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Abstract

The impact of proteins and peptides on the treatment of various conditions including ocular
diseases over the past few decades has been advanced by substantial breakthroughs in structural
biochemistry, genetic engineering, formulation and delivery approaches. Formulation and delivery
of proteins and peptides, such as monoclonal antibodies, aptamers, recombinant proteins and
peptides to ocular tissues poses significant challenges owing to their large size, poor permeation
and susceptibility to degradation. A wide range of advanced drug delivery systems including
polymeric controlled release systems, cell-based delivery and nanowafers are being exploited to
overcome the challenges of frequent administration to ocular tissues. The next generation systems
integrated with new delivery technologies are anticipated to generate improved efficacy and safety
through the expansion of the therapeutic target space. This review will highlight recent advances in
formulation and delivery strategies of protein and peptide based biopharmaceuticals. We will also
describe the current state of proteins and peptides based ocular therapy and future therapeutic
opportunities.
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1. Introduction and current scenario of ophthalmology

In the past few decades, since the approval of a protein based biopharmaceutical in 1982
(Humulin; recombinant human insulin; Eli Lilly, Indianapolis), the approval rate of protein
and peptide based biopharmaceuticals has grown significantly[1]. Of the top 10
pharmaceutical products by sales in 2014, a majority was biopharmaceuticals including
recombinant therapeutic proteins, peptides, enzymes, monoclonal antibodies and antibody-
drug conjugates. From 1982 to 2014, the total number of licensed biopharmaceutical
products advanced from 13 to 246 in the United States (US) and European Union (EU;
Brussels). The worldwide sales of biopharmaceutical drugs was estimated to be $289 billion
in 2014 and are projected to grow to $445 billion by 2019[2]. Among these, the rapidly
growing monoclonal antibody (mAb) therapeutics market itself has currently resulted in
global sales of over US$50 billion [3]. Likewise with the inception of the anti-vascular
endothelial growth factor (anti-VEGF) aptamer in 2004 (Macugen; Pegatanib sodium; OSI
Pharmaceuticals, New York) and monoclonal antibody in 2006 (Lucentis; Ranibizumab;
Genentech, California), the growth of ophthalmic protein and peptide based
biopharmaceutical drug market has accelerated staggeringly. The global sales of
biopharmaceutical drugs for ophthalmic indications had exceeded $8 billion in 2016 and is
expected to reach $35.7 billion by 2025[4, 5]. A recent survey of ophthalmology market
research revealed biologics and drug delivery systems to be the sectors that are anticipated to
show strong growth in the next five years[6].

In addition to global sales and market, ophthalmology has garnered quite startling
investments in terms of research funding in comparison to other disease areas indicating the
urgent need for advanced therapeutic approaches for the treatment of chronic ocular
diseases[7].
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While over 900 new biopharmaceutical entities are in pipeline, targeting diseases across a
wide range of therapeutic areas, the emergence of biosimilars is anticipated to represent the
biggest shift in biologic approval landscape[8]. The U.S. patents for blockbuster Lucentis®
will be expiring in 2019 and several biosimilar manufacturers are already targeting that
molecule[9]. The current ophthalmic drug delivery technologies are tailored to non-targeted
small molecules/drugs.

Biopharmaceuticals including proteins and peptides have shown great promise as novel
therapeutics in the treatment of ocular diseases. These large molecules offer several
advantages compared to small molecule drugs with respect to high potency, activity, low
unspecific binding, less toxicity, minimization of drug-drug interaction, biological and
chemical diversity [10, 11]. However, these macromolecules also face various challenges
such as physical and chemical degradation, short in vivo half-lives, circulation, and
distribution. Additionally, macromolecules lack efficient and specific delivery to the target
sites. Besides these, clearance by the mononuclear phagocytes (MPS) of the
reticuloendothelial system (RES), risk of immunogenic effect, high molecular weight (MW),
structural complexity, and failure to permeate cell membranes further reduce their
therapeutic efficacy [12]. For these reasons, there is a need to develop novel ophthalmic
biopharmaceutical drugs and delivery systems, ideally targeting these macromolecules to
biologically relevant ocular tissues.

2. Ocular diseases: current and future biologics based treatments

Millions of people worldwide suffer from a wide variety of ocular diseases. A majority of
these pathologies lead to irreversible blindness thereby substantially reducing quality of life.
The number of visually impaired people has escalated to 285 million worldwide currently. In
the United states alone, one million people were legally blind (visual acuity of 20/200 vision
or worse) while 3.2 million suffered from visual impairment and another 8.2 million had
vision problems due to uncorrected refractive error in 2015. The number of these conditions
are projected to double by 2050[13].

Last few decades have witnessed a considerable growth in the understanding of the
pathogenesis and genetics of ocular diseases. Deciphering various compliment pathways,
gene associations and pharmacological interventions for retinal diseases have led to
substantial development of effective therapies[14]. The major ocular diseases that have
significantly impacted vision worldwide include age-related macular degeneration (AMD),
cataracts, diabetic retinopathy (DR), dry eye conditions and glaucoma. The treatment market
for glaucoma had the largest market share in 2013 with product sales (both branded and
generic) exceeding US$ 4.5 billion (£ 2.9 billion) in the United States, Europe and Japan
combined. Age related diseases including cataracts, AMD and diabetic retinopathy are
expected to become more common with aging populations in developed countries[6]. Table
1 lists FDA approved biopharmaceuticals for ocular indications.

2.1. Anti-VEGF agents

The ophthalmology market has grown tremendously over the last 20 years both financially
and technologically. The biological milieu of human eye has attracted several proteins,
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peptides and gene therapy based companies worldwide. Currently, the US Food and Drug
Administration (FDA) has approved proteins and peptides based therapy for various ocular
indications, involving anti-VEGF agents such as pegatanib (Macugen®), ranibizumab
(Lucentis®), aflibercept (Eylea®) that serves as “VEGF trap”, and bevacizumab (Avastin®)
which is used off label. Anti-VEGF therapies block the binding of VEGF signaling peptide
to its receptors, neutralizing VEGF’s downstream effect of promoting growth of leaky blood
vessels from the preexisting ones[20].

Pegatanib, a pegylated anti-VEGF aptamer binds to the major pathological VEGF-A
isoform, VEGF165. VEGF165 is primarily responsible for mediating neovascularization in
the eye. In contrast, ranibizumab and bevacizumab binds to all isoforms of VEGF-A.
Ranibizumab (~48kDa), a monoclonal IgG1 antibody fragment has been reported to exhibit
17-fold higher binding capacity to VEGF receptors (VEGFRS) in comparison to full length
bevacizumab (~149kDa). Aflibercept (~97kDa), unlike other VEGF inhibitors, is a
recombinant fusion protein that acts as a dummy receptor for VEGF, thus effectively
inhibiting the angiogenic response[21]. In addition, it’s ~200 fold higher affinity for VEGF
in comparison to ranibizumab may be attributed to strong binding to VEGF-A, VEGF-B and
PIGF (placental growth factor) and thereby influencing multiple pathways involved in cell
proliferation, migration, extracellular matrix (ECM) degradation as well as pathological
angiogenesis[22—-24]. These protein and peptide based biopharmaceutical agents have
remained relatively effective for the treatment of AMD and related ocular complications for
the last few years. However, many patients do not respond to these treatments and some
develop decreased responsiveness to the treatment itself. In fact repeated intravitreal
injections requires skilled professional execution adding to the treatment cost and serious
side effects including ocular pain, infection, or hemorrhage.

Recently, Vasotide, D(Cys-Leu-Pro-Arg-Cys) (a small cyclic retro-inverted peptidomimetic)
developed by Sidman and his co-authors has demonstrated to uniquely block VEGF from
binding to two different endothelial receptor molecules i.e. VEGF receptor-1 (VEGFR-1)
and neuropilin-1(NRP-1) thus inhibiting retinal angiogenesis. While, VEGFR-1 is known to
bind to VEGF ligands: VEGF-A, VEGF-B, and PIGF; NRP-1 modulates several VEGF
isoforms including PIGF. Vasotide delivery through eye drops or intraperitoneal injection in
three different animal models (a monkey model of human wet AMD, a mouse model of
retinal angiomatous proliferation, and a mouse model of retinopathy of prematurity) have
demonstrated effectiveness by inhibiting retinal angiogenesis. Such potential of Vasotide
peptide in binding two important VEGFRs and at the same time blocking additional
mechanisms holds promise for further translation into safer, less-invasive applications in
retinal disorders (Fig. 4)[25]. Current anti-VEGF therapies are approved for neovascular
(wet) AMD and diabetic macular edema (DME). However, these therapies are often used
off-label for other ocular complications including corneal neovascularization and
neovascular glaucoma. It has to be taken into consideration that such anti-VEGF therapies
are not recommended by FDA to treat diseases such as central serous retinopathy and
polypoidal choroidal vasculopathy where VEGF suppression is not the target. In addition,
long-term or continuous blocking of VEGF may cause retinal atrophy and/or prevent normal
vascular formation, which still remain unanswered.
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2.2. Anti-TNF-a agents

Till date, a number of anti-tumor necrosis factor alpha (TNF-a) agents have been approved
by FDA for the treatment of rheumatoid arthritis, ankylosing spondylitis, and psoriasis
arthritis. Among these, Adalimumab (Humira®), a recombinant human 1gG1 monoclonal
antibody received FDA approval recently (July,2016) for the treatment of non-infectious
intermediate, posterior, and panuveitis[26]. TNF-a plays an important role in the
pathogenesis of inflammatory, edematous, neovascular, and neurodegenerative diseases [27].
In addition, there is increasing evidence of TNF-a involvement in the pathogenesis of
experimental retinal neovascularization, proliferative vitreoretinopathy, and macular edema
[28-30]. Adalimumab specifically binds to TNF-a and prevents its binding to TNF-a
receptors (TNFR) thus blocking inflammatory responses. Fig. 5 depicts effects of anti-TNF-
a agents (Adalimumab & infliximab) in treating retinal degeneration and ocular
inflammation respectively. There are now enough evidences suggesting the important role of
anti-TNF-a therapy in the management of ocular complications specially uveitis[31].
Although, increased risk of serious infections, malignancies and high cost are few
drawbacks of such anti-TNF-a therapies [32], further development in delivery strategies for
TNF-a blockers in treating diseases of the choroid, retina and macula may hold promise in
improving vision and quality of life.

2.3. GLP-1 agonists

Exenatide (Byetta®/Bydureon®), Liraglutide (Victoza®/Saxenda®), albiglutide
(Tanzeum®) and Dulaglutide (Trulicity®) are FDA approved glucagon-like peptide-1
(GLP-1) agonists indicated for the treatment of diabetes mellitus type 2. GLP-1 agonists
bind to the glucagon-like peptide 1 receptor (GLP1R) to activate the adenylyl cyclase
pathway resulting in increased insulin synthesis and release. GLP1R is highly expressed in
pancreatic beta cells and the brain. Retina, being an ontogenetically brain-derived tissue is
anticipated to express GLP1R [35]. Recently, Hernandez and co-authors reported abundant
expression of GLP1R in human and nonketotic diabetes mice retinas. Retinal degeneration
can be treated with systemic administration of liraglutide which was evident from significant
reduction in extracellular glutamate levels and increase in prosurvival signaling pathways
(Fig. 6). In addition, similar neuroprotective effect was demonstrated after topical
administration of native GLP-1 and other GLP-1R agonists without any reduction in blood
glucose levels. Such GLP1R expression and activation may open up new approaches for
preventing or arresting retinal neurodegeneration with GLP-1 agonists in early stages of
diabetic retinopathy [36].

2.4. Next generation protein and peptide based therapies

Significant developments in protein and peptide based therapies have recently led a number
of biologics to enter into clinical trials. For instance, Abicipar pegol (previously
AGN-150998 or MP0112, Molecular partners and Allergan) is a genetically engineered
mimetic antibody derived from designed ankyrin repeat protein (DARPin®) family. Abicipar
is a long-acting mono-DARPIn® that binds to all VEGF-A isoforms with high specificity
and affinity, thus adding to its good molecular stability, tissue penetration and ease of
manufacturing [37]. Abicipar has successfully completed Phase I/11b clinical trials in wet
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AMD and DME and is currently recruiting participants for Phase 3 studies (NCT02462928)
[38]. Brolucizumab (Alcon Laboratories Inc.), a humanized single-chain variable fragment
that binds to all isoforms of VEGF-A with high affinity has completed Phase 11 clinical trials
in wet AMD.

Pegpleranib (Fovista®, Ophthotec) is an anti-platelet-derived growth factor (anti-PDGF)
agent that binds to PDGF-BB and prevents PDGF binding to PDGF- receptors on
pericytes, leading to their death via interruption of cell survival signals [39]. Fovista® is
currently undergoing Phase 3 clinical trials for the treatment of wet AMD (NCT01940887).
Rinucumab (Regeneron), a monoclonal antibody, binds to the PDGF-B receptor, thus
prevents the action of PDGF. Rinucumab is in Phase Il clinical trial and is being employed
in combination with aflibercept in a co-formulated single injection for wet AMD.

Nesvacumab (Regeneron), a monoclonal antibody against angiopoietin-2 (ANG-2) is
currently in a Phase Il clinical trial and is indicated in combination with aflibercept in a co-
formulated single injection for wet AMD. RG7716 (Hoffmann-La Roche), a bispecific
antibody that binds both VEGF A and ANG 2 is in Phase 1l study. It is currently indicated as
combination therapy along with Lucentis® for patients with wet AMD (NCT02484690).

Zimura® (Ophthotec), a chemically synthesized anti-C5 aptamer that inhibits complement
factor 5 (C5), which is the fifth component participating in cellular inflammatory process. It
is in Phase |1 study for geographic atrophy secondary to dry AMD (NCT02686658), and a
combination therapy with Lucentis® has recently completed Phase Ila clinical trials for wet
AMD. HlI-conl (Iconic Pharmaceuticals) is a human fusion immunoprotein consisting of
two human factor VII as the targeting domains fused to IgG Fc as an effector domain. This
chimeric protein binds to tissue factor (TF) with the factor VII component, while the 1gG
component triggers destruction of the neovascular lesion. It is currently undergoing Phase 11
study as a monotherapy and/or in combination with Lucentis®. Opt-302 (Opthea) is another
fusion protein that binds VEGF-C and VEGF-D, blocking their interaction with VEGFR-2
and VEGFR-3. Opt-302 is also in a Phase I/l1A trial for wet AMD. Apart from these, POT-4
(Alcon, Phase 1), Eculizumab (Alexion, Phase I1), LFG316 (Novartis, Phase 11), FCFD4514S
(Genentech, Phase 1), Sonepcizumab (Lpath, Phase 1), Glatiramer acetate (Teva, Phase 11/
I11), RN6G (Pfizer, Phase I1), Daclizumab (Hoffman-La Roche, Phase 1) and Infliximab
(Janssen, Phase 1) are under various stages in clinical trials. Several other protein and
peptide based therapeutics are under development [40]. Table 2. lists some of the proteins
and peptides currently in clinical trials.

3. Proteins and peptides: challenges in ocular delivery

Proteins and peptides, a class of biopharmaceuticals poses significant challenges owing to
their large size, poor permeation and susceptibility to degradation. The intrinsic properties
associated with the complex macromolecular nature of proteins and peptides is often
required for achieving high biological activity. However, such structural complexity also
renders them as one of the most challenging class of therapeutics to be formulated and
delivered. Low stability and short half-lives of peptides and especially protein drugs at
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physiological pH and temperature or during storage leads to loss of activity, thus putting
significant burden on formulation technologies.

3.1. Adverse physicochemical properties of proteins and peptides

3.1.1. Hydrophilicity—Most of the therapeutic proteins and peptides are highly
hydrophilic (log P<0) which hinder their permeability across biological membranes.
Bioavailability of proteins and peptides depends on their ability to cross these membranes.
Poor membrane permeation of macromolecules often embodies added challenge in
development of protein and peptide based drug formulations to intracellular target sites. The
lipophilic nature of biological membranes restrict these macromolecules from spontaneously
entering cells. The absorption of these macromolecules is not governed by simple diffusion
or passive absorption. Rather active transport which involves binding to specific receptor,
pinocytocis or endocytosis are the major mechanisms responsible for absorption [42, 43].
Permeation of hydrophilic molecules is hindered by the tight junctions present in the cornea
and the lipophilic nature of the corneal epithelium [44, 45] whereas hydrophobic molecules
permeate corneal epithelium easily. Additionally, the collagen fibers present in the
hydrophilic stroma may impede penetration of hydrophobic drugs to some extent. Under
certain circumstances, small peptides or even small particles are taken from the extracellular
space into cells by an active transport mechanism known as receptor-mediated endocytosis
[60]. One of the major disadvantages of proteins and peptides entering into the cell via
endocytic pathway is their entrapment into the endosomes and eventually in lysosomes,
where majority of the degradation processes undergoes by the action of lysosomal enzymes.
This leads to only a small fraction of unaffected proteins/peptides appearing in the
cytoplasm. So far, multiple and partially successful attempts have been made to deliver
protein and peptide based biopharmaceuticals directly into the cell cytoplasm bypassing the
endocytic pathway. Mechanical delivery methods like microinjection and electroporation
have been used for decades for cell cytoplasm delivery, but are low-throughput and invasive
and require specialized equipment to physically puncture membranes. The delivery of
biologics via most favored “oral route” is highly challenging due to GI mucosa and
degradative acidic environment. A large fraction of approved and investigational protein and
peptide molecules are administered via parenteral routes (IV, IM or SC), intravitreal and sub
conjunctival injections. However, non-targeted delivery of protein and peptide based
formulations may lead to distribution into normal tissues requiring large quantities of drug
administration, which is often not economical and sometimes complicated owing to non-
specific toxicity.

3.1.2. Large molecular weight—Another major challenge for the delivery of protein and
peptide based drugs is their high molecular weight and poor membrane permeability across
ocular tissues and barriers. Such challenges have promoted highly invasive intravitreal
injection as the primary mode administration for protein and peptide based drugs. The
molecular weights of peptides and proteins are generally > 1000 Da with large hydrogen
bonding donor/ acceptor groups [46]. Such large size of macromolecules limits diffusion and
renders patient compliant topical treatment highly inefficient. The cornea, sclera and retina
have tight junctions that significantly limits diffusion of hydrophilic large molecules [47,
48]. The tight junctional space of conjunctival epithelium is generally wider than cornea, but
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still insufficient for the penetration of these large molecules [5, 49]. The human retina limits
the diffusion of molecules greater than 76 kDa due to the inner and outer plexform layers.
Macromolecules greater than 150 kDa fail to reach the inner retina [47]. Additionally,
choriocapillaries may wash out the molecules that traverse through choroid thus reducing
therapeutic concentrations. The ocular anatomy and tissue barriers are shown in Fig. 7.

3.1.3. Metabolic instability—~Proteins and peptides also suffer from a number of
physical, chemical and biological instability issues due to their complex secondary, tertiary
and quaternary structures. Various physical degradation pathways are involved in the
instability of proteins and peptides including denaturation, adsorption, aggregation and
precipitation. Moreover, conformational transformation of proteins to inactive forms occur
due to pH, temperature, high salt concentration; dissociation of subunit proteins;
complexation of enzymes and cofactors; non-covalent complexation with ions, proteolytic
degradation under the influence of esterases and proteases; chemical modifications by
different compounds (for instance oxidation of SH-groups in sulfhydryl containing enzymes
and Fe (I1) atoms in heme containing proteins; thiol-disulfide exchange and destruction of
labile side-chains of tryptophan and methionine) may also lead to inactivation of various
biologically active protein and peptide based drugs in ocular tissues [11].

In the body, the chemical degradation pathways of peptides and proteins include
deamidation, oxidation and reduction, proteolysis, disulfide exchange and B-elimination
[63]. Any alteration in “active” confirmation may lead to loss of activity and irreversible
aggregation of proteins. Vulnerability towards enzymatic degradation under in vivo
condition results into shorter half-lives even with parenteral administration. Inside the
vitreous humor the half-life of large molecule tends to be in the range of days to weeks [64].
Such short half-lives of proteins require frequent parenteral administrations to maintain
therapeutic levels. Frequent parenteral administrations are not patient compliant and/or well
tolerated and are often associated with complications including cataract, retinal hemorrhage
and detachment [65]. For instance, the average apparent plasma half-life of pegaptanib is 10
days after 3 mg dose whereas ranibizumab remains for 2.88 days in rabbit. Half-life of
bevacizumab is 4.32 days with maximum concentration 162 pug/ml in vitreous cavity [66]. In
AMD, the vitreous elimination of ranizumab is just 9 days and intrinsic systemic elimination
half-life is 2 hours followed by multiple intravitreal injection dose of 0.3-2.0 mg/eye
biweekly or monthly [17].

3.2. Challenges in designing protein and peptide based ocular formulations

The formulation of protein and peptide based biotherapeutics poses unique challenges that
are not often experienced with small molecules. Overcoming the instability of protein and
peptide based agents due to structural properties and environmental factors is one of the key
challenges in the development of formulations. Several agents have been incorporated
including small sugars (e.g. trehalose) and polysaccharides (e.g. dextrans) to enhance the
stability of protein and peptide based biopharmaceuticals [67, 68]. Pluronics and non-ionic
surfactants such as polysorbates at low concentrations are widely applied to decrease protein
and peptide aggregation [69].
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Another major drawback of biopharmaceutical drug formulations is high and variable
viscosity. For topical ophthalmic formulations, corneal contact time is longer with increase
in viscosity of formulations up to 20 centipoise (cP) [70]. However, a further increase in
viscosity leads to reflex tearing and blinking in order to regain the original viscosity of the
lacrimal fluid (1.05-5.97 cP). With a rise in clinical application of monoclonal antibodies,
the need for high protein doses (concentrated formulations) is often crucial. The FDA does
not permit the intravitreal injection of large volumes of drug formulations in patients with
ocular diseases. Such requirements render formulation of protein and peptide based
biopharmaceuticals very difficult as solutions with high protein content are exceedingly
viscous. High viscosity of protein and peptide based biopharmaceuticals also largely affects
the syringeability (time required to complete the injection) as well as the force required to
deliver the solution with appropriate needles (18 mm in length, 27-30G) [10]. Thus,
approaches to achieve lower viscosity formulations with hydrophobic/inorganic salts or
lysine and arginine may be useful.

It is also important for protein and peptide based biopharmaceutical formulations to have the
same pH as the lacrimal fluid to achieve maximum activity. However, proteins and peptides
are often not stable at physiological pH leading to their folding and aggregation.
Additionally, the buffer capacity of such formulations is of equal importance for proper
preservation. Although, the buffering action of the tears is capable of neutralizing the effect
of topically applied biopharmaceutical formulations[71], intraocular hyperosmotic solutions
have been reported to elicit transient desiccation of the anterior chamber tissues while
hypotonic solutions may cause edema leading to corneal clouding[72]. For this reason, pH
of such formulations are compromised and maintained by buffers to achieve maximum
activity and maintain stability[73]. The effect of buffers on tonicity should also be taken into
account considering the permissible limits of osmolarity for ophthalmic formulations (171-
1711 mOsm/kg). Although many of these agents utilized for maintaining the stability and
activity of such protein and peptide based biopharmaceutical formulations have been proven
to be effective, their use requires careful consideration in terms of local toxicity and
potential immunogenicity.

A better understanding of the viscosities of biological solutions, characteristics of nascent
proteins and peptides, dynamics and behavior of protein and peptide based topical and
injectable formulations is crucial. Towards this goal, utilization of chemical chaperones to
inhibit protein misfolding as well as reactivate non-native protein structures[74, 75]; co-
administration of recombinant human hyaluronidase with drug to degrade hyaluronic acid (a
key structural component of tissues) to facilitate protein and peptide delivery may prove to
be useful in addressing the issues poised by formulation challenges[76].

3.2.1. Recombinant human hyaluronidase: penetration enhancer—Hyaluronan
(HA), a unique polyanionic and protein-free polysaccharide is highly expressed in the
vitreous humor and is primarily responsible for increasing viscosity, expanding volume, and
providing structural support to the vitreous body. However, the high viscosity of HA allows
it to act as a molecular sieve, thus preventing the penetration of most biopharmaceutical
formulations. The property of hyaluronidase (Hyal) to catalyze the degradation of HA have
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been exploited for decades to increase the penetration of biopharmaceutical drugs across
ocular tissue barriers [77, 78].

Human Hyal-1(hHyal-1) is one of the five homologous hyaluronidases encoded in the
human genome (Fig. 8A). It is highly expressed in most tissues and cleaves HA substrates of
all sizes in a size-independent manner to tetrasaccharides. The amino acid residues present
in the N-terminal of hHyal-1 exhibit 31% sequence identity with bee venom hyaluronidase
(bvHyal), whose structure has been shown in complex with a HA tetrasaccharide (Figs. 8B
and C). In addition, the EGF domains present in Hyal-1 are thought to mediate protein-
protein interactions often associated with regulation of growth and development [79].
However, with the development of recombinant human hyaluronidase, some of the
significant limitations including immune reactivity with bovine hyaluronidase and lack of
catalytic activity at neutral pH with hHyal-1 have been addressed. Such developments have
led to approval of HYQVIA (Baxter International Inc.), containing immune globulin
infusion 10% (Human) with recombinant human hyaluronidase for adult patients with
primary immunodeficiency. PEGylated recombinant human hyaluronidase are currently
undergoing Phase 111 clinical trials in combination with paclitaxel and gemcitabine for
treating pancreatic ductal adenocarcinoma (NCT02715804). rHuPH20, another purified
form of the recombinant human hyaluronidase has shown promise in elevating
dexamethasone levels in ocular tissues (choroid and retina) and the serum [80]. It is
currently undergoing Phase I clinical trial for multiple myeloma (NCT02519452) [81].
Although inhibiting a key stromal component such as HA might cause some immunogenic
reactions in the body, such potential of recombinant human hyaluronidase in facilitating
drug delivery holds promise in the development of protein and peptide based ocular
formulations.

3.2.2. Chemical chaperones: protein aggregation inhibitor—Protein aggregation
has remained as one of the primary concerns in the formulation of protein and peptide based
biopharmaceuticals for ocular diseases. Previously, several small molecules have been
identified for modifying or inhibiting protein aggregation. A novel strategy developed by
Sanders et al. utilizes chemical chaperones to inhibit protein misfolding by (kinetic)
stabilization and/or inhibit the self-assembly of aggregation-prone sequences of the native
protein structures (Fig. 9A)[75].

In addition, there is growing evidence that several ocular diseases including cataract
compromises the folding of the endogenous proteome by sequestering chaperones and
chaperonins leading to intra-cytoplasmic aggregation of proteins involved in critical cellular
processes [82]. It has been reported that crystallins, constitute 90% of the total proteins in
mature lens and undergoes covalent modifications and/or polymerization (Fig. 9B) causing
destabilization and aggregation of lens proteins. a-Crystallin, a major chaperone system of
mature lens cells recognizes and sequesters misfolded/unfolded conformers, reducing the
accessibility of aggregation prone species [83, 84]. Therefore, the application of chaperones
provides exciting opportunities for modulating protein aggregation in biopharmaceutical
formulations as well as lowering protein aggregate-induced toxicity. Glycerol, 4-
Phenylbutyric Acid Sodium Salt (PBA), Tauroursodeoxcholic acid (TUDCA) and
trimethylamine-N-oxide (TMAQ) have gained wide application as chemical chaperones.
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Apart from these small molecules, endogenous molecular chaperones (e.g. heat shock
proteins, Hsp) and pharmacoperones (e.g. nicotine) are being extensively exploited to
promote folding of specific proteins [85].

4. Types of protein and peptide modifications

Several intraocular delivery techniques including intrastromal, intracameral, suprachoroidal
and intravitreal injections have been explored as possible ways for the delivery of
biopharmaceuticals across ocular barriers. Intravitreal injection is currently the most
commonly used method for delivering proteins and peptides to the back of the eye.
Regardless of the type of injection, most biopharmaceuticals are rapidly cleared from the
ocular tissues through posterior transretinal and anterior aqueous humor elimination
pathways [87]. Consequently frequent and repeated injections are required which impose a
significant treatment burden on the patient, vision care providers, and a cumulative risk of
adverse effects from each subsequent injection [88, 89]. Various strategies have been
developed and summarized to overcome and address such challenges of proteins and
peptides delivery in the next section:

4.1. Chemical modifications

Chemical modification with hydrophilic polymers is a useful strategy to improve the
hydrodynamic diameter of the therapeutic constructs which can reduce clearance and
promote circulating half-life to an attractive range. PEGylation is one such strategy that
involves covalent attachment of a FDA approved polymer, polyethylene glycol (PEG) to a
primary amino (-NH,) or sulfhydryl (-SH) groups of proteins or peptides. PEG chains of
molecular weight ranging from 5-40 kDa have shown to improve biological activity of
therapeutic proteins or peptides and reduce immune responses to a larger extent. Such
developments have led to approval of several pegylated drugs in the market [90, 91].
Alternatives to PEG, the negative charge of sialic acid as well as the glycosaminoglycan HA
and hydroxyl ethyl starch also holds potential in prolonging half-lives of proteins and
peptides and are currently under clinical investigation[92].

4.2. Genetic engineering based modifications

The neonatal Fc receptor (FCRn) is a unique protein encoded by the Fc fragment of 1gG
receptor and transporter (FCGRT) gene in human. It is similar in structure to the major
histocompatibility complex (MHC) class of molecules. FcRn’s exceptional ability to protect
IgG and albumin from catabolism (Fig. 10) has guided development of novel genetic fusion
based biopharmaceuticals. With higher expression of FcRn in various ocular tissues
including corneal epithelium and endothelium, lens epithelium, retinal blood vessel,
conjunctiva lymphatic vessel, nonpigmented ciliary epithelium, ciliary blood vessel, iris
blood vessel, and optic nerve, approaches to exploit FcRn pathway can be extended to
improve circulating time and half-lives of various therapeutic proteins and peptides for
ocular delivery [93, 94]. So far only a few approaches to modulate 1gG- and albumin-FcRn
interactions have been reported. They involve mutations of Fc-domain amino acid residues
in the proximity to the FcRn binding site and engineering the 1gG— and albumin- FcRn
interactions to increase antibody/albumin half-lives [95]. Zalevsky and co-authors
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demonstrated mutations of two amino acid residues in the human IgG1 VEGF antibody
bevacizumab resulted in a ~11-fold improvement in the affinity for human FcRn at pH 6
(Fig. 11) [96]. In addition, bispecific antibodies (bsAbs) co-targeting the PDGF and VEGF
pathways to enhance the treatment of AMD have led to tailoring of antibody-like proteins
for specific needs [97]. However, the immunogenicity, processing and manufacturability of
these bsAbs continue to be a major hurdle for clinical approval. Although, a number of
fusion proteins have been recently approved by FDA for various indications and some are
undergoing clinical trials, none have been approved for ocular indications.

Newer insights on protein and peptide modifications based on medicinal chemistry and
structure-activity studies including use of hydroxyl-PEG as an alternative to widely used
methoxy-PEG, supramolecular PEGylation of macromolecules for higher binding affinity
[98], reversible pegylation to mitigate reduced potency and use of amphiphilic poly(2-
oxazoline) polymers which provides better control of the molecular definition of
biopharmaceuticals may offer improvements in the pharmacokinetics and potency of protein
and peptide based biopharmaceuticals.

5. Routes of protein and peptide delivery to ocular tissues

Challenges to ocular delivery of biopharmaceuticals are noteworthy and considerable
opportunities remain to be optimized for delivery approaches, formulation and processing
conditions for each peptide and protein based therapeutics.

5.1. Systemic delivery

Oral administration and parenteral injections are typical methods employed to achieve
systemic delivery. However, attempts to deliver large hydrophilic protein and peptide based
biopharmaceuticals for ocular indications have seen limited success. The miniature size of
the eye and presence of ocular barriers prevent ample drug partitioning into the eye.
Furthermore, dilution effect of the systemic blood volume, first-pass metabolism by the liver
and clearance by kidney require larger drug doses which can result in high costs, systemic
side-effects and possible toxicity.

The integrity of ocular barriers seems to play a major role in the penetration of
biopharmaceuticals. A study in a clinical set-up showed an increase in visual acuity by 14
letters after treatment with 3 doses of systemic bevacizumab (5mg/kg) in patients with
classic choroidal neovascularization (CNV) probably facilitated by the compromised RPE
layer [99]. Rohrer and co-authors also reported reduced CNV size and preserved retinal
function after intravenous administration of fusion protein CR2-fH (where CR2 is
complement receptor 2 and fH is factor H) indicating CR2-fH accesses the site of CNV by
way of the impaired BRB. CR2-fH plays a critical role in regulating the inflammatory
responses by inhibiting complement activation products in AMD [100, 101]. Although, no
serious ocular or systemic side effects were observed in both the cases, high concentration of
injected drug or fusion proteins should be taken into consideration. Such shortcomings
preclude systemic administration of protein and peptide based biopharmaceuticals for ocular
delivery expensive and rare.
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5.2. Extraocular delivery

5.2.1. Topical delivery—Topical application of ophthalmic drops has been the method of
choice for administering pharmaceutical agents for the treatment of diseases perturbing the
ocular surface and/or the anterior segment including dry eye syndrome, conjunctivitis and
keratitis. This route has been extensively utilized clinically for the treatment of diseases
affecting cornea, conjunctiva, sclera, iris, ciliary body and aqueous humor. However, the
limited lacrimal capacity and constant tear drainage from precorneal area leads to wash out
of a majority of eye drop within few seconds. Additionally, only a few experimental studies
have demonstrated their efficacy for posterior segment diseases. The properties of corneal
barriers allow significant passage of moderately lipophilic small molecules, whereas highly
hydrophilic large molecular weight biopharmaceuticals undergo restricted permeation
generating insufficient concentrations for therapy. Nomoto and co-authors demonstrated the
incompetence of topical bevacizumab to reach therapeutic concentrations in the iris, choroid,
retina and vitreous of rabbits even after aggressive dosing of 1.25mg/0.05mL six times daily
for a week [102]. In another study, topical administration of bevacizumab (10mg/kg, 3 times
for 7 days) in mice did not generate any appreciable concentrations into the healthy corneal
stroma [103]. In a recent study, Moisseiev and group also failed to generate detectable drug
levels in both aqueous and vitreous samples of human eyes after topical administration of
bevacizumab (25mg/mL, four drops with 10 minutes interval) [19]. In contrast, Hernandez
and coworkers provided the first evidence that somatostatin (SST) eye drops reached the
retina not through the cornea but by the trans-scleral route. Such topical administration of
SST prevented retinal neurodegeneration in streptozotocin induced diabetes mellitus (STZ-
DM) rats and opened up new preventive pharmacological strategy targeted to early stages of
DR. [104].

5.2.2. Periocular delivery

5.2.2.1. Subconjunctival delivery: Periocular delivery is frequently achieved through an
injection into the subconjunctival area i.e. space underneath the conjunctiva. An injection
rooted into the bulbar conjunctiva and superficial to the sclera may provide a way to directly
deliver therapeutics into the subconjunctival space. Subconjunctival routes can be used for
sustained delivery since a depot can be formed in the space that can expand and
accommodate up to 500 pL volume. However, drugs injected into the subconjunctival space
are often rapidly cleared via conjunctival blood and lymphatic flow. In addition, pore
diameter and intracellular spaces of scleral fiber matrix regulate drug permeation to a large
extent. Longer in vivo ty, in the iris/ciliary body and retina/ choroid after subconjunctival
injection of bevacizumab relative to intravitreal injection may possibly be attributed to
binding with negatively charged scleral proteoglycans [102]. In another in vivo study, high
bevacizumab concentration was detected in the whole cornea post 24 hours subcutaneous
injection which remained almost unchanged in all layers of stroma over the next 14 days
[103]. Various drug delivery technologies including microparticles/nanoparticles may be
combined with physical techniques such as ultrasound and iontophoresis to achieve
therapeutic concentrations of protein and peptide based biopharmaceuticals following
periocular administration [105, 106].
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5.2.2.2. Sub-tenon delivery: Sub-tenon route is widely utilized for administering
anesthetics during ocular surgery. It involves the injection of drug into a fibrous membrane,
called tenon’s capsule which along with the sclera binds the sub-tenon space. Although upto
4 mL of drug formulation could be injected through this route, administration complications
including pain, chemosis, subconjunctival hemorrhage, retrobulbar and/or orbital
hemorrhage, optic nerve damage, retinal ischemia, orbital swelling and rectus muscle
dysfunction limit its use for the delivery of protein and peptide based biopharmaceuticals
[107, 108]. In patients with clinically significant macular edema, sub-tenon’s injection of
bevacizumab (2.5 mg in 0.1 mm volume) resulted in significant short-term visual
improvement in eyes [109]. Thus, sub-tenon’s injection may serve as an alternative to
intravitreal injection for ocular delivery of biopharmaceuticals.

5.3. Intraocular delivery

Intraocular delivery techniques involve direct delivery of therapeutic agents to the target site
thus reducing the distance traversed by the drug to generate higher local drug concentrations,
reduced off-target effects and bypassing various ocular barriers to improve ocular drug
bioavailability.

5.3.1. Intrastromal delivery—Intrastromal administration entails direct drug delivery
into the corneal stroma to overcome the corneal epithelial barrier along with tear fluid
drainage. The densely packed collagen fibrils and proteoglycans hinder the diffusion of
proteins and peptides inside the corneal stromal structure allowing it to serve as a reservoir
for large hydrophilic biopharmaceuticals. Hashemian and co-authors reported intrastromal
injection of bevacizumab (2.5 mg/1 mL) using a hypodermic needle led to regression of
corneal stromal vascularization in a patient [110]. Recently, in vivo studies by Kim and
group have demonstrated corneal vascular regression after intrastromal administration of
bevacizumab (4.4 pg) with microneedles (MNs) [111]. These studies further confirm
intrastromal delivery as an attractive modality for delivering biopharmaceuticals directly into
the cornea.

5.3.2. Intracameral delivery—Intracameral delivery is intended to place the drug
solution directly into the anterior segment of the eye. Although, intracameral injection has
been extensively explored to improve delivery of biopharmaceuticals to both the anterior as
well as posterior segments of the eye, it has not been possible to achieve therapeutic drug
concentrations in the posterior segment of the eye following intracameral administration.
However, intracameral administration of antibiotic prophylaxis for cataract surgery to
prevent endopthalmitis [112, 113] and antifungal agents for deep corneal infections such as
fungal keratitis [114] is widely used to deliver drugs to the anterior segment of the eye.
Additionally, a combination of intrastromal and intracameral injections has recently shown
to be effective in reducing fungal mass not only in the anterior segment but also in the
corneal stroma where fungal invasion may lead to corneal perforation [115].

Several in vitro and in vivo studies have demonstrated the effectiveness of intracameral
bevacizumab in treating neovascularization with no effects on corneal endothelial cells or
thickness [116-118]. Patients with neovascular glaucoma and iris rubeosis have also

Adv Drug Deliv Rev. Author manuscript; available in PMC 2019 February 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Mandal et al.

Page 15

responded well to the intracameral bevacizumab therapy and did not show any
morphological changes of corneal endothelial cells [119-121]. Intracameral injection of
bevacizumab loaded polymeric delivery systems may sustain drug release into the anterior
segment [122]. However, repeated injections to maintain therapeutic concentrations over
prolonged time period and sparse degradation of polymers may obstruct the aqueous flow,
thereby elevating intraocular pressure and risk of ocular infections.

5.3.3. Intravitreal delivery—Intravitreal injection is the main modality for delivering
biopharmaceuticals to the posterior segment of the eye to date. It is an invasive procedure
that involves injection of a drug solution and/or suspension into the vitreous cavity in the
center of the eye after penetrating through all layers of the ocular globe. The vitreous cavity
can generally accommodate a volume of 20-100puL drug solution/suspension without
resentfully altering the visual axis. However, various common complications including
edopthalmitis, intraocular inflammation, retinal detachment, intraocular pressure elevation or
glaucoma, ocular hemorrhage, floaters and cataract after intravitreal injections may lead to
permanent vision loss if untreated.

Currently most of the biopharmaceuticals including pegatanib sodium, ranibizumab,
aflibercept and bavcizumab indicated for neovascular or wet AMD are given as intravitreal
injections. A comparative pharmacokinetic analysis revealed concentration (Cmax) of
bevacizumab in retina/choroid after an intravitreal injection (1.25 mg/0.05 mL) to be ~317-
fold higher than a subconjunctival injection at 1 week in rabbits [102]. Intravitreal injection
of Avastin® generated significant bevacizumab concentrations in the retina, the retinal
pigment epithelium, the choroid and particularly the photoreceptor outer segments in
cynomolgus monkeys [123]. Although, biopharmaceutical drugs due to their large molecular
weight tend to prevent immediate elimination from the vitreous unlike small molecules, their
vitreous half-lives of just few days to weeks may not be sufficient to achieve long-term
therapeutic effect. Therefore, novel delivery methods and/or long-term controlled release
formulations for protein and peptide based biopharmaceuticals are warranted in order to
significantly reduce complications caused by repeated injections.

5.3.4. Suprachoroidal delivery—It is often overlooked that the tissue site of action for
most of the biopharmaceuticals is not the vitreous but the choroid and retina. Therefore,
delivering drug directly in the target tissues (i.e., choroid and retina) may provide more
effective therapy to chorioretinal diseases. Suprachoroidal injections, that involve the
placement of a drug in the suprachoridal space (SCS), a conceivable space between the
sclera and the choroid holds potential in achieving higher drug levels in target tissues. SCS
can expand to accommaodate a drug suspension or solution up to 1 mL [124]. Previously,
SCS was accessed surgically with a scleral incision and insertion of a long cannula or
hypodermic needle through the SCS. Such surgical interventions often lead to SCS collapse
resulting from dislocation of the chorioretina and elevated hydrostatic pressure in the eye.
Recent advancements in suprachoroidal delivery using MNs, has enabled higher local drug
concentrations in the choroid with minimal side effects and least obstruction of the visual
acuity. Nonetheless, high blood flow in choriocapillaries render the half-lives of small
molecules and biopharmaceuticals in SCS in the order of few minutes to hours. In fact,
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sustained delivery systems (20 nm — 10 pm) are retained in the SCS for longer periods
indicating the suitability of SCS injections [125, 126].

Several studies have demonstrated the effectiveness of suprachoroidal injections for
localized delivery of therapeutics to the choroid-retina region [127]. Although, microcannula
suprachoroidal injections have shown not to sustain the release of bevacizumab as superiorly
as intravitreal injections post one week [128], MNs have demonstrated the potential in
delivering bevacizumab (100 pl) to the SCS without any serious adverse effects as noted in
Phase | clinical trials [129, 130]. Fig. 12 depicts current and emerging routes for protein and
peptide delivery to ocular tissues.

Nonetheless, inflammation which is a common side effect of ocular diseases including
neovascularization significantly affects the integrity of corneal epithelium, choroid and the
RPE layer. Such incompetent barrier function allows protein and peptide based
biopharmaceuticals, that have limited access to the intact eye to gain significant access
through the compromised barriers of inflamed eyes. Several studies to date have shown the
effectiveness of systemic, intravitreal and SCS delivery in compromised tissues and confines
compelling implications for other biological approaches in the treatment of ocular diseases.
Some characteristics of various routes of administration for ocular drug delivery are
provided in Table 4.

6. Novel formulation approaches for ocular delivery of proteins and

peptides

6.1. Biodegradable polymeric micro particles/microspheres

Micro particles or microspheres are generally employed for long-term ocular delivery (1
week or longer) of proteins, peptides and small molecules. The biocompatible polymers
constituting the microspheres generate monomers and other nontoxic byproducts upon
degradation that are safely cleared out from the eye and eventually from the systemic
circulation. Poly(lactic-co-glycolic acid) (PLGA) are the most commonly used polymers
with high encapsulation efficiency, sustained release, biocompatibility and ability to degrade
into toxicologically acceptable products that are cleared out of ocular tissues [131]. Other
potentially constructive materials include polyanhydrides [132] and cyclodextrins [133]. The
protein or peptide release rate is closely related to structural properties of microspheres i.e.
degradation rate of polymer and/or diffusion of the protein or peptide from the microsphere.
In addition, the diffusion rates also depends on the molecular mass of the polymer, protein
and peptide, molar ratio of lactic/glycolic acid, entrapment efficiency, surface charge, size
and porosity. The shape of the particles also influences their behavior to a great extent [134].
Transcleral delivery of PLGA microspheres provided pegatinib sodium over a period of up
to 20 days at the scleral surface [135]. Similarly, intravitreal injection of pegaptanib
microspheres sustained release of pegaptanib over several weeks [136]. Gavini and co-
workers reported appreciable vancomycin concentrations (0.81 mg/ml) from PLGA
micropsheres in the rabbit aqueous humor 180 minutes after topical administration [137].
Such microspheres can be mixed with a fluid carrier in order to achieve better control over
the release and pharmacokinetic profiles of the protein and/or peptide based
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biopharmaceuticals [138]. PLGA microspheres suspended in poly(N-isopropylacrylamide)
injectable thermo-responsive hydrogel have shown to sustain the release of ranibizumab
(0.153 pg/day) and aflibercept (0.065 pg/day) for 196 days after initial burst release of 22.2
+ 2.2 and 13.1 + 0.5 pg respectively [139]. The encapsulation process for proteins and
peptides is more challenging because these macromolecules often lose their structure and
biological activity upon interaction with polymeric materials and biological fluids [140]. For
example, formation of covalent dimer by darbepoetin alfa (Aranesp®; Amgen) in a
microsphere [141] and acylation of octreotide (Sandostatin® LAR depot, Novartis
Pharmaceuticals) in PLGA microspheres [142]. To overcome the challenges of protein/
peptide degradation and burst release, various strategies of hydrophobic ion-pairing (HIP)
complexation, utilization of biocaompatible block-copolymers and on-demand drug release
including pH, thermo, enzyme, light, ultrasound and multi responsive systems have been
developed for ocular delivery [143]. Our laboratory has previously demonstrated the
potential of such strategies including HIP complexation and block polymers in gel based
formulations in sustaining release (~3 months) and minimizing acylation (<7%) of
octreotide from microparticles [142, 144]. Fig. 13 shows an example of on-demand micro
particle based drug release system. Although several microsphere formulations for
ophthalmic indications have reached early stages of clinical trials, but none have yet been
approved for commercialization[145]. It is very challenging to achieve long-term release and
constant therapeutic levels of biopharmaceuticals for more than a week to months in ocular
tissues using polymeric microspheres.

6.2. Biodegradable polymeric nanoparticles/nanospheres

Nanoparticles are generally composed of biodegradable polymers and lipids and include
liposomes, dendrimers, micelles and nanowafers that are actively used as carriers for
targeted delivery of proteins, peptides and small molecules. Likewise micro particles, drug
release from nanoparticles is dependent on the rate of degradation of polymers, molecular
mass and other physicochemical factors. Nanoparticles can be administered via various
routes including topical, periocular, suprachoroidal and intravitreal. However, intravitreal
injection often leads to clouding of the vitreous due to scattering of light by polymeric
particles. While micro particles tend to sink to the lower part of the vitreal cavity attributed
to their higher molecular mass, nanoparticles are more susceptible to cause clouding in the
vitreous. In addition, possible bioactivity loss and low stability of biopharmaceuticals due to
interactions with nanoparticle matrix and extensive nanoencapsulation methods may further
complicate delivery of proteins and peptides based nano formulations.

While there are several examples of nanoparticle-mediated ocular delivery systems for
small-molecules at preclinical and clinical stages, there only few for proteins and peptides
which are at early stages of development. A short fragment of antiangiogenic pigment
epithelium-derived factor (PEDF), was exhibited to be released from PLGA nanospheres
over 40 days in vitro, although 75% of the entrapped PEDF was released in the first 10 days
[147]. The surface charge of the nanoparticles also plays a crucial role in ocular penetration.
One study demonstrated higher diffusion of anionic human serum albumin based
nanoparticles in the vitreous relative to cationic particles [148]. Such negatively charged
nanoparticles may be utilized to deliver positively charged proteins and peptides as
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demonstrated by successful delivery of 1gG using anionic gold nanoparticles to the
photoreceptor cells and the RPE by subretinal injection [149]. Nanoparticle-mediated
expression of natural antiangiogenic factors and pathway regulators offer great therapeutic
potential in neovascular disorders. Plasminogen kringle 5 (K5), an 80-amino-acid proteolytic
fragment of plasminogen loaded into PLGA nanoparticles exhibited reduced CNV areas and
vascular leakage for at least 2 weeks in CNV models suggesting sustained antiangiogenic
properties [150, 151]. Another study aimed to down regulate Wnt signaling and ocular
neovascularization by increasing very low-density lipoprotein receptor extracellular domain
(VLN) expression. A substantial and sustained VLN expression was achieved in cultured
cells and retina for =4 weeks by encapsulating VLN plasmid in PLGA nanoparticles [152,
153]. Development of core-shell nanoparticles for encapsulating both hydrophobic and
hydrophilic cargo [154], PEGylation for prolonging nanoparticle circulation and enhancing
tissue penetration, functionalization for stimuli-responsive targeting (Fig. 14) and delivery of
nanoparticles in biocompatible gels are some of the future strategies for controlled long term
delivery of biotherapeutics. Our laboratory has extensively worked on encapsulating various
proteins and peptides including octreotide, insulin, lysozyme, IgG-Fab, 1gG, bevacizumab
and catalase in a novel patented block copolymer. Our group has demonstrated successful
long-term in vitro release of these macromolecules for several weeks to few months (~12
weeks) after suspending such drug-loaded nanoparticles in thermosensitive gels [155-158].

Nanofiber based systems are also being extensively explored due to their potential in
generating self-assembling peptide nanofibers and peptide amphiphiles (PA). Recently, a
group of researchers have demonstrated significant inhibition of endothelial cell
proliferation and migration and aberrant capillary formation by delivering LPPR peptide that
binds specifically to the VEGF receptor, NRP-1 as nanofibers. Furthermore, subconjunctival
injection of LPPR-PA nanofiber expressively inhibited corneal neovascularization in rat
model (81.3%) compared to bevacizumab (51.2%) on day 14 indicating its effectiveness in
treating angiogenesis-related disorders [159].

6.2.1. Lipid based nanoparticles—Lipid based nanoacarriers including liposomes,
solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been utilized
as a colloidal system for controlled drug delivery. Liposomes are non-covalent aggregates
that present low antigenicity and toxicity. Encapsulation of biopharmaceuticals in liposomes
is commonly achieved through dehydration-rehydration method. Although this method
yields high association efficiency without utilizing organic solvents and sonication, high
developmental cost and particle size instability restricts its wide application. Intravitreal
injection of liposomes encapsulated bevacizumab has been reported to be well tolerated
through 42 days in rabbits and provided 1.5 times higher drug concentrations in the vitreous
for >6 weeks [162]. Annexin A5 associated liposomes were exposed to generate 127 ng/g
and 18 ng/g concentrations of bevacizumab in rat and rabbit eyes respectively after 2 hours
post topical administration [163]. Furthermore, cationic liposomes offer an additional
advantage of greater corneal drug absorption by increasing drug residence time through
ionic interactions as shown by Cortesi et al.[164]. Li and group conjugated peptide
ATWLPPR to immune-nano-liposome (INL) to deliver PEDF as a targeted therapy for CNV.
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PEDF-loaded INLs significantly decreased CNV areas in rat models without binding to
normal choroidal vessels [165].

SLNs are composed of biocompatible and physiological solid lipids and offer various
advantages including avoidance of organic solvents for formulation, improved physical
stability, targetibility, controlled release and easy scale-up. However, low drug-loading,
burst-effect and rapid elimination by mononuclear phagocytic system (MPS) are some of the
drawbacks of SLNs. Chetoni and co-workers demonstrated therapeutic concentrations of an
antibiotic, tobramycin was achieved 3 hours in the retina and vitreous following topical and
parentral SLN administrations [166, 167]. Cyclosporine-A loaded chitosan based SLNs have
shown promising in vitro results with high permeation and biocompatibility in rabbit corneal
endothelial cells [168]. To overcome the limited drug-loading and expulsion during phase
modifications and higher water content of SLN aqueous dispersions, NLCs have been
developed. NLCs are composed of highly disordered solid and liquid lipids and can provide
better drug protection and entrapment efficiency in comparison to SLNs [169, 170]. Both
SLNs and NLCs have shown potential in delivering small molecules to ocular tissues [171—
173]. However, efficiency in delivering protein and peptide based biopharmaceuticals to
ocular tissues has not been fully exploited and requires further investigation. A great deal of
research has been carried out on stimuli-responsive lipid based nanocarriers for various
complications (Fig. 15), and with improved design and technology such stimuli-responsive
systems may become feasible for ocular delivery as well.

Niosomes are self-assembling nanovesicles composed of non-ionic surfactants that behave
exactly like liposomes in vivo [177]. Although development of niosomes is still in its
infancy, its potential pertinence to many therapeutic agents including small molecules,
proteins and peptides can be exploited for various diseases.

6.2.2. Polymeric micelles—Polymeric micelles represent a class of nanocarriers that are
composed of amphiphilic polymers which self-assemble in aqueous media to form organized
supramolecular structures. Micelles have been actively studied as carriers for ocular delivery
of small molecule drugs by our and other laboratories [178]. We have developed a
nanomicellar formulation of cyclosporine which generated corneal concentration of 828.25
ng/g, 1 hour post single topical administration and retina/choroid concentration of 53.7 ng/g
after multiple administration of 0.1% cyclosporine nanomicellar formulation [179]. In
addition, triblock copolymer based positively charged micellar formulation has exhibited to
prolong cyclosporine in vitro release and enhance corneal permeation in C57BL/6 mice
[180]. Indeed, several micellar formulations are currently undergoing clinical trials including
Seciera® (Sun Pharmaceuticals), the formulation developed by our laboratory, which just
completed clinical Phase 111 trial for the treatment of dry eye disease. A similar nanomicellar
formulation of voclosporin, VOS® (Merck Animal Health) is under clinical development for
the treatment of canine dry eye syndrome.

There are fewer examples of micelles for delivering biopharmaceuticals to ocular tissues
which are currently under development [181]. Synthesis and preparation of anti-FIt1
peptide-HA conjugates in the form of micelle, demonstrated to increase stability, residence
time and bioavailability of anti-FIt1 peptide over 2 weeks in retinal neovascularization and
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diabetic retinopathy induced rat model [182, 183]. These anti-FIt1 peptide-HA conjugate
micelles were further employed to encapsulate genistein, an inhibitor of tyrosine-specific
protein kinases as a combination therapy for ocular neovascularization. The micelles
exhibited a sustained release for longer than 24 hours with potent inhibitory effect on
vascular hyperpermeability and corneal neovascularization [184].

New ocular delivery technologies such as utilizing micelles as nano-scale microbubble
precursor which can be converted into microbubble upon heating or ultrasound irradiation
has got tremendous scope for ocular delivery (Fig. 16A). In addition, stimuli-responsive self-
assembled intelligent polymeric vesicles capable of elucidating and biomimicking the
biological activities of the lipid bilayers can offer controllable small-molecule and
biopharmaceutical delivery (Figs. 16B and C).

6.2.3. Dendrimers—Dendrimers constitute branched, layered architectures composed of
synthetic polymers that show promise as nanocarriers in several biomedical applications.
The unique branched topologies of dendrimers confer properties completely different from
linear polymers. Dendrimers can be divided into different generations (G-1, G-2, G-3) based
on the size, number of branches and end groups at the terminal (Fig. 17A). A dendrimer can
be composed of any type of polymer which can determine its solubility, stability and
biological activity. Some of the commonly used dendrimers are based on polyamidoamines,
polyamines, polyamides (polypeptides), poly(aryl ethers), polyesters, carbohydrates and
DNA. Among these, polyamidoamine (PAMAM) based dendrimers are most commonly
used and commercially available. Unlike linear polymers, the multivalent property of
dendrimers provide a means to achieve high concentrations of payloads including small-
molecules, biopharmaceuticals and imaging agents. The molecular weight and surface
charge of dendrimers also play a crucial role in determining tissue accumulation profiles,
drug release rates (from the polymer) and elimination rates. While, high molecular weights
of dendrimers (>~40 kDa) prevent rapid clearance, uncharged or negatively charged surface
limit nonspecific interactions [188]. In addition, numerous end groups offer a way to
precisely control functionality with multiple copies of drugs, chromophores, peptides,
proteins and multivalent ligand density. Such surface modifications can not only strengthen
ligand-receptor binding and improve the targeting of attached components but can also
accelerate dendrimers stimuli-responsive activity [189].

PAMAM dendrimers as drug delivery vehicles for small-molecules have shown improved
biological response, tolerability and lower clearance from ocular surface indicating its utility
as an eye drop formulation [190]. A few studies have also confirmed the delivery of
therapeutic peptides and proteins using different conjugation techniques with dendrimers
(Figs. 17B, C and D) [191-194]. However, targeted delivery of protein and peptide based
biopharmaceuticals with dendrimers for ocular complications has not been reported so far. In
addition, while there are several in vitro efficacy studies demonstrating the effectiveness of
dendrimers as nanocarriers, only a few in vivo efficacy studies exist. Nonetheless, despite
several advantages of dendrimers, multistep syntheses, high preparation costs and
inadequate quality control assays prohibited significant advancement of dendrimers from the
laboratory to the clinic.
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6.2.4. Nanowafers—Nanowafers are tiny transparent circular discs that are composed of
various polymers including poly(vinyl alcohol) (PVA), polyvinylpyrrolidone (PVP),
(hydroxypropyl)methyl cellulose (HPMC), and carboxymethyl cellulose (CMC). These are
generally applied with a fingertip on ocular surface and can withstand constant blinking
without being displaced unlike topical eye drops. Nanowafers consist of arrays of drug-
loaded nanoreservoirs which releases the cargo in a highly controlled manner for a few
hours to several days (Fig. 18). The synergistic action between the polymers and the loaded
drug leads to slow drug release thus enhancing drug residence time and subsequent
absorption into ocular tissues. Importantly, at the end of stipulated drug release time, the
nanowafer dissolves and fades away thus rendering ocular surfaces free of polymers. Yuan
and group for the first time demonstrated the sustained release and enhanced corneal
permeability of doxycycline-loaded PVA nanowafer over 24 hours in mice. The same group
reported the efficacy of such PVA fabricated nanowafer loaded with axitinib for treating
CNV in a murine ocular burn model [196, 197]. This smart platform integrating
nanofabrication as well as drug delivery technologies has been able to establish itself further
by demonstrating sustained delivery of dexamethasone and cysteamine for effective
treatment of dry eye disease and corneal cystinosis respectively [198-200]. These results
provide a strong rationale for their translation and clinical application in biopharmaceuticals
delivery.

6.3. Biodegradable and non-biodegradable polymeric implants

Biodegradable implants can overcome the challenges of particulate systems such as
suspension, reconstitution, quantification and manufacturing complexities. In addition,
higher drug loading due to larger size and smaller surface-to-volume ratio in comparison to
particulate systems, allows prolonged drug release with reduced or minimal burst release.
Utilization of additional materials including PEG400 and blends of block co-polymers and
PLGA have shown to provide prolonged release of protein drugs with reduced initial burst
[172]. Biodegradable implants are capable of sustaining the release from a few days to
several months. The devices are introduced directly in the vitreous or onto the sclera by
minor surgical techniques [201]. Similar to polymeric particulate systems, biodegradable
implants also suffer from poor stability and release rates. Additionally, implantation of such
devices requires skilled professional execution leading to their towering price tags. Ozurdex
(Allergan®) is one such biodegradable PLGA based implant approved by FDA for macular
edema and noninfectious posterior uveitis [202]. The PLGA copolymer matrix releases
loaded dexamethasone (0.7 mg) in the vitreal cavity for a period of 6 months [203]. A
similar formulation has been evaluated for the delivery of brominidine tartrate in clinical
trials (NCT02087085). Surodex (Oculex Pharmaceuticals, Sunnyvale, CA) and Verisome
(Icon Biosciences Inc., Sunnyvale, CA) are a few other biodegradable implants that are
currently undergoing clinical trials [204]. To date no ophthalmic biodegradable implant for
biopharmaceutical drugs has been approved. However, a few biodegradable implants have
demonstrated their potential in preclinical studies. An implant loaded with human
recombinant tissue plasminogen activator (t-PA) has shown to release t-PA at a rate of 0.5
pg/day for 2 weeks in the vitreous [205].
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In contrast, non-biodegradable implants are composed of a core drug reservoir and a semi-
permeable membrane allowing continous drug release for up to several months to years.
While biodegradable implants are more susceptible to burst and non-linear release kinetics,
non-biodegradable implants release drugs following zero-order kinetics. However, non-
biodegradable implants requires to be removed or refilled following drug reservoir depletion.
Several non-biodegradable implants have been clinically approved including Vitrasert®,
Retisert® (Bausch & Lomb, Rochester, NY), lluvien® (Alimera Sciences, Inc, Alpharetta,
GA\) for the delivery of small molecule drugs to the vitreous [206—-208]. However, large size
with the exception lluvien, surgical procedures and complications such as retinal
detachments are a few drawbacks of non-biodegradable implants. Currently,
nonbiodegradable implants for biopharmaceutical drugs have not yet reached the market. An
osmotic pump, implanted in the subcutaneous space and connected to the sclera using a
brain infusion kit has been reported to deliver IgG for 28 days [209]. Ranibizumab port
delivery system (PDS) (Genentech, CA) is another non-biodegradable implant that has
shown promise in delivering therapeutic concentrations of ranibizumab into the vitreous
over an extended period of time and is currently undergoing Phase |1 clinical trials
(NCT02510794). Implants with suitable design, smaller size, minimal surgical procedure,
maintenance of biopharmaceutical stability and prolonged release[210] may serve as an
attractive system for biopharmaceuticals delivery to ocular tissues.

6.4. In situ gelling formulations

In situ-forming gels are low-viscosity polymeric solutions that undergo phase transition to
form a gel following stimulus. Such phase transition can be mediated by changes in
temperature, pH, light and ionic composition. Various in-situ gelling systems including
chitosan, poloxamer, hydroxypropylmethylcellulose and polycaprolactone have exhibited
safe use as ocular depot systems. Topical application of in-situ gelling systems not only aids
in increasing precorneal drug residence time but also offers increased stability and
bioavailability in ocular tissues. Although, injectable solutions of PLGA in N-methyl
pyrollidone and sucrose acetate isobutyrate are known to prolong biopharmaceutical drug
delivery, extremely poor permeability of macromolecules across corneal epithelium may
present a major obstacle. Till now, several injectable in-situ gelling formulations for ocular
delivery of small-molecules have been studied. In fact, such in-situ depot systems are being
developed for biopharmaceuticals delivery as well [211]. An example of light activated in-
situ gelling system that shows promise is the delivery of bevacizumab in the suprachoroidal
space for 60 days in rats [212]. In another study, intravitreal injection of bevacizumab loaded
thermosensitive gel exhibited an extended release profile over 18 days in vitro [213] and
anti-angiogenic effects in 3-D cultures [214]. Polysaccharides cross-linked hydrogels have
shown to sustain bevacizumab release for 3 days with initial burst release for 4 hours [215].
Similarly, Lovett and co-workers demonstrated the ability of silk hydrogels in sustaining
bevacizumab release for 3 months in experiments in vitro as well as in vivo in Dutch-belted
rabbits [216]. Recently, a reverse thermal gelling system based poly(ethylene glycol)-poly-
(serinol hexamethylene urethane) (ESHU) demonstrated sustained release of bevacizumab
over 9 weeks in vivo [217]. The unique gelling properties of such depot systems can be
optimized to achieve long-term release of biopharmaceuticals for several weeks to few
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months. In Table 5, we highlight some of the advantages and limitations of various ocular
delivery systems for biopharmaceuticals.

6.5. Delivery using cell penetrating peptides (CPP)

CPPs have shown great potential to quickly translocate attached molecules through the cell
membranes into mammalian cells both in vitro and in vivo. Such CPP-conjugated
nanocarriers are generally taken up by energy-dependent endocytosis (or macropinocytosis)
after electrostatic interactions [218] and can enhance the delivery of small-molecule drugs
and biopharmaceuticals to ocular tissues. In this regard, 86-mer trans-activating
transcriptional activator (TAT) from HIV-1 has been widely applied to achieve targeted
delivery [219]. However, one of the major obstacles that still remains unresolved is the lack
of selectivity of TAT. To overcome such a short coming, a novel peptide for ocular delivery
(POD, GGG[ARKKAAKA],) has been recently developed that is capable of delivering
protein and peptide based biopharmaceuticals specifically to their target side thus reducing
unwanted side effects. Moreover, POD administered topically has shown to reach the dura of
the optic nerve within 45 minutes indicating its effectiveness in treating optic nerve diseases.
POD also exhibited bacteriostatic activity by reducing bacterial colony number significantly
at lower concentrations [220, 221]. Various CPPs of human proteins are being extensively
exploited to overcome immunogenicity, poor serum stability and toxicity arising from CPP
sequences of non-human origin [222].

Stapled peptides, a class of helical peptides that have recently gained interest focuses on
improving membrane penetration of peptides by incorporating modifications such as a-
methylation and hydrocarbon based macrocyclic bridging features or mutagenesis to
improve hydrophobicity and conformational stabilization of the helix. It has been observed
that both noncovalent and covalent constraints to stabilize long peptide sequences have
resulted in enhanced binding [223]. However, noncovalently constrained constructs are
rapidly proteolyzed and covalently constrained peptides bearing labile cross-links (for
example, disulfides and amides) are also vulnerable to proteolysis [224]. Several studies
have shown peptide constraints through installation of thioether, lactam or triazole cross-
links, or helix promoting non-natural amino acids, have reinforced structure and enhanced
peptide-antibody binding affinity [225-227]. Bird and group performed all-hydrocarbon
cross-link by olefin metathesis of installed non-natural amino acids bearing olefin tethers to
determine the binding of stabilized a-helices of membrane-proximal external region (SAH-
MPER) peptide of gp41 with broadly neutralizing anti-HIV-1 antibodies (4E10 and 10ES8).
The modified SAH-MPER exhibited high-binding affinity towards 4E10 and 10E8 and
markedly enhanced protease resistance (Fig. 19) [228]. Such modulations of stapled peptides
to enhance protein-protein interactions have been successfully employed in cancer treatment
as well. This has led the entry of a stapled peptide, ALRN-5281 (growth-hormone-releasing
hormone agonist, Aileron Therapeutics) into clinical trials [229]. Applications of stapled
peptides in the context of ocular delivery have not been explored so far. This strategy may
prove to be promising for the treatment of ocular complications [230].
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6.6. Delivery using living cells

Biomedical applications of cell based drug delivery systems have opened up new
perspectives of using our own cells for therapeutic purposes. Such application in improving
pharmacokinetic profiles or generating sustained release depots have progressed to clinical
evaluations. Encapsulated cell technology (ECT) is one such advancement which utilizes
entrapment of genetically modified cells within a semipermeable membrane in order to
isolate them from host body. The genetically engineered cells are designed in such a way
that allow continuous production of therapeutic proteins. The semipermeable membrane
apart from protecting the encapsulated cells, allows passage of nutrients into the cells, while
providing sustained release of therapeutic proteins from the implant. NT-501 (Renexus,
Neurotech Pharmaceuticals), which aims to protect the retina from degeneration by
producing ciliary neurotrophic factor (CNTF), provides sustained delivery of CNTF from
the implant encapsulating genetically engineered human retinal pigment epithelial (RPE)
cells [232]. A similar ECT, NT-503 has been developed that secretes soluble VEGF receptor
protein (Fc-Fusion protein) for a prolonged period of time and has showed significantly
higher (20-30 fold higher) VEGF neutralization [233, 234]. ECT seems to be an attractive
modality and a better control over the release rate may prove to be exciting in achieving
long-term ocular delivery of biopharmaceuticals. Some of the controlled-release systems
under investigation for protein and peptide therapeutics indicated for ocular complications
are detailed in Table 6.

6.7. Delivery using minimally invasive microneedles and iontophoresis

Microneedles (MNs) as evident from some of the previous examples, have gained wide
application due to their potential in circumventing epithelial transport barrier and
conjunctival clearance mechanism, and at the same time minimizing retinal damage. Ocular
MNs are primarily based on passive [249] and active [125, 250, 251] delivery approaches.
Passive MNs typically consist of arrays of solid MNs coated with drug formulations that are
intended to dissolve within minutes of insertion, followed shortly by removal of the device.
Such simplified nature of passive MNs render them more advantageous for routine clinical
use and commercial feasibility. Microneedle pens developed by Song and group have
demonstrated to inhibit corneal neovascularization by delivering sunitinib malate in vivo
[249]. Nevertheless, the limited drug loading capacity of such devices may constrain their
potential for clinical translation. Aimi and coworkers have made an effort to address this
limitation by designing titanium-based MNs (Ti MNs) through titanium deep reactive ion
etching (Ti DRIE) process. The unique through-thickness fenestrations (i.e. windows) of Ti
MNs acts as drug reservoirs and allows increase drug carrying capacity relative to solid MNs
[252]. The same group reported a uniform drug deposition and fenestration filling
techniques that increased drug carrying capacity of fenestrated Ti MNs five-fold relative to
solid MNs of comparable size. Such fenestrated MNs along with micro- or nanoparticle-
entrained coatings may hold potential for demonstrating sustained biologics delivery as well
and thus reduced treatment frequency. Fig. 20 illustrates scanning and fluorescence
micrographs of different types MNSs.

lontophoresis has been exploited for many years as a non-invasive technique for ocular drug
delivery. Although a series of small molecules including ciprofloxacin hydrochloride (ocular
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infection)[254], gentamicin (pseudomonas keratitis) [255], dexamethasone phosphate [256],
methylprednisolone (posterior segment inflammation) [257], carboplatin (retinoblastoma)
[258], and methotrexate (inflammatory diseases and intraocular lymphoma) [259] have been
delivered successfully, ocular delivery of proteins and peptides using this technique have
been rarely explored. A better understanding of electric current application in ocular tissues
and advanced designing of devices and probes adapted to the application site may yield
efficient intra-ocular penetration of proteins and peptides based therapeutics as well [260].
Zhang and coworkers have recently developed one such flexible ocular iontophoretic device
that can be placed under the eyelid and deliver ions through a small area on the eyeball,
reducing tissue damage caused by drug during ion penetration [261].

7. Conclusion

Despite the major hurdles in ocular delivery of proteins and peptides, technological
breakthroughs in formulation, delivery approaches and manufacturing methods have
facilitated the growth and improvement in the biopharmaceutical market. Some of the work
with the delivery of biopharmaceutical drugs have shown encouraging results. However,
many needs remain unmet for the delivery of relatively smaller biologics, and greater
challenges keep arising for developing formulations for larger biopharmaceutical drugs.
Current biopharmaceuticals suffer from poor intracellular delivery leading to low ocular
bioavailability, reduced stability (including storage, handling and administration),
incompetent formulation development strategies and scalability and high manufacturing
costs. Developing new biomaterials for effective protection of proteins and peptides and
improving intracellular delivery by identifying target-site specific receptors will significantly
improve biopharmaceutical delivery.

Another area for future progress is the development of novel formulation and delivery
approaches for biopharmaceutical drugs. While extraocular delivery strategies including
tropical eye drops and periocular injections have exhibited poor bioavailability and limited
targeting, intraocular strategies such as intracameral and intravitreal injections are highly
invasive. Efforts should be made to reduce the frequency of intraocular administration (e.g.
novel controlled release formulations) and develop new methods or devices (e.g. through
non-parenteral routes) that are non-invasive in nature. Expansion of therapeutic target space
that are not accessible by the routinely used biologics or small-molecules can pave the way
to unexplored therapeutic opportunities. Future research should focus on non-invasive
controlled intraocular delivery of highly stable formulations of proteins and peptides.
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Fig. 1.
Numbers of Phase 3 products by technology type for ophthalmic indications (Till Nov.,

2015): MIGS (minimally invasive glaucoma surgery); NCE (New chemical entity)
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Number of companies classified by technology as well as global areas for ophthalmology
market: This analysis does not include multinational companies, as these entities cannot be
defined by a single technology and any one country. Note that the classification “Europe”

excludes Scotland to avoid double counting.
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Fig. 4.
(A) Effect of intraperitoneally injected therapeutic Vasotide peptide on the vasculature and

tuft formation in 19 days old (P19) normal and oxygen-induced retinopathy (OIR) mice in
comparison to PBS and control D(CAPAC) peptide; (B) Quantitation of tuft areas in wild-
type (WT) mice given treatment groups as eye drops; (C) Cryostat sections of vascular tufts
extending from the retina into the vitreous with I1B4-stained vessels in red and DAPI (4’ ,6-
diamidino-2-phenylindole) counterstained nuclei in blue at P19. Pathological tuft formation
is shown above the dashed lines, and reduced vessel formation within the inner retina is
shown below the dashed lines; (D) Paraffin sections showing tuft formation above dashed
lines and retinal layers below dashed lines; (E) Diagram of the vasculature in different
regions of the retina; (F) Quantitation of percent blood vessel area at 4-mm intervals
summed through the full retina on a relative scale; (G) 6-min fluorescein angiograms for
monkeys treated with eye drops at 29 days after laser-induced photocoagulation; (H) OCT
images from monkeys given eye drops at 29 days after the laser-induced lesion. Yellow
arrows indicate CNV complex boundaries; (1) H&E-stained monkey retinas at low (upper
row) and high (lower row) magnifications showing eosin red—stained vacuolated fibroblast
layer outside of the choroid in the upper row. Red boxes indicate macular region; dashed
ovals indicate the RPE and ROS zones 29 days after laser-induced lesioning; (J) Diagram
showing vascular differences in the retinas of WT mice and vidIr-null (KO)mice treated with
treatment groups. NFL, nerve fiber layer; GCL, the ganglion cell layer; IPL, the inner
plexiform layer; INL, the inner nuclear layer, OPL, the outer plexiform layer; ONL, outer
nuclear layer; ROS, rod (and cone) outer segments; RPE, the retinal pigment epithelium;
CV, choroidal vessels. Reprinted from [25].
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Fig. 5.
(A) Photomicrographs of retinal sections showing significant reduction in photoreceptor cell

death in the murine model of human autosomal recessive retinitis pigmentosa, the rd10 mice
at postnatal day (P) 18 after Adalimumab (ADA) treatment in comparison to control
(C57BI6) (TUNEL-stained sections revealing dead photoreceptors and PAR content in
DAPI-counterstained sections); (B) Bar graph illustrating the effect of ADA on the number
of TUNEL-positive nuclei and nuclear poly (ADP) ribose (PAR)-positive cells; (C)
Photomicrographs of retinal sections showing reactive gliosis amelioration by ADA in the
rd10 mouse retina at P18 (Ibal-labelling to visualize microglial cells and GFAP content in
DAPI-counterstained sections); (D) Bar graphs illustrating the effect of ADA on migration
index of microglia, the corrected fluorescence of GFAP content and TNFa gene expression;
(E) Topical endoscopic fundal imaging (TEFI) images showing intravitreal administration of
infliximab suppresses experimental autoimmune uveitis (EAU) in comparison to vehicle
control; (F) combined total disease scores demonstrating the difference in clinical disease
progression between treatment groups. In EAU control eyes typical disease progression with
signs of raised optic disc, vasculitis and severe inflammation; In infliximab treated eyes,
only raised optic disc and initial signs of vasculitis are evident; (G) Graph showing total
CD45+ infiltrate numbers from individual eyes. Reprinted from [33, 34].
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Fig. 6.
Immunofluorescence images from a diabetic mouse (D) after topical administration of

GLP-1R agonist, liraglutide (D-lira eye drop) in comparison to vehicle (D-Sham) and a non-
diabetic mouse (control, C; db/+). D-lira prevented disruption of the BRB and thus release of
VEGF (red) (A), IL-1b (green) (B) and albumin (red) (C), most important players in the
pathogenesis of the breakdown of the BRB; (D) Western blotting quantification of proteins
from apoptotic (caspase 8, Bax, p53), antiapoptotic (BclxL) and neuroinflammatory (iNOS,
FasL) signaling pathways; (E) Retinal concentration of glutamate measured by high-
performance liquid chromatography after subcutaneous administration of treatment groups;
(F) Comparison of glutamate/aspartate transporter (GLAST) immunofluorescence (red) after
topical administration of treatment groups; (G) Quantification of GLAST
immunofluorescence in arbitrary units (A.U.). Reprinted from [36].
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Fig. 7.
Ocular anatomy and tissue barriers. Reprinted and modified from [50].

Adv Drug Deliv Rev. Author manuscript; available in PMC 2019 February 15.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Mandal et al.

Page 48

>
> >
‘> 58 C bvHyal-based

HyalEGF-like model of Hl:
domain tetramer

domain

HyalEGF-like
domain

Fig. 8.
(A) Structure of hHyal-1: Stereoscopic representation of a side view. The catalytic and the

HyalEGF-like domains are colored light blue and yellow respectively. Disulfide bonds are
shown in red. N-linked oligosaccharides are shown as stick models with the atomic color
scheme: gray, carbon; red, oxygen; blue, nitrogen; (B) Stereoscopic representation of the
active site region of hHyal-1 (gray ribbon) superimposed on that of bvHyal (yellow ribbon).
Selected amino acids are colored in the atomic color scheme: red, oxygen; blue, nitrogen;
gray (hHyal-1) and yellow (bvHyal), carbon. (C) Molecular surface of the catalytic domain
(light blue) and HyalEGF-like (yellow) domains of hHyal-1, illustrating the separation
between the HyalEGF-like domain and the active site. A docked tetrasaccharide, inferred
from the structure of bvHyal, is shown as a space filling model. Reprinted from [79].
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Fig. 9.
(A) Functioning of a chemical chaperone: B-lactamase function is restored when aggregation

of the target protein is inhibited. This can occur either through stabilization of the native
structure (left) or through inhibition of the process of amyloid self-assembly (right).
Reprinted from [86]. (B) Schematic summary of human yD-crystallin (a member of
crystallin families) polymerization. (i) Crystal structure of human yD-crystallin. (ii)
Simulated monomeric aggregation precursor (12), often referred as N* in the general
mechanism of protein aggregation in literature. (iii) Simulated structure of open-ended
domain-swapped dimer. (iv) Simulated structure of close-ended domain-swapped dimer. (v)
Model of human -yD-crystallin hexamer formed via domain swapping. Reprinted from [84].

Adv Drug Deliv Rev. Author manuscript; available in PMC 2019 February 15.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Mandal et al.

FcRn

}a\é . P
o

Lysosome \ ’ Recycling

Pinocytosis

« Endosome

Fig. 10.

Transcytosis '

Page 50

Structure of human FcRn in contact with human IgG1 (hlgG1) and human serum albumin
(HAS) and FcRn-mediated recycling of IgG and albumin in vascular endothelial cells; 1gG
and albumin are internalized into vascular endothelial cells through pinocytosis. The pH of
the endosome is 6.0, facilitating association with membrane-bound FcRn. The contents of
endosomes can be processed in one of two ways: either recycling back to the apical cell
membrane or transcytosis from the apical to the basolateral side. In the case of saturated
receptors, excess 1gG and albumin are degraded by lysosomes. Top, apical side; bottom,

basolateral side. Reprinted and modified from [95].
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Fig. 11.
(A) The log of the equilibrium association constant KA at pH 6.0 are plotted for various

engineered anti-VEGF (bevacizumab) variants demonstrating increased binding to human
FcRn in contrast to parent bevacizumab native 1gG1 antibody; (B) Binding sensorgrams at
pH 6.0 and 7.4 of each variant; Log-linear changes in serum concentrations for anti-VEGF
(bevacizumab) and anti-EGFR antibodies in cynomolgus monkeys (C) and hFcRn transgenic
mice (D) demonstrating antibodies engineered for higher FcRn affinity (Xtend-VEGF and
Xtend-EGFR) promotes half-life extension. Reprinted from [96].
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Fig. 12.

Current and emerging routes for protein and peptide delivery to ocular tissues. Reprinted and
modified from [50].
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Page 53

(iii)

release of microparticles
from the microtubes

S~

Schematic of capture and release of microparticles by self-rolling microtubes. Thin film of
poly(N-isopropylacrylamide-co-4-acryloylbenzophenone)(poly(NIPAM-ABP)) and
polycaprolactone (PCL) with admixed magnetic nanoparticles (i) is able to form self-rolling
tube and to encapsulate microparticles at reduced temperature (ii). The particle can be
released at elevated temperature when the microtube is unrolled (iii). Reprinted from [146].
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Fig. 14.
(A) Actuation mechanisms based on the heat generated by an alternating magnetic field

(AMF) leading to on-demand pulsatile small molecule release from mesoporous silica
nanoparticles (MSNPs): Pseudorotaxane-based nanovalves made of cucurbit[6]uril.
Reprinted from [160]; (B) Light-triggered small molecule delivery: Drug delivery through
the near-infrared-triggered induction of dehybridization of the DNA conjugated at the
surface of gold nanorods. Reprinted from [161].
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Fig. 15.
(A) Light-triggered drug delivery: Schematic representation of transcription—translation

liposomal system for protein production triggered by irradiating caged DNA with light.
Reprinted from [174]; (B) Temperature-based actuation mechanisms for liposomal drug
delivery: The temperature-triggered unfolding of a leucine zipper peptide inserted in the
membrane of a doxorubicin (Dox)-carrying liposome opens a channel through which the
drug is released. Reprinted from [175]; (C) Drug-permeable pores can also be created by the
temperature-triggered generation of bubbles from the decomposition of encapsulated
ammonium bicarbonate. Reprinted from [176].
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(A) Drug delivery from echogenic perfluorocarbon (PFC)-containing nanoemulsions: The
delivery mechanism involves a droplet-to-bubble transition under the action of ultrasound,
leading to drug transfer from the bubbles to neighbouring cells. Reprinted from [185]; (B)
\oltage-responsive vesicles: Structures of polystyrene-g-cyclodextrin (PS-B-CD) and
poly(ethylene oxide)-ferrocene (PEO-Fc), and representation of the voltage-responsive
controlled assembly and disassembly of PS-B-CD-PEO-Fc supramolecular vesicles.
Reprinted from [186]; (C) pH-sensitive nanocarriers for efficient TAT-peptide exposure:
Polyhistidine (PHis)-based micelles responding to acidic microenvironments by an efficient
TAT-sequence exposure following ionization of the polyhistidine segments. Reprinted from
[187].
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Fig. 17.
(A) Anatomy of a dendrimer: A dendrimer and dendron are represented with solid lines. The

colored, broken lines identify the various key regions of the dendrimer. Reprinted from
[188]; (B) Generation 4 PAMAM-OH dendrimer. (C) Internally quaternized PAMAM to
form QPAMAM-OH dendrimer with inner cationic charges. PAMAM are frequently
quaternized by methyl iodide (ICH3) and the terminal surface become very positive allowing
the efficient electrostatic binding/loading of negatively charged backbone of siRNA. (D)
QPAMAM with different surface modifications, including the addition of acetyl group by
direct reaction with acetic anhydride (Ac20), poly(ethylene glycol) (PEG) and poly-L-lysine
(PLL), LHRH peptide. This addition of polymer structures such as PEG and PLL is reported
to enhance the surface positive charge and circulation of PAMAM nanoparticles. While, the
conjugation to LHRH peptides confers targeting ability in PAMAM based delivery
applications. Reprinted from [195].
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Fig. 18.
Ocular drug delivery nanowafer: (A) Schematic of nanowafer instilled on the cornea. (B)

Diffusion of drug molecules into the corneal tissue. (C) Nanowafer on a fingertip. (D) AFM
image of a nanowafer demonstrating an array of 500 nm diameter nanoreservoirs. (E)
Fluorescence micrograph of a nanowafer filled with doxycycline (scale bar 5 um). Reprinted
from [196].
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(A) Chemical optimization of i, i + 3 hydrocarbon stapling: Top, design and synthesis of

SAH-MPER(671-683KKK)(q), in which the N-terminal S5 residue was replaced with R3 to
lead to efficient i, i + 3 olefin metathesis under standard reaction conditions. (B) Crystal
structure of SAH-MPER(671-683KKK)(q) (shown as a blue ribbon and gray transparent
van der Waals surface) bound to 4E10 Fab, at 2.9-A resolution. (C) 2Fo—Fc electron density
map (1o level) of the antibody-bound SAH-MPER(671-683KKK)(q) peptide. (D)
Superposition of the native (green; PDB 2FX7)18 and i, i + 3-stapled (gray) MPER(671-
683KKK) peptides, highlighting the similarity of antibody-bound structures, aside from the
appended C-terminal lysines and the incorporated staple. Z and X represent R3 and S5,
respectively, in the staple (red bar above sequence). Reprinted from [231].
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Fig. 20.
(A) Hollow microneedle (arrow), 720 um in length, is shown next to a liquid drop of

approximately 50-uL volume from a conventional eye dropper; Scanning electron
micrographs of a representative fenestrated TiIMN with 200 um width, 50pm thickness, and
1500um length: (B) Low magnification image showing the full needle, as well as a portion
of its base; (C) Higher magnification image showing the needle tip and fenestrations;
(D)Size comparison between a fenestrated TIMN and a conventional 26 gauge hypodermic
needle typically used for intravitreal injection; (E) Buckled MN demonstrating graceful,
plasticity-based failure mode after mechanical testing; (F) Fluorescence micrographs of
PVP/Rhodamine B coated solid and fenestrated TiMNs. Reprinted from [253].
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Table 4

Characteristics of various routes of administration for ocular drug delivery

ROUTES NOTES
TOPICAL
Drug entry pathways Corneal, conjunctival, and scleral pathways.

Delivery barriers

Membrane barriers and elimination pathways on the eye surface, cornea, BRB, and tight junctions.

Elimination pathway

Tear wash out; nasolacrimal drainage; choroid, conjunctiva blood flow; lacrimation and blinking.

Advantages

High patient compliance; less systemic side effects; relatively easy and safe to administer.

Limitations

Small retention time of drug or dosage forms; blurring of vision; irritation; precorneal drug losses;
drainage through the nasolacrimal duct; low bioavailability; limited volume of administration (approx. 30
uL); fast clearance from ocular surface; metabolism by tear enzymes; nonproductive uptake into systemic
circulation via highly vascularized conjunctiva, choroid, uveal tract and inner retina; aqueous humor
outflow gradient.

Approaches for improvement in
therapeutic efficacy

Bioadhesive formulations may reduce precorneal clearance and increase corneal surface contact time.
Positive charge of formulations may enhance the contact time with cornea to interact with negatively
charged mucosa. Nanowafers approach may be beneficial for long-term and sustained drug release.

SYSTEMIC

Drug entry pathways

Choroid and conjunctiva

Delivery barriers

Choroid and BRB (selectively permeable to highly lipophilic molecules).

Elimination pathway

Hepatic clearance; conjunctival and choroid capillaries and phagocytic clearance.

Advantages

Better patient compliance relative to intraocular injection.

Disadvantages

Low bioavailability due to the BRB, hence higher doses required which may produce systemic side
effects.

Approaches for improvement in
therapeutic efficacy

Large molecules and/or hydrophilic drugs are able to penetrate the choroid from the systemic circulation,
but are unable to cross the inner BRB into the retina. Therefore, drugs must exit the choroidal circulation
and permeate the outer BRB.

INTRAVITREAL

Drug entry pathways

Directly to the vitreous chamber

Delivery barriers

Diffusion through the vitreous chamber, neural retina, and BRB.

Elimination pathway

Movement through aqueous chamber and retina; dynamic clearance mechanisms, such as anterior bulk
aqueous flow or posterior vitreoretinal-choroidal flow, and elimination from the site of deposition.

Advantages

Local and direct delivery; high therapeutic concentration; no barrier to reach macula.

Disadvantages

It is necessary to administer the drug frequently to maintain adequate intraocular concentrations; frequent
injections have been associated with adverse events especially retinal detachment, cataract, vitreous
hemorrhage and endophthalmitis; linked to degeneration of PRs and cataracts and increase in IOP; only
about 50-100 pl is administrable in human via intravitreal; high cost of administration of drugs (anti-
VEGF).

Approaches for improvement in
therapeutic efficacy

Extended drug release formulation for longer duration and/or drug modifications including specific
properties such as size, charge, and lipophilicity; also need stimuli-responsive approach for drug release.

PERIOCULAR

Drug entry pathways

Trans-scleral pathway to effectively deliver drugs next to the choroid.

Delivery barriers

Scleral thickness, choroidal blood circulation and BRBs.

Elimination pathway

Conjunctival and choroidal blood and lymphatic flow; losses from the periocular space, BRB, and
choroidal circulation; drug binding to tissue proteins.

Advantages

Less invasive; high therapeutic drug levels; possible repetitive periocular administration under local
anesthesia without direct interference with the vision.

High volumes of drug solution can be administered in human and can bypass the BRB without
intraocular penetration.
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ROUTES

NOTES

Disadvantages

Rapid drug clearance; systemic side effects; tissue hemorrhage; and low retinal bioavailability compared
to intravitreal injections; the injected drug still has to traverse the sclera, which is less permeable to larger
molecules.

The drugs have to pass through several layers including the episclera, sclera, choroid, BM, and RPE-
while overcoming choroid circulatory clearance; the delivery is not as effective as intraocular injections
in targeting retinal tissue.

Approaches for improvement in
therapeutic efficacy

Improvements to formulations that either increase residence time or promote diffusion from the middle
coat may be effective in overcoming the barriers to periocular delivery; nano-size formulations may
provide superior diffusion; charge of formulations determines the interaction or diffusion process.

SUPRACHOROIDAL (SC)

Drug entry pathways

Flow across the sclera is quick along the inner surface of the eye and subsequently into the posterior
chamber.

Delivery barriers

Choroid and basement membrane.

Elimination pathway

High blood flow in the chorio-capillaries can wash away therapeutic molecules deposited in the SC
space.

Advantages

Preferred site for drug delivery to the posterior tissues such as choroid, RPE and macula, due to its non-
interference with the optical pathways and improved diffusional access to the choroid; this allows larger
volumes of drugs with minimally invasive procedure; SC space can accommodate up to 1 ml of fluid,
which rapidly diffuses into the posterior segment; injections of 10-50 L into the SC space have been
demonstrated to be well tolerated with lower risks for ocular complications.

Disadvantages

Injection of a drug solution into the SC space can result in rapid drug diffusion to cover the entire SC
surface which may potentially induce drug-related toxicities of the surrounding tissues; rapid clearance of
macromolecules occurs following suprachoroidal administration; postoperative inflammation and
choroidal hemorrhage remain a concern and needs to be overcome while injecting into the SC space.

Approaches for improvement in
therapeutic efficacy

Diffusion kinetics from the SC space could be optimized using sustained release formulations such as
nano and microparticles; drug delivery systems that can provide controlled and continuous drug release
are likely to minimize side-effects; such controlled devices might help overcome rapid fluctuation of the
dosed drugs from conventional injectable solutions into the SC space and hence reduce toxicity to the
surrounding tissues; MNs appear to offer a viable option for delivery of drugs to the back of the eye,
especially when delivered through the SC route; these needles help to deposit drug or carrier system into
sclera or into the SCS which may facilitate diffusion of drug into deeper ocular tissues, choroid and
neural retina.
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A summary of advantages and limitations of various ocular delivery systems for protein and peptide based

biopharmaceuticals

DELIVERY SYSTEMS

ADVANTAGES

LIMITATIONS

Micro and Nanoparticles

Controlled and long-term drug release is
possible using various routes of
administration

Small size allows enhanced permeation
into various organs

Greater flexibility for surface modification
ligand molecules

High adjuvancy for vaccine

Encapsulation and delivery of various
drugs on one nanocarrier

Adjustable physicochemical properties
(size, shape, surface functionality)

Higher possibility of stimuli sensitive
delivery

Targeted delivery system

Burst release of drug can produce
potential toxicity

Non-specific uptake by RES system
and phagocytic clearance

Challenges include biocompatibility,
toxicity, safety, stability, and
immunotoxicity

Polymers have strong influence on
drug release and stability

Various factors (size, shape, surface
properties of carriers) affect release
behavior, stability and targeting
efficiency

Scale-up of nanoformulations
development

Small size and large surface area may
lead to particle aggregation

Non-uniformity of particle size
distribution

Polymers hydrophobicity and acidic
microenvironment created by polymer
degradation leads to protein
denaturation/aggregation

Chemical reactions between
macromolecules and polymers

Liposomes

Versatility of surface chemical
modification and specific targeting

Entrapment of hydrophilic and
hydrophobic drugs to aqueous and lipid
phases, respectively

Can provide a sustained and controlled
release

Drug release can be controlled, depending
on the bilayer number and composition

Possibility of stimuli sensitive delivery
system

Higher biocompatibility and non-
immunogenicity

Instability in biological media
Phagocytic uptake and clearance

Process of preparation of liposomes
has stability issues on
macromolecules

Manufacturing cost, scale up, batch-
to-batch reproducibility

Production of sterile liposomes is
expensive which reduces their
applicability

Interactions of phospholipids with
protein drugs

Heterogeneous particle size
distribution

Solid lipid nanocarriers

Large scale and effective production

Small size, large surface area and high
drug loading

Improved drug stability

Avoidance of organic solvents in the
preparation can minimize stability
problems of macromolecules

Potential of carrying both lipophilic and
hydrophilic drugs

Complexity of the physical state of
the lipid

Phagocytic uptake and clearance

Lipid particle growth, and tendency to
gelation

Sometimes low drug loading capacity
due to formation of lipid crystal
matrix
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DELIVERY SYSTEMS

ADVANTAGES

LIMITATIONS

Excellent biocompatibility

Dendrimers . Can be tailored by manipulating the Complexity of formulation methods
structure/composition or number of . o .
surface functional groups Toxicological issues are major
limitations of dendrimers in clinical
. Thermodynamically stable system application
. Uniform size distribution Core of structure is difficult to access
X as the complexity of the system
. Drug molecules can be loaded both in the increases with multiple generation
interior as well as attached to the surface structures
groups
. High transfection efficiency not only due
to their well-defined shape, but may also
be caused by the amine functionality
Hydrogels . The porous nature of hydrogels can be High water content and soft nature of
finely tuned to allow better drug loading hydrogels typically results in
o . relatively rapid release of proteins
. Pharmacokinetic properties for release of from the gel matrix
the loaded therapeutic molecule can be
easily adjusted to the requirements of an Burst release, low mechanical
individual molecule strength, and short durability
. Biocompatible because of their high water Protein damage due to encapsulation
content and soft nature . . i
Stability of hydrogels is poor in most
. Unlike other delivery systems, organic cases and represents a major
solvents and protein denaturation limitation
processes are not used in hydrogel .
preparation procedures. This is beneficial The low tensile strength of many
in preserving protein stability, as very hydrogels limits their use in load-
mild conditions (aqueous environment, bearing applications and can result in
room temperature) are generally used the premature dissolution or flow
away of the hydrogel from a targeted
. Proteins have a limited mobility or are local site
immobilized in the hydrogel network, i i
which is favorable for preservation of their The quantity and homogeneity of drug
fragile 3D structure Ipac_ilng into _hydroge_ls may be
limited, particularly in the case of
. Hydrogel’s soft and hydrophilic nature hydrophobic drugs
and mild preparation methods are well- X
suited to improve efficacy, reduce dosing Sometimes, hydrogels are not
interval, and provide a more convenient sufficiently deformable to be
dosage route for large and labile proteins injectable, necessitating surgical
implantation
. Stimuli sensitive hydrogel delivery is . o
feasible Each of the above issues significantly
restricts the practical use of hydrogel-
based drug delivery therapies in the
clinic
Micelles . High diversity of polymers Toxicity and immunogenicity concern

Suitable for topical and intravitreal
administration

Easy and reproducible formulation
process

Ease of sterilization by simple filtration
process for safe administration

High biocompatibility, biodegradability,
and the multiplicity of functional groups

Possibilities of different polymer block
arrangements based on the requirements

The hydrophobic core serves as a
solubilization depot for drugs with poor
aqueous solubility

Lack of suitable formulation methods
for scale-up

Formulation instability

Low cellular uptake and tissue
accumulation

Self-assembled polymeric micelles are
not stable and may dissociate upon
dilution.

Potential use in gene delivery is small
and not well evaluated

Instability in the physiological
environment

Micelles are liable to dissociate,
especially upon administration when
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DELIVERY SYSTEMS  ADVANTAGES

LIMITATIONS

The hydrophilic shell limits opsonin
adsorption, which contributes towards a
longer blood circulation time

The small size of polymeric micelles
contributes towards longer blood
circulation time by evading scavenging by
the MPS system in the liver and bypassing
the filtration of inter-endothelial cells in
the spleen

Longer circulation time leads to improved
accumulation at tissue sites with vascular
abnormalities

they are diluted to a concentration
below the CMC.

Limitations in entrapping hydrophilic
small as well as macromolecule drugs.

Composite formulations .
(nanocarriers- in-gel)

Minimizes the burst effect (dose dumping)
of nanoformulations which may result in
severe dose related toxicity

Exhibit nearly zero order release for
longer period of time with no or minimal
burst effect

This novel system provides stable
environment for macromolecules against
catalytic enzyme.

Nanocarriers can be suspended in the
gel at the time of delivery only
otherwise drug will be released from
the nanocarriers and accumulate in the
gel which could give burst effect.
Therefore, this novel approach
requires dual chamber mixing device

Storage at cool temperature needed
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