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Abstract

Background—Poor prognosis of pancreatic cancer (PanCa) is associated with lack of an 

effective early diagnostic biomarker. This study elucidates significance of MUC13, as a 

diagnostic/prognostic marker of PanCa.

Methods—MUC13 was assessed in tissues using our in-house generated anti-MUC13 mouse 

monoclonal antibody and analyzed for clinical correlation by immunohistochemistry, 

immunoblotting, RT-PCR, computational and submicron scale mass-density fluctuation analyses, 

ROC and Kaplan Meir curve analyses.

Results—MUC13 expression was detected in 100% pancreatic intraepithelial neoplasia (PanIN) 

lesions (Mean composite score: MCS=5.8; AUC >0.8, P<0.0001), 94.6% of pancreatic ductal 

adenocarcinoma (PDAC) samples (MCS=9.7, P<0.0001) as compared to low expression in tumor 

adjacent tissues (MCS=4, P<0.001) along with faint or no expression in normal pancreatic tissues 

(MCS=0.8; AUC >0.8; P<0.0001). Nuclear MUC13 expression positively correlated with nodal 

metastasis (P<0.05), invasion of cancer to peripheral tissues (P<0.5) and poor patient survival 

(P<0.05; prognostic AUC=0.9). Submicron scale mass density and artificial intelligence based 

algorithm analyses also elucidated association of MUC13 with greater morphological disorder 

(P<0.001) and nuclear MUC13 as strong predictor for cancer aggressiveness and poor patient 

survival.

Conclusion—This study provides significant information regarding MUC13 expression/

subcellular localization in PanCa samples and supporting the use anti-MUC13 MAb for the 

development of PanCa diagnostic/prognostic test.
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INTRODUCTION

By 2030, pancreatic cancer (PanCa) is projected to be the second leading cause of cancer 

related deaths 1. The early diagnosis of PanCa remains a clinical challenge, predominantly 

due the lack of effective diagnostic biomarkers. Therefore, the scientific community is 

making tremendous efforts toward identification of novel early diagnostic markers, as 

existing biomarkers, including CA19-9 have yielded only suboptimal efficacy in early stage 

detection 2.

Recent studies have suggested that high expression of MUC13, a newly identified epithelial 

cell surface mucin, in PanCa and the overexpression of MUC13 in PanCa cells leads to 

enhanced tumorigenic and metastatic phenotypes. These characteristics of PanCa cells are 

mediated by physical interactions between MUC13 and HER2/Neu 3–5. Additionally, 
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MUC13 expression inversely correlates with the expression of the tumor suppressor 

microRNA-145 (miR-145) 5, while the restitution of miR-145 inhibits MUC13 expression 

and pancreatic tumor growth 6. In addition to our previous studies 3–5, the potential role of 

MUC13 in pancreatic pathophysiology has also been recognized by other institutions.

In this study, we have performed a comprehensive investigation of MUC13 expression using 

our newly generated anti-MUC13 monoclonal antibody (Mab) in a large cohort of human 

PanCa tissue samples. The expression pattern and subcellular localization of MUC13 was 

correlated with each patient’s clinical course to determine its diagnostic and/or prognostic 

significance. Based on our previous observations, we hypothesized that MUC13 expression 

could be detected in precursor lesions (i.e. PanIN).

MATERIALS AND METHODS

Human pancreatic cancer tissues

Tissue microarrays (TMAs) were obtained from multiple sources: TMA#Baptist-UTHSC 

(normal pancreatic tissue, tumor-adjacent normal pancreas, PanIN, pancreatic ductal 

adenocarcinoma [PDAC], other PanCa types) was obtained from Baptist Memorial Hospital 

(BMH), Memphis, TN; TMA#PA2012 (PDAC and other control organs) from the University 

of Nebraska Medical Center; TMA#642 (multiple types of invasive PanCa with normal 

pancreas) from Johns Hopkins; OD-CT-DgPan03-001 (PDAC), BIC14011 (PanIN, PanCa), 

PA241b (PDAC with matched normal adjacent tissue [NAT]), T141a (PanCa tissue), HPan-

Ade150CS-01 (PDAC and matched NAT), PA961b (PDAC) and HPan-Ade180Sur-01 

(PDAC with matched NAT) were obtained from US Biomax, Inc. (Derwood, MD, USA). 

Additionally, fresh pancreatic tissue samples were procured from BMH including PanCa 

with matched NAT. The institutional review boards at UTHSC and BMH approved this 

study.

PDAC cell lines and culture conditions

PDAC cells were obtained from ATCC (American Type Culture Collection). We generated 

MUC13 knock-down PDAC (sh-M13), MUC13 vector (sh-V) stable cell lines using HPAF-

II cells; and ectopically expressing MUC13 (M13) and vector (V) stable cell lines using 

Panc-1 cells3. The cells were cultured in DMEM, RPMI or DME/F12 media supplemented 

with 10% fetal bovine serum (FBS) in a humidified atmosphere with 5% CO 2 in air at 

37°C.

RT-PCR for MUC13 mRNA

RNA was extracted from fresh tissues using RNeasy Midi Kit (catalog number 75144, 

Qiagen). The relative expression levels of MUC13 mRNA were assessed by Semi - 

quantitative RT-PCR 8 using sequence-specific primers: MUC13 fwd: 

CCTTCGGTGTGATTATTATGGC, MUC13 rev: GCATCTGGCTGTCTCTGGAG.

Immunoblotting for MUC13 protein

The protein from tumor tissues was isolated as described before 8 and processed for 

immunoblotting as described previously 8, 9.
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Immunohistochemistry for MUC13 expression

MUC13 expression was detected by immunohistochemical staining using a commercially 

available kit (Biocare Medical) as described before 5, 10, 11. Briefly, tissue sections were 

deparaffinized and rehydrated using different grades of alcohol followed by endogenous 

peroxidase quenching. Blocking and incubation with mouse monoclonal MUC13 antibody 

(produced in our lab) 3, 5, 12, 13 was then completed overnight. These antibodies exhibit high 

specificity and an intense reactivity with PDAC tissues in vitro and in vivo (xenograft mice-

data not shown). The sections were then incubated with secondary MACH4 Universal HRP 

mouse polymer (#M4U534H) followed by staining with 3-diaminobenzidine (DAB) 

chromogen (#DB801) and counterstaining with hematoxylin.

Scoring of MUC13 expression in stained pancreatic normal and cancerous tissues

After histochemical labeling, slides were digitally scanned and analyzed for MUC13 

staining at the UTHSC Pathology Department. Blinded to the patient’s history, captured 

images were independently analyzed by three reviewers (N.Z, S.K, and S.C.C) and a 

consensus scoring was deduced as described earlier 14. The intensity of immunoreactivity of 

the MUC13 was graded on a 0 to 4 scale (0 for no staining, 1 for weak immunoreactivity; 2 

for moderate immunoreactivity; 3 for strong immunoreactivity, and 4 for very strong 

immunoreactivity. The percentage of cells positive for MUC13 immunoreactivity within the 

tumor and adjacent normal tissue sections were scored as follows: 0–25% as 1, 26–50% as 

2, 51–75% as 3 and 76–100% as 4. Acellular or stromal tissues were not scored, nor were 

neighboring acinar cells with negligible or no staining. Staining of uninvolved adjacent ducts 

was used to represent MUC13 expression in matched NAT for PDAC cases. The composite 

score (CS) values ranging from 0–16, were calculated by multiplying the value for staining 

intensity (0 – 4) and the percentage of immunoreactive cells (0 – 4) for each individual 

sample. Finally, the mean composite score (MCS) was determined by calculating an average 

of the composite scores of respective samples in each category.

Computational analysis for best feature selection

Computational analysis was utilized to better understand the role of MUC13 in predicting 

cancer aggressiveness and patient survival by defining strong determining features. The 

artificial intelligence techniques like ‘Best Fit’ filter method and the wrapper method of 

‘Genetic Algorithm’ have been extensively described for best feature selection in the 

diagnosis of cancers15–17. Best Fit selects the first best attribute or feature set for further 

consideration whereas the Genetic Algorithm randomly searches every possible attribute or 

feature set with strong features. For evaluation of feature sets, we have additionally used a 

Neural Network classifier or a learner to identify the category or class to which an 

observation or instance belongs18, 19 depending upon the training validation and testing set 

provided to the classifier.

Quantification of spatial submicron scale mass density fluctuations associated with 
MUC13

We also studied the relationship between intracellular nanoscale morphological alterations 

reflected as submicron scale spatial mass-density fluctuation at different levels of MUC13 
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expression in PDAC by investigating the light localization property of cells 4, 20. Using 

confocal DAPI images of nuclei, we generated mass arrays and dielectric arrays in order to 

obtain normal modes of light waves to quantify the degree of the morphological distortion, 

Lmd with respect to the presence or absence of MUC13 staining in different areas within the 

samples or in contrast to the distinct samples as described before 20–22. Lmd stands for local 

mass distortion/variation m and lc for corresponding spatial correlation decay length23. For 

the statistical analysis, we took confocal micrographs of cells and tumor samples (n=20) 

from each type.

Statistical Analysis

The means of two groups were compared using a Students-t test, with P-values <0.05 

considered statistically significant. Box plots were used to analyze data and generated using 

Sigma plot 12.0. For the computational analysis, the Mean Squared Error (MSE) was 

calculated as the average of the squares of the errors or deviations wherein the error is the 

difference between the expected and observed value. For immunostaining, MUC13 

expression, represented by the MCS, was determined for the membrane, cytoplasm, nucleus, 

and overall (overall intensity x overall percentage staining). The MCS was compared among 

groups and the effects of MUC13 expression in conjunction with stage, grade, and long-term 

outcomes were studied. The ability of MUC13 to differentiate PDAC patients from the 

control groups (healthy control: HC and Chronic pancreatitis: CP patients for the initial 

study) was determined by analyzing the area under the curve (AUC; denotes the probability 

that the time-to-event is improved in one arm compared to the other) using ROC curve 

analysis. In multivariate analysis of these variables adjusted for overall (overall intensity x 

overall percentage staining) and MCS Nucleus, Cox Proportional Hazards model was used. 

Results were summarized with hazard ratios and confidence intervals. All analyses were 

done using SAS 9.4 (SAS institute Inc., Cary, NC) 24.

RESULTS

Progressive increase of MUC13 in PanIN lesions

Tissues were immunostained for MUC13, including normal pancreas (n=13), chronic 

pancreatitis (n= 12), early-stage PanIN (n=16; PanIN-1A and PanIN-IB) and late-stage 

PanIN (n=13; PanIN-II and PanIN-III) (Supplementary Table 1). Normal pancreatic ducts 

showed no or very faint MUC13 expression, whereas, all of early (16 of 16) and late-stage 

PanINs (13 of 13) showed low to moderate MUC13 expression (Fig. 1A and Inset-1). 

MUC13 expression was predominantly at the apical side and less at the basal side of the 

epithelial cells in case of PanIN I/II, while, PanIN III samples showed staining all over the 

cell throughout lesions. Overall, MUC13 expression was significantly (p<0.0001) higher in 

PanINs compared to normal pancreatic ductal epithelium (Fig. 1B). Additionally, we 

analyzed changes in the subcellular localization of MUC13 in PanINs and observed a 

progressively increased MUC13 expression in the membrane, cytoplasm and nucleus, during 

the course of progression from PanIN-I to PanIN-III (Fig. 1C and Supplementary Figure 1A 

and B). We evaluated the lesion scores in two ways; Composite score (CS; taking in account 

of each case individually) and MCS (mean composite score) of each type of lesion. While 

assessing diagnostic significance of MUC13 using Receiver Operating Characteristic (ROC) 
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analysis, MUC13 expression effectively differentiated PanINs (n=29) from healthy controls 

(HC; n=13) and chronic pancreatitis (CP; n=12) tissues (AUC: 0.99; and 0.81, respectively) 

(Fig 1D). The sensitivity (SN) and specificity (SP) differentiating PanINs from HC is SN: 

90%, SP: 100% and that from HC and CP is SN: 90%, SP: 59%.

Aberrant expression and subcellular localization of MUC13 in PDAC

To determine involvement of MUC13 in PDAC, we performed MUC13 expression profile 

analysis in different histological PanCa types and normal pancreas. MUC13 expression was 

observed in 94.6% (p- value <0.0001) of PDAC samples (n=225, 95% positive, MCS=9.7; 

Fig. 2A and B) while, morphologically normal appearing tumor adjacent tissues (NAT) 

(n=100) showed faint to moderate staining in the ducts (n=100, 83% positive, MCS=4; Fig. 

2A and B). A low to moderate MUC13 expression (MCS of 4) is observed in NAT, which is 

significantly (P-value<0.001) lower compared to PDAC (MCS of 9.7). Normal pancreatic 

ductal epithelia and acinar cells however, were largely negative for MUC13 expression 

(n=13, 7.6% positive, MCS=0.8; Fig. 2A and B). This data suggested some degree of 

molecular level alterations in NAT that are not morphologically apparent in these tissues. In 

contrast, faint or no staining was observed in adenosquamous carcinoma (n=18, 22% 

positive, MCS=1.2, P=0.001), neuroendocrine carcinoma (n=5, 20% positive, MCS=0.4, 

P=0.001), solid pseudo-papillary carcinoma and carcinoid tumors (n=6, 0% positive, 

MCS=0) (Fig. 2A and B). Completely normal ducts, acini or surrounding non-epithelial 

elements (lymphocytes or stroma) were typically not stained for MUC13 expression. 

Staining scores were recorded based on subcellular localization namely, membranous, 

cytoplasmic, nuclear and total staining and correlated with clinico-pathological parameters 

(Supplementary Table 2). Increased expression of MUC13 was observed only in PDAC 

samples sparing other PanCa types, suggesting its potential involvement in pancreatic ductal 

epithelial pathobiology.

Correlation of MUC13 expression with PDAC differentiation and stage

High MUC13 staining was observed in G2 (moderately differentiated) as compared to G1 

(well differentiated) and G3 (poorly differentiated) (Fig. 2A and supplementary Figure 2A; 

p<0.05) samples. These results suggest progressive expression of MUC13 during PDAC 

from well to moderately differentiated tumors and the expression pattern changed with 

overall lower condensed MUC13 expression in the poorly differentiated tumors.

PDAC samples were further grouped into two categories based on the clinical stage of the 

tumor, early (stage I and II) and late (stage III and IV). The majority of samples in both the 

stages were positive for MUC13 staining with only 4.9 % and 5.3 % negative samples in 

early and late stage cancers, respectively. Although, the MUC13 subcellular localization was 

predominantly observed at M+C+N (membrane+cytoplasm+nucleus) in case of both early 

and late stage cancers, the percentage of cases positive for M+C+N varied and was higher 

(89.4%) in late stage cancers in comparison to early stage (81.6%). Overall, the analysis of 

subcellular localization patterns of MUC13 with respect to the tumor stages indicated 

increased nuclear expression of MUC13 in case of stage II–IV disease when compared to 

Stage I (Fig. 2D and Supplementary Figure 2B; p<0.05 and Supplementary Table 2). 

Supplementary Figure 2C is the representative image showing marked nuclear expression in 
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stage IV. ROC curve analyses revealed that both overall (Fig. 2E) and nuclear (Fig. 2D) 

expression of MUC13 efficiently differentiated healthy controls (HC; n=13) from early stage 

(ESC; n= 182) and late stage cancers (LSC; n=19) (AUC>0.9).

Association of MUC13 expression with clinico-pathological parameters

To establish association of MUC13 with clinico-pathological parameters, patient samples 

were grouped and analyzed for MUC13 positivity based on sex [130 males (96 % positive) 

and 74 females (100 % positive)], age [87 patients with age <60 (94.2 %) and 123 with age 

>60 (95.9 %)], and TNM staging [124 individuals with tumor located to pancreas (95.9 % 

positive) and 85 with extension beyond pancreas (94.1 % positive); 136 individuals (94.1 %) 

with no lymph node involvement (94.1 % positive) and 59 individuals with lymph node 

metastasis (96.6 % positive)]. The incidence of MUC13 positivity significantly correlated 

with advanced stage growth into adjacent organs or metastasis to lymph nodes (N1-N2); 

overall (MCS N0=8.9 Vs N1-N2=10.1; p=0.1), membrane (MCS N0=8.1 Vs N1-N2=9.1; 

p=0.5), Cytoplasm (MCS N0=6.9 Vs N1-N2=8.2; p=0.1) and nucleus (MCS N0=2.0 Vs N1-

N2=3.9; p=0.01). Both the nuclear intensity and its percentage positivity in the tumor were 

higher in cases characterized to have increased nodal metastasis from 1– 4 lymph nodes 

(Fig. 3A, B, Supplementary Figure 4 and Table 3). MUC13 expression was lower in N0 

disease compared with N1 while increased MUC13 staining was found in the nucleus with 

PDAC extending beyond pancreas (T3-T4) (MCS T1-T2=2.1 Vs T3-T4=3.9; p=0.13). These 

studies indicate noticeable differences in subcellular localization of MUC13 and association 

of its aberrant subcellular localization with the clinical disease parameters. Since, nuclear 

expression of MUC13 was considerably higher in T3/T4 or N1 disease (Fig. 3B), it suggests 

the clinical significance of nuclear MUC13 expression in pancreatic tumor invasion and 

metastasis.

To validate MUC13 IHC results, we performed immunoblotting and RT-PCR experiments in 

a cohort of 14 matched fresh-frozen tumor (14 PDAC tumors; PT-I to PT-XIV) and adjacent 

tumor tissue samples (NAT; PN-I to PN-XIV). MUC13 expression was observed in all tumor 

samples (Fig. 3C and D, upper panels) whereas, faint (n=4) or no (n=10) expression was 

detected in NAT samples (Fig. 3C and D, lower panels). We also performed quantitative 

MUC13 expression analysis for its association with the tumor size (cm), which showed a 

positive correlation (R2=0.36) between increased MUC13 expression and the tumor size 

(Fig. 4A). Additionally, we performed genetic algorithm analysis using feature selector 

“best-fit attribute selector” and “classifier Neural Network” (Fig 4Bi and ii) softwares to 

determine association of different MUC13 expression patterns with clinical features. 

Analysis of this dataset was reduced to just 5 strong features namely sex, tumor invasion, 

lymph node involvement, nuclear intensity and nuclear percentage to predict clinical 

outcome/patient survival. On further applying genetic algorithm along with the same 

classifier Neural Network 25, the prediction of survival was more clear and accurate (Fig. 

4Bi–ii and Supplementary Table 4). Our computational analysis suggests that the nuclear 

intensity of MUC13 (NUC INT) was the strongest attribute selected by “best-fit” and 

Genetic algorithm. However, percentage of area positive for MUC13 (NUC %) and its 

overall nuclear expression (NUC MCS) outperforms other attributes for patient survival. Our 

results show that Genetic algorithm along with Neural Network performed better compared 
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to best fit with same classifier to predict patient’s prognosis (Supplementary Figure 5A–C). 

We have also shown the gradual reduction in error for 10 iterations, wherein Prediction Error 

Value is reduced after selecting strong features in each iteration using Genetic Algorithm 

and Neural Network. Further, we observed that overall nuclear expression (NUC MCS); 

attribute 17 with feature count value (FCV) as 10, is the strongest attribute in the feature set 

that can best predict the patient survival (Supplementary Figure 5B and C). Each time a 

feature is used in an iteration, its nuclear FCV increases. So the attribute with highest FCV is 

considered to be the strongest one, which means even less staining in nucleus, can predict 

patient’s poor prognosis. Nuclear MUC13 expression correlated with overall poor patient’s 

survival, nodal status (No-N1), depth of tumor invasion (T3-T4), tumor stage, and tumor 

grade compared with other subcellular localization patterns (Fig. 4C and Inset-1). A unit 

increase in nuclear MUC13 MCS resulted in a 21% (hazard ratio=1.20, 95% CI=1.08, 1.35, 
p=0.0005) increase in mortality. The tumors positive for high MUC13 expression or 

cytoplasm + nucleus also showed a trend toward shorter survival. These results suggest 

prognostic significance of nuclear expression of MUC13 in predicting the survival fate of 

PDAC patients in ROC curve (Fig. 4D; AUC>0.9).

MUC13 expression leads to increased degree of disorder in PDAC

We sought to determine if MUC13 expression has an association with submicron scale 

morphological alterations occurring in PDAC tissues, as described earlier 4, 26. Enhanced 

morphological disorder (Lmd) in MUC13 positive tumors was observed compared to 

negative counterparts (p<0.001) (Fig. 5Ai). The order of morphological disorder was 

significantly higher (p<0.001) in nuclear positive areas, compared to being lowest in only 

membrane positive areas (Fig. 5Aii and iii).

Parallel results were corroborated in PDAC cell lines that endogenously express MUC13 

(HPAF-II and AsPC-1) or are MUC13 null cells (Panc-1 and BxPC-3) (p<0.001) (Fig. 5B). 

Additionally, cells endogenously expressing MUC13 (HPAF-II-sh-V), show conspicuous 

morphological distortion (Lmd), while compared to MUC13 knockdown cells (HPAF-sh-

M13) as depicted by the average IPR values (p<0.001) (Fig. 5C). However, ectopic 

expression of MUC13 in Panc-1 cells (MUC13 null) significantly (p<0.001) increased the 

degree of morphological distortion (Lmd) (Fig. 5D). This unique study suggest that MUC13 

expression is associated with the enhanced mass-density variation, which further explains its 

role in tumor metastasis and aggressiveness 22, 23.

DISCUSSION

The high mortality observed for PanCa is mainly attributable to the often advanced stage of 

disease at diagnosis, thus the development of early diagnostic modalities for this disease 

should be a top priority and these modalities should be specific and sensitive enough to 

detect occult disease and precursor lesions. Our previous studies have suggested that 

MUC13, a recently identified membrane tethered glycoprotein, is highly overexpressed in 

PanCa while nearly undetectable in normal pancreatic tissue 3–5. However, due to the lack of 

availability of highly specific reagents related to MUC13, its utility as a PanCa biomarker 

has not been explored in a comprehensive manner. Considering this fact, our group has 
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recently generated an array of anti-MUC13 MAbs that recognize MUC13 with high 

specificity. In the present study, using these novel reagents, we have established a MUC13 

expression profile in different PanCa types. The results of this study demonstrate a potential 

role for MUC13 as a novel molecular biomarker for PanCa diagnosis/prognosis.

Our results demonstrate MUC13 positivity in PanIN lesions, with a progressive increase in 

expression from PanIN-I to PanIN-III suggesting its critical implications in PanCa 

progression. Undetectable MUC13 expression in normal pancreas; and significantly higher 

MUC13 expression in PDAC (as opposed to other PanCa subytypes), indicates that MUC13 

expression is unique to PDAC and may be a useful marker for early PDAC. The diagnostic 

potential of MUC13 was further elaborated through a ROC analysis which discriminately 

differentiated early pancreatic lesions with controls (HC or BC or CP). We also found an 

increased MUC13 expression from well to moderately differentiated PDAC, although the 

expression declined in poorly differentiated PDAC, which might be the result of acquired 

epigenetic alterations in cancer cells. These epigenetic alterations following repression of 

MUC13 in poorly differentiated tumors are possibly required for successful seeding of 

tumor cells at sites of metastases. These underlying complex processes are a prerequisite to 

the dynamic regulation of the detachment and re-attachment of tumor cells at the metastatic 

site 8. We believe this phenomenon, involves shedding of the bulky proteins from the tumor 

cell surface to interact with and attach to metastatic proteins that aid tumor cells 27.

Staining of MUC13 in PDAC was observed in the cell membrane, cytoplasm as well as in 

the nucleus. Of note, high nuclear expression of MUC13 correlated with poor patient 

survival in PDAC, indicating its prognostic significance. Computational analysis of PDAC 

also confirmed nuclear expression as the strongest predictor of patient survival. Additionally, 

morphological distortion in pancreatic cancer cells and tissues suggested increased degree of 

disorder and aggressiveness with aberrant MUC13 expression (from 

membranous<cytoplasmic<nuclear). These results unequivocally indicate the importance of 

MUC13 expression and provide strong implications of nuclear MUC13 expression in PanCa 

progression. Additionally, cellular and molecular mechanisms that trigger aberrant MUC13 

expression/localization is an interesting area for future research, as it can be helpful for 

developing new therapies to manage MUC13 driven PanCa progression and metastasis. 

Since MUC13 has a SEA domain (a cleavage site), therefore, it is also shed in the 

bloodstream and detected in sera of PanCa patients (Data not shown), efficiently 

discriminating PanCa patients with healthy individuals. Our hope is that this will lead to the 

development of a minimally invasive, cost-effective, and reproducible serum based detection 

system for PDAC. Moreover, our previous studies indicate a direct interaction of MUC13 

with HER2 in PanCa cell lines and tissues 4, it would be exciting to investigate the 

association of MUC13 expression with clinical outcome in HER2+ PDAC.

In conclusion, our recently developed method for using our newly generated MAb may 

prove extremely useful for MUC13 detection in PanCa. While MUC13 expression could be 

used for early diagnosis of PanCa, its aberrant expression/subcellular localization (nuclear) 

is of high prognostic significance. Utilizing radionucleotide labeled MUC13 antibody, our 

aim is to develop a discriminatory, non-invasive imaging tools for identifying dysplasia in 

early PDAC and its precursor lesions. We will also employ a unique technique to probe 
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MUC13 associated nanoscale morphological distortions appearing early at the initiation of 

PDAC. Additionally, we will formulate MUC13 targeted therapeutic strategies for PanCa 

patients. This will include designing of a novel nanoparticle technology for active tumor 

targeting via conjugation with MUC13 specific antibodies/aptamers for enhanced accrual of 

therapeutics at the tumor site. The largely, promising findings of this study are suggestive of 

future multi-center trials to assess the utility of MUC13 as a novel diagnostic/prognostic 

marker in pancreatic cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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NOVELTY AND IMPACT

This study provides an evaluation of MUC13 expression and its subcellular localization 

in human PDAC tissues and its association with the clinical course of the disease 

progression. Our study represents the most extensive expression profiling of MUC13 for 

PDAC to date and supports its clinical development for diagnostic and prognostic 

purposes. Our newly generated anti-MUC13 MAb can be useful for the development of 

novel diagnostic/prognostic test(s).
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Fig. 1. MUC13 is progressively increased in PanINs
(A) Images depicting the expression of MUC13 (brown) in completely normal pancreatic 

tissues, chronic pancreatitis and PanINs I–III. All images are captured at 400X. (B) Bars 

representing composite scores (CS) of overall MUC13 expression; *p-values<0.0001 

compared to completely normal or #p-values<0.5 compared to panIN-I/II (Group means are 

indicated by solid lines); *p-values<0.5 compared to PanIN-I or #p-values<0.5 compared to 

panIN- II. Inset-1: Table showing MCS values for MUC13 expression in PanINs compared 

to normal pancreatic ductal epithelium (P-values <0.0001). (C) Comparative analysis of 

MUC13 expression and localization pattern in completely normal pancreatic tissues, 

adjacent normal, PanINs and PDAC. Mean composite score (MCS) representing subcellular 

localization of MUC13 in tissues; *p-values<0.0001 compared to completely normal, #p-

values<0.5 compared to tumor adjacent normal and @ p-values<0.0001 compared to PanINs. 

Group means are indicated by solid lines. (D) For the diagnostic assessment of MUC13, 

ROC curves were generated examining the ability of MUC13 to differentiate between 

PanINs, healthy pancreas (HC) and chronic pancreatitis (CP).
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Fig. 2. MUC13 expression profile analysis in normal pancreas and different pancreatic cancer 
types and its correlation with PDAC differentiation and stage
(A) Representative images of the tissues stained for MUC13 expression, depicted in color 

brown. (B) Bars representing composite scores of overall MUC13 expression in samples of 

normal pancreas and different histological pancreatic cancer types by IHC using MUC13 

MAb. MUC13 expression was identified in 94.6% (p-value <0.0001) of pancreatic ductal 

adenocarcinomas; *#p-values<0.0001. Group means are indicated by solid lines. (C) Bars 

representing MCS of MUC13 with respect to subcellular localization in membrane, 

cytoplasm and nucleus in PDAC tissue samples; Grade 1 (G1) to Grade 3 (G3); and the 

representative images shown (D). Bars representing MCS of MUC13 with respect to 

subcellular localization in membrane, cytoplasm and nucleus in PDAC samples; stage I to 

stage IV; and the representative images shown. Group means are indicated by solid lines and 

*p-values<0.05. All images are captured at 400X and 40X. Diagnostic assessment of (E) 

overall MUC13 and (F) nuclear MUC13 using ROC curves in healthy controls, resectable 

ESC (Early-stage cancer) and unresectable LSC (Late-stage cancer).
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Fig. 3. MUC13 expression and its association with clinico-pathological parameters
(A) Analysis of nuclear MUC13 expression in PDAC tissues with respect to TNM staging 

(depth of invasion and lymph node metastasis). (B) Representative images are shown. (C and 

D) Immunoblotting and PCR analysis showing the expression of MUC13 in 14 fresh-frozen 

PDAC tissue (Upper panel; PT-I to PT-XIV) and 14 matched adjacent normal (NAT) (Lower 

panel; PN-I to PN-XIV).
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Fig. 4. MUC13 association with tumor size and patient survival prediction
(A) Stratified analysis of MUC13 expression and its association with tumor size in a 

pathologic specimen. Data was analyzed using Image Studio™ Lite and compared to total 

tumor size (cm) in the pathologic specimen. R2 = 0.36998. (B) Computational analysis for 

the selection of a strong attribute for prediction of survival in human pancreatic cancer 

patients. Graph shows the features selected by the algorithms, Genetic Algorithm (i), Best 

Fit (ii) along with the applied classifier Neural Network. (C) Kaplan-Meier survival curves 

compared using log-rank test were constructed to assess the role of subcellular distribution 

of MUC13 relative to patient survival: (i) nucleus, p = 0.006 (ii) cytoplasm, p = 0.74 (iii) 

cytoplasm and nucleus p = 0.84 and (iv) overall MUC13 expression p = 0.21. Inset-1: 

Proportional hazards regression was used for multivariable survival analyses. All P-values 

were computed two sided and defined as statistically significant when <0.05. (D) Prognostic 

ROC curve determining the potential of nuclear MUC13 expression to discriminate survived 

and diseased patients.
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Fig. 5. Nanoscale morphological/architectural changes in human PDAC tissues
(A) Histogram of ≪IPR>Pixel> for number of pixels in pancreatic tumor tissues that are 

MUC13 positive tumors compared to MUC13 negative counterparts (i), tissue areas positive 

for MUC13 membrane staining compared to the areas positive for MUC13 cytoplasmic 

staining (ii) and areas positive for nuclear staining (iii). Original magnification, 400X. 

*p<0.001. (B) Representatives of confocal grey scale images of MUC13 expressing (HPAF-

II and AsPC-1) and MUC13 null (Panc-1 and BxPC-3) pancreatic cancer cell lines (Upper 

panel) and their corresponding IPR images (lower panel; IPR pixel values m=4) (i). 

Ensemble-averaged (n=20) values of ≪IPR(L)>Pixel> versus number of pixels for HPAF-II, 

AsPC-1, Panc-1 and BxPC-3 (*p<0.001) (ii). (C) Representative local Lmd distribution in 

two dimension images derived from the corresponding confocal image slices of nuclei for 

MUC13 expressing (sh-V) and MUC13 knockdown (sh-M13) HPAF-II cells (i). Ensemble-

averaged (n=20) values of ≪IPR(L)>Pixel> versus number of pixels for sh-V and sh-M13 

(*p<0.001) (ii). Histogram of ≪IPR>Pixel> for number of pixels m=4 (*p<0.001) (iii). (D) 

Representative local Lmd distribution in two dimension images derived from the 

corresponding confocal image slices of nuclei for MUC13 null (V) and ectopically 

expressing MUC13 (M13) Panc-1cells (i). Ensemble-averaged (n=20) values of 

≪IPR(L)>Pixel> versus number of pixels for V and M13 (*p<0.001) (ii). Histogram of 

≪IPR>Pixel> for number of pixels m=4 (*p<0.001) (iii).
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