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Abstract

Collective cell migration in dense tissues underlies important biological processes, such as 

embryonic development, wound healing and cancer invasion. While many aspects of single cell 

movements are now well established, the mechanisms leading to displacements of cohesive cell 

groups are still poorly understood. To elucidate the emergence of collective migration in 

mechanosensitive cells, we examine a self-propelled Voronoi (SPV) model of confluent tissues 

with an orientational feedback that aligns a cell’s polarization with its local migration velocity. 

While shape and motility are known to regulate a density-independent liquid-solid transition in 

tissues, we find that aligning interactions facilitate collective motion and promote solidification, 

with transitions that can be predicted by extending statistical physics tools such as effective 

temperature to this far-from-equilibrium system. In addition to accounting for recent experimental 

observations obtained with epithelial monolayers, our model predicts structural and dynamical 

signatures of flocking, which may serve as gateway to a more quantitative characterization of 

collective motility.
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1 Introduction

The main cause of mortality in cancer patients is the spreading of primary cancer cells that 

generate metastatic foci through complex and still poorly understood processes. The 

invasiveness of metastatic cells is facilitated by their ability to adapt to the 

microenvironment and change their identity to invade healthy tissues and proliferate1,2. Key 

to invasion is cell migration. Migratory phenotypes are intrinsically flexible and include both 

single and collective cell motility modes3,4. For example, migrating cells can display both 

mesenchymal and epithelial phenotypes or frequently interconvert between these two states 

in a process commonly referred to as Epithelial-to-Mesenchymal Transition (EMT). Cells 

undergoing EMT detach from the surrounding cells and become hyper-motile. This allows 

them to reach distal sites, where they can seed metastatic foci by reverting their state back to 

epithelial5.

EMT is not, however, the only process that may favor metastatic dissemination. A 

complementary process that may help drive collective cell migration is cellular 

unjamming6,7. Recent experiments suggest that cell motion in tissues may be understood in 

terms of physical laws and parameters typically employed to study the transition between 

amorphous solid and liquid states of inert materials. Within this framework, epithelial cell 

monolayers below confluence exhibit liquid-like dynamics. As the cell density is increased 

due to proliferation, cellular displacements are progressively inhibited, and cells become 

increasingly caged by their neighbors in a glassy or jammed state8,9 that shares many 

similarities with molecular or colloidal glasses10.

Notably, the transition to a jammed, arrested state has been proposed to ensure the proper 

development of elasticity in mature epithelial tissues. Conversely, monolayer unjamming is 

needed whenever a tissue must adapt to changes or perturbations of its physiological 

homeostatic state. Decreasing density is not the only way to cause unjamming. Recent 

experiments showed that an increase of cell-cell adhesion due to mechanical compression7 

or to perturbation of endocytic processes11 also leads to unjamming. This gateway to 

collective motility can be termed Jamming-to-Unjamming transition (JUT)12 and it may be 

exploited by tumors for interstitial dissemination11. In contrast with EMT that requires a 

partial of full rewiring of genetic programs and cell identity, small changes in biomechanical 

parameters are predicted to promote JUT and collective migration.
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Particle-based models of motile cells are widely used to describe the dynamics of dense cell 

collectives13–16 and predict jamming as a function of cell density17,18, but seem inadequate 

to describe confluent cell layers where packing fraction is essentially always unity. Recent 

theoretical work has combined the well-established Vertex Model, that describes a confluent 

epithelial cell sheet as a disordered polygonal tiling of the plane and has been used 

successfully to model the development of the fruit fly embryo19, with ideas from active 

matter physics to develop a Self-Propelled Voronoi (SPV) model of motile tissue. The SPV 

model exhibits a JUT tuned by cell motility and cellular shape, which in turn embodies the 

competition of contractility and cell-cell adhesion7,20–24. None of these models, however, 

accounts for a striking set of experimental observations11, in which the elevation of RAB5A, 

a master regulator of endocytosis, induces large-scale directed migratory patterns, which 

resemble the onset of flocking in other living systems25. Additionally, experiments show that 

cells alter their polarization and direction of migration due to interactions with surrounding 

cells26–28. This mechanical feedback was incorporated in Ref.11 by extending the SPV 

model to include a local interaction that tends to direct cell polarization. While this simple 

modification yields flocking phases similar to those observed in the experiments11, 

suggesting that the observed reawakening of motility requires a simultaneous increase of 

cell-cell adhesion and coordination of cell polarization, the properties of such flocking 

phases and the comparison with flocking transitions in particle-based models have not yet 

been explored.

Here we characterize the full phase diagram of the SPV model with alignment interactions 

and examine the structural and dynamical properties of the various phases.

We obtain a number of significant results. First, the flocking transition, known to be first 

order in particle models where the interaction range is defined through a metric criterion, 

where each agent interacts only with agents within a prescribed range29, appears to be 

continuous here in both the liquid and the solid. This is consistent with results from Vicsek 

models which display a continuous transition when agents align with their topological 

neighbors defined as those belonging to the first shell of a Voronoi tessellation, instead of 

metric ones30. Given interactions in the SPV are controlled by topology and not by metric 

distance, this finding suggests the possibility that a continuous transition may be a generic 

property of systems with metric-free interactions. Secondly, we examine the interplay of 

alignment and structural properties in both solid and liquid states and show that alignment 

promotes solidification by suppressing fluctuations transverse to the direction of mean 

motion. Flocking glassy and crystalline states have been reported before in particle 

models31,32 and in continuum theories33, but alignment was suggested to drive fluidification 

in particulate systems32. Extending tools from statistical physics to these far-from-

equilibrium systems, we also develop a generalized expression for the effective temperature 

and caging timescale to self-propelled systems that helps us understand how alignment 

interactions drive solidification in confluent models. Finally, the flocking states are 

characterized by strongly anisotropic fluctuations. In the fluid such anisotropy is evident in 

both structural and dynamical properties that reveal a behavior similar to that of 2D 
smectics, as recently suggested for incompressible particulate flocking fluids34. Collective 

rearrangements observed as the solid is approached from the fluid side are strongly 

anisotropic and take the form of correlated cell streaming. This morphology provides a 
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distinct signature of of the collective dynamics of flocking liquids that could be probed in 

future experiments.

2 Model

The SPV model describes a confluent monolayer as a network of polygons covering the 

plane20–22. Each cell is characterized by its position ri and cell shape as determined by the 

Voronoi tessellation of all cell positions (Fig. 2). As in the vertex model35, cell-cell 

interactions are determined by an effective tissue energy19,35–39,

E ≡ ∑
i

[KA(Ai − A0)2 + KP(Pi − P0)2], (1)

with Ai and Pi the cross-sectional area and the perimeter of the i-th cell, and KA and KP area 

and perimeter stiffnesses. The first term, quadratic in the fluctuations of the cell area around 

the target value A0, arises from the constraint of incompressibility in three dimensions and 

encodes bulk elasticity. The second term, quadratic in the deviation of cell perimeter from 

the target value P0, represents the competition between active contractility in the actomyosin 

cortex and cell-cell adhesion, resulting in an effective boundary tension proportional to P0. 

We consider N cells in a square box of area L2 with periodic boundary conditions. In the 

following, we set both the average cell area Ā = L2/N and the target area A0 equal to one, Ā 
= A0 = 1, though changing Ā in a periodic system has no effect on the cell dynamics40. The 

system is initialized with random initial positions for the N cells. The configurational energy 

in Eq. 1 has been extensively used in the past to model biological tissues, but only recently it 

has been shown that this simple model exhibits a rigidity transition that takes place at 

constant density and it is controlled by a single non-dimensional parameter, the target shape 

index p0 ≡ P0/ A0
21. In our model, we assume that cell proliferation is negligible on the 

time scales of interest, as experimentally shown in 11.

Each cell is additionally endowed with motility described by a self-propulsive force fs
i = f0ni 

of fixed magnitude f0 = v0/μ, with v0 the cell motility and μ a mobility, pointing along the 

direction ni = (cos θi, sin θi) of cell polarization and θi is the polarization angle. Assuming 

overdamped dynamics, the equation of motion of cell i is

∂tri = μ(fs
i + Fi), (2)

with Fi = −∇riE the force arising from the tissue energy. Many cell types are known to sense 

mechanical and biochemical stimuli from neighboring cells and actively respond by 

adjusting their polarization41. Following earlier work 31,42, we model these interactions as 

an active feedback mechanism at the single cell level that tends to align each cell’s 

polarization with its migration velocity, which is in turn controlled by interactions with other 

cells. The polarization dynamics is then governed by the equation
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∂tθi = − Jsin(θi − ϕi) + ηi, (3)

where ϕi is the direction of the cell velocity, ∂tri = vi = vi (cos ϕi, sin ϕi), and ηi a white 

noise, i. e., 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(s)〉 = 2Drδijδ(t − s). The angular dynamics is controlled 

by the interplay of rotational diffusion at rate Dr and alignment at rate J, whose inverse τ = J
−1 is the response time required by the cell reorient its polarization in the direction of the 

resultant force exerted by its neighbors.

In the following, we use A0 as the unit length and (μKAA0)−1 as the unit time22. 

Additionally, we set KP/(KAA0) = 1, f 0/(KAA0

3
2) = 1, Dr/(μKAA0) = 0.5. The free parameters 

are thus the (dimensionless) alignment rate J and the target shape index p0. For J = 0 and v0 

= 0 our model is related to the vertex model in Ref.21, while for J = 0 and finite v0 we obtain 

the SPV model of Ref.22.

To study the solid-liquid transition, we use the mean-square-displacement 

MSD(t) = N−1〈∑i [ri′(t + t0) − ri′(t0)]2〉 evaluated in the reference frame of the center of mass 

rCM = N−1 Σi ri, with ri′ = ri − rCM. Here and in the following, the brackets 〈…〉 denote a 

time average (see ESI for further details). The normalized self-diffusivity 

Dself ≡ limt ∞
MSD(t)
4tD0

 is a dynamical order parameter for the onset of rigidity, which can 

also be identified via a structural order parameter given by the cellular shape index22, 

q = N−1〈∑iPi/ Ai〉. The transition line Dself ≤ 10−3 corresponds to q = 3.813. When v0 = 0, 

the rigidity transition occurs for p0 = p0
∗ = 3.8121. This model also has an additional 

transition at p0 ~ 4.2, which is very close to the shape index for a Voronoi-tesselated uniform 

point pattern (p0 = 4.186), suggesting that above this value cells are effectively non-

interacting and behave like a gas.

We quantify the emergence of flocking by using the Vicsek order parameter φ ≡ N−1 〈|(Σi 

vi/|vi|) |〉, where the angular brackets indicate the average over trajectories. This quantity 

vanishes when cells are moving in random directions and attains a value of 1 when all cells 

coordinate their motion. The susceptibility χφ = 〈(φ(t)−〈φ〉)2〉 exhibits a maximum at the 

flocking transition, which we use to separate flocking from non-flocking states. In the 

following, we study the phase diagram of a system composed by N = 400 cells. In 

estimating finite size effects on the flocking transition, we considered systems of N =100, 

400, 1600, 3200 cells. Dynamical heterogeneities are investigated in larger systems of N = 

4900 cells.
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3 Results

3.1 Alignment promotes a continuous flocking transition in epithelial tissues

As shown in Fig. 1, we find four distinct phases by varying the alignment rate J and the 

target shape index p0: (a) a stationary solid with vanishing Dself, corresponding to the 

absence of cellular rearrangements, and φ = 0; (b) a stationary liquid with finite Dself and 

vanishing mean motion (φ = 0); (c) a novel flocking liquid where cells flow collectively (Deff 

and φ are both finite); and (d) a flocking solid where the tissue migrates as a unit (φ finite), 

while maintaining its rigidity. A phase diagram for the system is shown in Fig. 3-a. The 

solid/liquid transition (red circles) has been determined by examining the MSD that evolves 

from diffusive to saturated with increasing p0 (Fig. 3(b)), resulting in the vanishing of the 

long time diffusivity Dself (see Fig. S3). The line separating the non-flocking from the 

flocking phases (green circles) corresponds to the peak in the susceptibility shown in panel 

(c). The dashed blue line and the black squares are theoretical estimates described below. In 

contrast with particulate Vicsek models with metric interactions43, the onset of collective 

directed motion in our Voronoi model appears to be a continuous phase transition. Strong 

evidence for this is provided by a finite-size scaling analysis of both flocking transitions (see 

Fig. 3(c)) that reveals a power-law scaling of the susceptibility peak χφ
max(L) Lb, with L = N

the linear size of the system and b = 1.0±0.1 (see SI).

3.2 Flocking promotes solidification

Inspection of the phase boundary separating in Fig. 3 the flocking liquid from the flocking 

solid reveals that alignment promotes solidification. This can be understood via a simple 

argument that also provides an estimate for the liquid-solid transition line in the flocking 

region, pc(v0,J). Briefly, as suggested in Ref.22, fluidification can be understood qualitatively 

in terms of an “effective temperature” that allows cells to rearrange by overcoming the 

energy barriers associated with T1 transitions. When cell alignment is faster than rotational 

diffusion (i.e., J ≫ Dr) cells can move coherently without being disrupted by noise, which 

results in a lower effective temperature, and therefore promotes solidification.

To flesh out this argument we first recall that in Ref.21 it was shown that in a static vertex 

model described by the tissue energy of Eq. 1, with v0 = 0, the transition from solid to liquid 

is associated with the vanishing of the mean energy barriers ΔE for T1 transitions and that 

these barriers scale as ΔE ∝ p0
∗ − p0 when the target shape index p0 approaches its critical 

value p0
∗ = 3.813 from the solid side. Following22, we assume that in the SPV model the 

effect of cell motility can be accounted for through a single particle effective temperature 

Teff controlled by the fluctuations in cells positions that allow each cell to locally explore its 

energy landscape. We stress that this effective temperature does not have a thermodynamic 

interpretation, but is simply a useful measure of the role of activity at the single particle 

level. In the absence of cell-cell alignment (J = 0) this argument was used in22 to obtain an 

excellent fit to the liquid-solid transition line at finite v0 using Teff = cv0
2, with c a 

dimensionful fitting parameter. Here we make the argument more precise and generalize it to 

finite J.
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In the gas phase, where both interactions and alignment can be neglected, an exact 

calculation of the mean-square displacement of a single cell yields the identification 

kBTeff
g = v0

2/μDr
44. In the solid, the cells are caged by their neighbors. Considering first J = 0, 

caging can be modeled by assuming that each cell is tethered to a spring of force constant k. 

An exact calculation of the mean square displacement of a tethered motile cell in the 

presence of orientational noise (see SI) yields limt ∞MSD(t) = v0
2/[μk(μk + Dr)]. 

Comparison with the corresponding result for a Brownian particle tethered to a spring, 

limt→∞〈[Δr(t)]2〉th=kBT/k suggests the identification of an effective temperature 

kBTeff
s = v0

2/[μ(μk + Dr)]
45. By assuming that the transition is controlled by the balance of the 

energy barrier and this effective thermal energy, ΔE p0
∗ − pc(v0, J = 0) Teff

s , we obtain a 

critical line for the solid-liquid transition pc(v0, J = 0) = p0
∗ − v0

2/[μ(μk + Dr)], consistent with 

the result of22. As discussed in22 this argument works best at large Dr, where the effect of 

rotational noise resembles that of thermal fluctuations.

A similar argument accounts for the role of alignment. For J ≪ Dr = 0.5, the alignment 

interaction is ineffective and does affect the location of the solid-liquid transition. For large 

J, however, the system is in a solid flocking state, characterized by a finite mean velocity 

v = v(cos ϕ, sin ϕ). We consider again a single cell tethered to a spring of force constant k to 

describe caging by neighbors, but also moving at mean velocity v . Fluctuations about this 

ordered state are mainly transverse to the direction of mean motion. Treating such 

fluctuations as small, the mean square displacement of such a solid flocking cell is given by 

(see ESI for details) limt ∞MSD(t) = v0
2Dr /[μkJ(μk + J(1 − v0/v)]. Assuming v v0, the 

corresponding effective temperature is Teff
f = v0

2Dr /(μ2kJ). Equating again this thermal energy 

to the energy barriers for T1 transition, we obtain an estimate for the transition line between 

solid and liquid flocks as pc(v0, J ≫ Dr) p0
∗ − v0

2Dr /(μ2kJ). This yields the transition from 

flocking solid to flocking liquid as

Jc(v0, p0)
v0

2Dr

μ2k
1

p0
∗ − p0

, (4)

which provides a good fit to the data with k = 0.85±0.03 (dashed blue line in Fig. 3).

3.3 Flocking requires slow structural rearrangements

The line separating the stationary (non-flocking) liquid phase from the flocking liquid phase 

(represented in Fig. 3 as green connected dots) can be estimated by equating the time scale τ 
= J−1, with which a cell aligns its polarization along the migration direction, with τcage, the 

lifetime of the local cages. Deep in the solid, τcage is infinite and structural rearrangements 

are controlled solely by the time scale τr for rotational diffusion. Cells will align with their 

neighbors provided that τ < τr, giving a critical value J flock(p0 ≪ p0
∗) = Dr for the onset of 

flocking in the solid, independent of p0 and in agreement with Fig. 3. As the solid-liquid 
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transition is approached, τcage becomes finite. When J = 0, τcage can be estimated as the time 

over which the mean-square separation of two cells i and j that are in contact at t = t0, 

defined as MSSnn(t) = 〈[ri(t + t0)−rj(t + t0)]2〉, remains constant (see ESI for details). The 

neighbors mean-square separation is shown in Fig. 4(a) for J = 0 and several values of p0 

spanning the liquid-solid transition. In the solid, MSS(t) is constant at all times. Upon 

melting, i.e., for p0 > p0
c(v0, J), MSSnn(t) shows an initial plateau and then starts to grow. The 

resulting inverse lifetime of the cage is shown in Fig. 4(b) as a function of p0. The lifetime 

τcage reaches a constant value for p0 ≳ 4.2, where q ≃ 4.19. As discussed earlier, this is the 

shape index for a random point pattern, and so the cells no longer interact. In this gas regime 

MSSnn still shows an initial plateau at short time that corresponds to the time τfree = a/v0 

taken by a cell of motility v0 to travel freely a distance of the order of its size a A0. We 

then define the true cage lifetime τcage
∗  by correcting the lifetime calculated from the MSSnn 

as τcage
∗ = τcage − τ free.

In the liquid, structural rearrangements can occur via both the relaxation of the local cage on 

time scale τcage
∗  and noisy reorientation on time scales τr. Neighbor exchanges are controlled 

by the faster of the two processes. Flocking will only occur if the alignment rate J is faster 

than the total rate 1/τcage
∗ + 1/τr for neighbor exchanges, giving an estimate for the flocking 

transition in the liquid as J flock(p0) = 1/τcage
∗ + Dr. This prediction yields the black squares in 

Fig. 3 in good agreement with the phase boundary shown in green. Finally, we note that the 

existence of a gas phase also explains the observed vertical asymptote in Jflock(p0): if cells 

are not interacting they cannot align their polarization vectors, no matter how rapidly the 

mutual alignment occurs.

3.4 Flocking impacts on structure and dynamics of the monolayer

When observed in a co-moving frame of reference, the flocking tissue reveals strong 

dynamical and structural anisotropies that provide distinct testable signatures of directed 

collective motion. In what follows we will focus on the properties of flocking liquid state, 

where these effects are particularly evident. However, the impact of self-propulsion and 

alignment on the elastic properties and the vibrational spectrum of the solid represents an 

intriguing open issue that deserves a more detailed investigation in future work.

3.4.1 Structure—The flocking liquid exhibits an anisotropic structure akin to that of two-

dimensional smectics, with rows of cells marching along the direction of mean motion. This 

is evident in the radial distribution function g(r) calculated in a moving frame aligned with 

the instantaneous flocking direction (see ESI for details) that shows strong anisotropy with 

pronounced peaks along the flocking direction (Fig. 5a). Individual cell morphology and 

orientation are also significantly affected by alignment. In the flocking liquid individual cells 

are elongated in the direction perpendicular to that of mean motion. This squashing of 

flocking cells is quantified by measuring the nematic-like parameter P = 2〈cos2(θ∼)〉 − 1, 

where θ
∼

 is the angle between the instantaneous flocking direction and the cell’s major axis 

(see ESI for details). In the stationary liquid P fluctuates around zero, while in the flocking 
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liquid it becomes negative, as shown in Fig. 5b. Such orientational order of cell shape is 

unique to the flocking state and was not observed in models without alignment21.

3.4.2 Dynamics—The structural anisotropy of the flocking liquid is accompanied by 

anisotropy in the dynamics. This is evident in the difference between the MSD along (MSD‖
(t)) and perpendicular (MSD⊥) to the flocking direction (SI, Figs. S4 and supplementary 

movies M1w, M2w, M3w and M4w). We find that at any given time MSD⊥(t) is 

systematically larger MSD‖(t). This difference can be used to quantify the transition to the 

flocking state, as shown in Fig. S5. Additionally, in the flocking liquid we observe 

transverse superdiffusive behavior, as observed previously in particle models46. Finally, the 

anisotropic nature of the flocking state also affects the onset of jamming, as evident in the 

morphology of dynamical heterogeneities shown in Fig. 5 b. For J = 0 (Fig. 5c), the 

collective rearrangements observed when the jammed state is approached form the liquid 

side are isotropic swirls, while for J = 2 they become and anisotropic, taking the shape of 

local flocks (Fig. 5d). We stress that all the displacements are computed in the center of 

mass frame, hence the local flocks are not due to mean motion, but to heterogeneities in the 

local collective dynamics.

These effects can be quantified by studying the spatial correlation of cell displacements, 

which become significantly more long-ranged along the direction of mean motion compared 

to the perpendicular direction as J increases (SI Fig S2). We can also quantify the timescale 

associated with correlated motion by analyzing the angular trajectories, which exhibit 

signatures of dynamical heterogeneities with a characteristic timescale of about t ~ 10 (SI 

text and Fig S7). Since the time scale of angular relaxation is an order of magnitude smaller 

than that of structural relaxation, flocking excitations dominate the displacement statistics.

4 Conclusions

In this work, we describe a minimal model for collective migration in biological tissues. Our 

model treats a confluent cell monolayer as a Voronoi tessellation of the plane and encodes 

mechanical properties of the cells, such as intracellular adhesion, cortical tension, and 

motility. Motivated by experiments at both the tissue and cellular scales, we introduce a 

polar interaction mechanism similar to the one leading to flocking in other active matter 

systems25,42,43 that captures the feedback between local dynamics and cell polarization. By 

tuning the strength of the polar interaction and the preferred perimeter of the cells, we find a 

rich phase diagram with four phases. At low polar interaction strengths, we find standard 

liquid and amorphous solid phases. Increasing polarization alignment leads to the emergence 

of an amorphous flocking solid, and a flocking liquid phase, both exhibiting collective 

directed motion or migration. We are able to understand and predict the location of these 

transitions by extending ideas from statistical physics, such as effective temperature and 

caging timescales, to self-propelled agents.

Remarkably, our phase diagram captures the JUT observed in recent experiments on 

epithelial monolayers, where overexpression of the endocytic protein RAB5A triggers the 

onset of directed collective motion in an otherwise quiescent monolayer and promotes local 

fluidization11. Cell migration patterns in this state are compatible with the flocking liquid 
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state predicted by our model in the regime where both the polar interaction strength and the 

target perimeter p0 are large.

A more quantitative comparison between the experiments and our model is made difficult by 

the challenges posed by the quantification of cell polarization in multicellular sheets. As of 

today, there are no direct measures of how a cell’s polarization changes in response to 

changes in its local environment. An exciting direction for future work is the study of 

subcellular structures or intercellular markers for cell polarization in multicelluar 

monolayers to correlate those with cell shapes and interfacial tensions and test the 

hypothesis that cells polarize according to mechanical forces generated by neighboring cells. 

If so, it may even be possible to extract the time constant J−1 associated with this alignment. 

Moreover, our model predicts that the onset of directed migration impacts on the structural 

organization of the monolayer, leading to anisotropic positional fluctuations and 

rearrangements and inducing the alignment of the elongated cells perpendicularly to the 

migration direction. These predictions could be more likely directly tested experimentally, 

which offers an exciting opportunity for future studies addressing the interplay between 

collective motion and structural properties in confluent tissues47.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Four distinct dynamical phases. Strong alignment interaction yield solid-like (a) and liquid-

like (b) flocking states. For weak polar coupling between cells the system is either in a 

stationary solid (c) or stationary liquid (d) phase. The heat map represents the cosine of the 

angle of the instantaneous velocity field with respect the horizontal axis: a uniform color 

indicates coherent migration in a given direction.
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Fig. 2. 
Schematic representation of the model. (a) Each cell is a polygon obtained by the Voronoi 

tessellation of initially random cell positions ri, characterized by the area Ai and the 

perimeter Pi of the polygon. The cell experiences a force Fi = −∇E due to its neighbors and 

an internal propulsive force fs
i along the direction ni of its polarization (Eq. 2). (b) An active 

orientation mechanism reorients each cell’s propulsive force towards its migration velocity 

over a characteristic response time τ = J−1 (Eq. 3).
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Fig. 3. 
Phase diagram. (a) Different phases in the (p0,J) plane. The solid/liquid transition line (red 

circles) is obtained from the vanishing of Deff and the flocking transition line (green circles) 

corresponds to the peak in the susceptibility χφ. The dashed blue curve is the theoretical 

prediction Jc(v0,p0) given in (4). The black squares (the dashed line is a guide to the eye) are 

the estimate for Jflock(p0) in terms of the numerically calculated cage lifetime τcage at J = 0. 

The vertical dashed black line marks the transition to a gas-like state, observed for p0 ≳ 4.2, 

where flocking cannot occur. (b) The mean square displacement for J = 2.0 for a range of p0 

∈ [3.4,4] across the liquid/solid transition (curves from red to violet). (c) The susceptibility 
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χφ for p0 = 3.1 (blue symbols, solid) and p0 = 3.7 (red symbols, liquid) and sizes N = 100, 

400, 1600, 3200, diamonds, squares, circles, and triangles, respectively.
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Fig. 4. 
Identifying the caging timescale in the absence of alignment. (a) The neighbors mean-square 

separation MSSnn(t) as a function of the the time increment t becomes constant as p0 is 

decreased across the liquid-solid transition, showing the onset of caging. (b) The inverse 

cage lifetime τcage
−1  at J = 0 as a function of p0 calculated as described in the text. The vertical 

line denotes the critical value p0
∗ of the J = 0 rigidity transition, while the horizontal dotted 

line is the asymptotic value τ free
−1  attained by τcage

−1  in the gas phase.
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Fig. 5. 
Structural and dynamical anisotropy of the flocking liquid. (a) Radial distribution function 

g(r‖,r⊥) for a flocking liquid (p0 = 3.5, J = 2), evaluated along (g(0,r⊥), red solid line) and 

perpendicular (g(r‖,0), blue dotted line) the direction of flocking. The inset shows an 

intensity plot of the 2D g(r), with the horizontal axis chosen along the flocking direction. (b) 

Order parameter P (blue squares) as a function of J for p0 = 3.7. In the non-flocking state P = 

0, while at the flocking transition, identified by the peak in the susceptibility χ (orange 

triangles), P becomes negative, indicating a tendency of the cells to elongate in the direction 

normal to that of mean motion. Inset: representative snapshot of a flocking liquid (J = 2, p0 = 

3.7); the small arrows indicate the orientation of the principal axis of each cell and the large 

arrow is in the direction of flocking. (c,d) Maps of the displacements Δri averaged over a 

time τα = 102 for (b) J = 0 and (c) J = 2 in a system of 4900 cells. Ellipses are guides to the 

eye for highlighting the anisotropy of the collective rearrangements in the flocking state. The 

red arrow indicates the average migration direction. (e,f) Spatial correlations C(x‖,0) (red 

triangles) and C(0,x⊥) (blue circles) along axes longitudinal (x‖) and perpendicular (x⊥) to 

the direction of mean motion of a given sample for J = 0 (e) and J = 2 (f), averaged over 102 

samples (see ESI for details).
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