Matrigel, and suppressed the expression of laminins and α3 integrin and the activity 

of matrix metalloproteinase 2 (MMP2). Thus, the authors suggested that LOXL4 might have 

a role as a negative feedback regulator of TGF-β1 in cell invasion by inhibiting the 

metabolism of ECM components. Recently, LOXL4 was also found to be under the control 

of TGF-β1 in aortic endothelial cells, where an activator protein 1 (AP1) site and a Smad 

binding element were essential for TGF-β1-induced expression of LOXL4 (137). In this 

study, TGF-β1-induced LOXL4 was shown to be secreted into the growth medium, where it 

contributed to ECM deposition and construction. Thus, the authors concluded that TGF-β1-

induced LOXL4 plays a role in maintenance of the endothelial ECM, contributing to 

vascular processes associated with ECM remodeling. Most recently, the ectopic 

overexpression of full-length LOXL4 in metastatic MDA-MB-231 breast cancer cells was 

shown to reduce the metastatic potential partially by downregulation of Snail1 transcription 

factor and MMP-2 (139). In that study, LOXL4 was detected as a ~95 kDa protein in the 

media, but no further characterization was conducted. In any case, the data suggest that full-

length LOXL4 may function as a tumor suppressor.

The upregulation of LOXL4 has been seen in head and neck squamous cell carcinoma 

(HNSCC), where the overexpression of LOXL4 transcripts was detected in 74% of invasive 

HNSCC tumors and 90% of both primary and metastatic HNSCC cell lines (140). LOXL4 

was detected as a single ~93 kDa band in the cell lysates of UTSCC-19A cells (derived from 

primary tumors) and HCFMK1 cells (derived from metastatic tumors), but absent in normal 

non-neoplastic squamous epithelial cells. The molecular mass of the ~93 kDa protein 

detected in the cell lysate is larger than the predicted mass (84.5 kDa) of LOXL4, but is 

similar to the recombinant LOXL4s (97-100 kDa) produced in and secreted from HT-1080 

and CHO cells (141). The differences in molecular mass are assumed to be due to the 

differences in glycosylation. Importantly, neither the native nor the recombinant LOXL4s 

seem to undergo proteolytic processing in the cytosol or in the ECM (140,141). In these cell 

lines, LOXL4 was detected predominantly at the perinucleus, as well as in cytosol as a 

diffused pattern. The high expression level of LOXL4 was associated with local lymph node 

metastases at progressed tumor stages but not with primary tumor types. The expression 

level of LOXL4 at the protein level correlated with the increased mRNA transcription in 

HNSCC cells.

CONCLUSION

In the previous 60 years, scientists have made great strides in the field of copper-dependent 

amine oxidases, particularly with the discovery of novel tyrosine-derived cofactors, namely 

TPQ and LTQ. Within the AOC subfamily, crystal structures have been solved for AOC1 and 

AOC3. This structural knowledge, coupled with data from several detailed studies of the 

substrate preferences of the AOCs, has facilitated the development of a variety of highly 
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selective small molecule inhibitors with some promise as therapeutic agents for AOC3-

mediated inflammation. Proliferation and refinement of AOC3-specific inhibitors, in 

addition to the development of AOC3-targeting antibody therapies, will likely continue 

throughout the coming decade.

In contrast to the AOCs, much less is known about the structures and molecular functions of 

LOX and the LOXLs. Approximately 40 years after the discovery and isolation of LOX 

from bovine aorta, no crystal structure has been solved for any member of the LOX family, 

and very few biochemical studies have been conducted, aside from those on LOX. 

Consequently, while numerous associations between LOX family members and various 

diseases have been identified (and novel pathological roles are discovered yearly), the 

molecular functions of the lysyl oxidases and the degree to which their functions overlap 

remain unsatisfactorily understood. A few antibodies are being evaluated for their 

therapeutic value in treating fibrotic disease and cancers; however, a number of intracellular 

functions for different LOX family members have been proposed, highlighting the need to 

discover and optimize cell-permeable treatment options, such as small molecule inhibitors. 

Such discovery, as well as the capacity to distinguish the functions of the LOX family 

members, is likely to be severely hampered until the deficiencies of currently reported 

systems for recombinant LOX/L expression are addressed. To remedy this, many groups are 

currently expending great effort in the pursuit of more optimal expression systems for the 

LOX family. If their persistence bears fruit in the near future, the following 20 years are 

likely to be as exciting for the LOX family as the past two decades were for the AOCs.
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Figure 1. Structures of TPQ and LTQ
Tyrosine-derived quinone cofactors of human CAOs. TPQ (left) is derived from a conserved 

Tyr residue in CAOs, while LTQ (right) is derived from conserved Tyr and Lys residues in 

LOX. From (13,14).
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Figure 2. DPQ as a common intermediate in the biogenesis of TPQ and LTQ
The proposed mechanisms for the biogenesis of the TPQ and LTQ cofactors share a 

dopaquinone (DPQ) intermediate. The 1,4-addition of either water (Pathway 1) or the ε-

amino side chain of a peptidyl lysine residue (Pathway 2) to DPQ yields TPQ or LTQ, 

respectively. RCH2NH2 represents the side chain of a peptidyl lysine residue (-

CH2CH2CH2CH2NH2) within the polypeptide of a LOX family member. Adapted from 

(13,14).
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Figure 3. Three different conformations of the TPQ ring detected in crystals of Arthrobacter 
globiformis amine oxidase (AGAO)
(a) In the active “off-copper” conformation, O4 of TPQox is hydrogen-bonded to Tyr284. 

The reactive carbonyl group at C5 faces the substrate entry channel (Tyr296 in purple is 

located at the base of the proposed substrate channel) and the active site base (Asp298)(PDB 

accession number: 1IU7). (b) In the inactive “flipped” conformation of TPQox, the TPQ ring 

has flipped 180° from the active conformation at the C2 axis. Consequently, the reactive 

carbonyl at C5 faces away from the substrate entry channel and Asp298 (PDB: 1AV4). (c) In 

the inactive “on-copper” conformation, O4 of TPQox is directly ligated to Cu2+, where the 

C5 carbonyl group resides away from Asp298 and the substrate channel (PDB: 1AVL). Cu2+ 

is represented by an orange sphere, water molecules are represented by small blue spheres, 

the three His residues constituting the copper-binding site are in gray, hydrogen bonding 

interactions are represented by blue lines, and ligand interactions are represented by purple 

lines. Adapted from (7).
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Figure 4. Active-site structures of mature D298K-AGAO and the putative DPQ intermediate 
detected during snapshot analysis of TPQ biogenesis in WT-AGAO
(A) DPQ intermediate (PDB: 1IVV), (B) D298K (PDB: 2YX9). Cu2+ is shown as an orange 

sphere, water molecules are shown as light-blue spheres, hydrogen bonding interactions are 

represented by blue lines, and ligand interactions are represented by purple lines. Val282 and 

Asn381 (white) form the edges of a wedge-shaped pocket. Hydrogen bonding distances are 

denoted in angstroms. From (22).
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Figure 5. A proposed mechanism for the oxidation of an amine substrate by CAO
Scheme showing the classical ping-pong mechanism by which a copper amine oxidase 

oxidizes primary amines. Covalent intermediates are formed between TPQ and amines, in 

addition to oxidoreduction reactions of the TPQ cofactor. Adapted from (7).
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Figure 6. Detailed proposed mechanism of the reductive half-reaction
The protonation states of the substrate and reaction intermediates are carefully controlled to 

achieve the optimal activity. The conserved Asp in the active site serves as a proton sink. 

The protonated substrate amine (RCH2NH3
+) binds to the active site and is deprotonated by 

the Asp residue (which is deprotonated in the resting state). The reaction proceeds through 

two Schiff bases, i.e. a substrate Schiff base (TPQssb, E) and a product Schiff base (TPQpsb, 

G). TPQpsb is mono-protonated to undergo facile hydrolysis to yield TPQ-aminoresourcinol 
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(TPQred, J and K). In some amine oxidases, disproportionation reactions between TPQred 

and Cu2+ yield a semiquinone form of TPQ (TPQsq, L). From (8,24).
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Figure 7. 
Phenylhydrazine (PH) adducts of TPQ and LTQ
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Figure 8. LOX family of proteins
Cartoon summarizing the features of the LOX family of proteins. Each member retains a 

conserved C-terminal lysyl oxidase-like catalytic domain, which encompasses a copper-

binding site composed of a His-X-His-X-His sequence, as well as a covalently bound LTQ 

cofactor formed from the linkage of conserved Tyr and Lys residues in the catalytic core. 

Each member also possesses an N-terminal secretion signal, and LOX and LOXL2-4 also 

contain predicted N-linked glycosylation sites (i.e. Asn-X-Ser/Thr). LOX and LOXL1 

constitute one subfamily, possessing an N-terminal propeptide sequence, which is 

proteolytically removed by procollagen c-proteinase (BMP-1) at a conserved site (black 
arrow). LOXL2-4 constitute the other subfamily, with four SRCR domains instead of a 

propeptide.
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Table 2

LOX family members in cancer

Type of Cancer Family member Expression Reference

Basal and squamous skin cell carcinoma LOX P, I; ↓ (98)

Breast LOX R, P, A, I, C; ↑ (95,142-151)

LOXL1 R, I; ↑ (152)

LOXL2 R, P, C, I; ↑ (128,130,145,147,150,153-156)

LOXL3 R; ↑ (152)

Bladder LOXL1 R ↓ (116)

LOXL4 R ↓ (116)

Choriocarcinoma LOX R, A ↓ (157,158)

Colon LOX R ↓ (97,159,160)

Colorectal LOX P ↑ (161-163)

LOXL2 P ↑ (164)

Endometrial LOXL2 P ↑ (40)

Esophageal LOXL2 R ↑ (165)

Fibrosarcoma LOX R, A ↓ (157,158)

Gastric LOX R, I ↓ (97,166,167)

LOXL2 P ↑ (40,120)

Head and neck squamous cell carcinoma LOX P, C ↑ (143,168)

LOXL2 R, C ↑ (169)

LOXL4 R ↑ (140,170,171)

Hepatocellular LOXL2 P ↑ (40)

Laryngeal LOXL2 P, I ↑ (40,128)

Lung LOX R, P, I ↑ (172-174)

LOXL1 R ↑ (175)

LOXL2 R ↓ (176)

Melanoma LOX R ↑ (145)

LOXL3 R ↑ (130)

Oesophageal LOXL2 P ↑ (40,177)

Oral cavity LOX I ↑ (178)

Oropharynx LOX I ↑ (178)

Osteosarcoma LOX R, P, A ↑ (105,179)

Arch Biochem Biophys. Author manuscript; available in PMC 2018 June 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Finney et al. Page 39

Type of Cancer Family member Expression Reference

Ovarian cancer LOXL1 R ↑ (134)

LOXL2 R ↑ (134)

LOXL3 R ↑ (134)

LOXL4 R ↑ (134)

Pancreatic LOX R ↓ (97)

LOXL2 P ↑ (180)

Prostate LOX R, C ↑ (145,181)

LOXL2 P ↑ (180)

Renal clear cell LOX R, C ↑ (151,182-184)

LOXL2 P ↑ (40)

Rhabdomyosarcoma LOX A ↓ (158)

Testicular seminoma LOXL2 P ↑ (40)

R, RNA; P, protein; A, enzymatic activity; I, in vivo model validation; C, clinical validation; ↑, upregulation; ↓, downregulation.
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