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Abstract

Objective—The aim of this review was to summarize major topics in artificial intelligence (AI), 

including their applications and limitations in surgery. This paper reviews the key capabilities of 

AI to help surgeons understand and critically evaluate new AI applications and to contribute to 

new developments.

Summary Background Data—AI is composed of various subfields that each provide potential 

solutions to clinical problems. Each of the core subfields of AI reviewed in this piece have also 

been used in other industries such as the autonomous car, social networks, and deep learning 

computers.

Methods—A review of AI papers across computer science, statistics, and medical sources was 

conducted to identify key concepts and techniques within AI that are driving innovation across 

industries, including surgery. Limitations and challenges of working with AI were also reviewed.

Results—Four main subfields of AI were defined: 1) machine learning, 2) artificial neural 

networks, 3) natural language processing, and 4) computer vision. Their current and future 

applications to surgical practice were introduced, including big data analytics and clinical decision 

support systems. The implications of AI for surgeons and the role of surgeons in advancing the 

technology to optimize clinical effectiveness were discussed.

Conclusions—Surgeons are well-positioned to help integrate AI into modern practice. Surgeons 

should partner with data scientists to capture data across phases of care and to provide clinical 

context, for AI has the potential to revolutionize the way surgery is taught and practiced with the 

promise of a future optimized for the highest quality patient care.

Introduction

Artificial intelligence (AI) can be loosely defined as the study of algorithms that give 

machines the ability to reason and perform cognitive functions such as problem solving, 

object and word recognition, and decision-making.1 Previously thought to be science fiction, 

AI has increasingly become the topic of both popular and academic literature as years of 

research have finally built to thresholds of knowledge that have rapidly generated practical 
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applications, such as International Business Machine’s (Armonk, NY, USA) Watson and 

Tesla’s (Palo Alto, CA, USA) autopilot.2

Stories of man-versus-machine, such as that of John Henry working to death to outperform 

the steam-powered hammer3, demonstrate how machines have long been feared yet 

ultimately both accepted and eagerly anticipated. Society proceeded to integrate simple 

machines into human workflow, and the resulting Industrial Revolution yielded a massive 

shift in productivity and quality of life. Similarly, AI has inspired awe and struck fear in 

people who now face a technology that can not only outperform but also potentially out-

think its creators.

With the Information Age, a shift in workflow and productivity similar to that of the 

Industrial Revolution has begun; and surgery stands to gain from the current explosion of 

information technology. However, as with many emerging technologies, the true promise of 

AI can be lost in its hype.4

It is, therefore, important for surgeons to have a foundation of knowledge of AI to 

understand how it may impact healthcare and to consider ways in which they may interact 

with this technology. This review provides an introduction to AI by highlighting four core 

subfields – 1) machine learning, 2) natural language processing, 3) artificial neural networks, 

4) computer vision – their limitations, and future implications for surgeons.

Subfields in AI

AI’s roots are found across multiple fields, including robotics, philosophy, psychology, 

linguistics, and statistics.5 Major advances in computer science, such as improvements in 

processing speed and power, have functioned as a catalyst to allow for the base technologies 

required for the advent of AI. The growing popularity of AI across many different industries 

has attracted venture capital investment up to $5 billion in 2016 alone.6 Much of the current 

attention on AI has focused on the four core subfields introduced below.

Machine Learning

Machine learning (ML) enables machines to learn and make predictions by recognizing 

patterns. Traditional computer programs are explicitly programmed with a desired behavior 

(e.g. when the user clicks an icon, a new program opens). ML allows a computer to utilize 

partial labelling of the data (supervised learning) or the structure detected in the data itself 

(unsupervised learning) to explain or make predictions about the data without explicit 

programming (Figure 1). Supervised learning is useful for training a ML algorithm to 

predict a known result or outcome while unsupervised learning is useful in searching for 

patterns within data.7

A third category within machine learning is reinforcement learning, where a program 

attempts to accomplish a task (e.g. driving a car, inferring medical decisions) while learning 

from its own successes and mistakes.8 One can conceptualize reinforcement learning as the 

computer science equivalent of operant conditioning9 and is useful for automated tuning of 
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predictions or actions, such as controlling an artificial pancreas system to fine tune the 

measurement and delivery of insulin to diabetic patients.10

ML is particularly useful for identifying subtle patterns in large datasets – patterns that may 

be imperceptible to humans performing manual analyses – by employing techniques that 

allow for more indirect and complex non-linear relationships and multivariate effects than 

conventional statistical analysis.11,12 ML has outperformed logistic regression for prediction 

of surgical site infections (SSI) by building non-linear models that incorporate multiple data 

sources, including diagnoses, treatments, and laboratory values.13

Furthermore, multiple algorithms working together (ensemble ML) can be used to calculate 

predictions at accuracy levels thought to be unattainable with conventional statistics.14 For 

example, by analyzing patterns of diagnostic and therapeutic data (including surgical 

resection) in the Surveillance, Epidemiology and End Results (SEER) cancer registry and 

comparing data to Medicare claims, ensemble ML with random forests, neural networks, 

and lasso regression was able to predict patient lung cancer staging by using International 

Classification of Diseases (ICD)-9 claims data alone with 93% sensitivity, 92% specificity, 

and 93% accuracy, outperforming a decision tree approach based on clinical guidelines 

alone (53% sensitivity, 89% specificity, 72% accuracy).15

Natural Language Processing

Natural language processing (NLP) is a subfield that emphasizes building a computer’s 

ability to understand human language and is crucial for large scale analyses of content such 

as electronic medical record (EMR) data, especially physicians’ narrative documentation. To 

achieve human-level understanding of language, successful NLP systems must expand 

beyond simple word recognition to incorporate semantics and syntax into their analyses.16

Rather than relying on codified classifications such as ICD codes, NLP enables machines to 

infer meaning and sentiment from unstructured data (e.g. prose written in the history of 

present illness or in a physician’s assessment and plan). NLP allows clinicians to write more 

naturally rather than having to input specific text sequences or select from menus to allow a 

computer to recognize the data. NLP has been utilized for large scale database analysis of 

the EMR to detect adverse events and postoperative complications from physician 

documentation17, 18, and many EMR systems now incorporate NLP – for example, to 

achieve automated claims coding – into their underlying software architecture to improve 

workflow or billing.19

In surgical patients, NLP has been used to automatically comb through EMRs to identify 

words and phrases in operative reports and progress notes that predicted anastomotic leak 

after colorectal resections. Many of its predictions reflected simple clinical knowledge that a 

surgeon would have (e.g. operation type and difficulty), but the algorithm was also able to 

adjust predictive weights of phrases describing patients (e.g. irritated, tired) relative to the 

postoperative day to achieve predictions of leak with a sensitivity of 100% and specificity of 

72%.20 The ability of algorithms to self-correct can increase the utility of their predictions as 

datasets grow to become more representative of a patient population.
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Artificial Neural Networks

Artificial neural networks, a subfield of ML, are inspired by biological nervous systems and 

have become of paramount importance in many AI applications. Neural networks process 

signals in layers of simple computational units (neurons); connections between neurons are 

then parameterized via weights that change as the network learns different input-output 

maps corresponding to tasks such as pattern/image recognition and data classification 

(Figure 2).7 Deep learning networks are neural networks comprised of many layers and are 

able to learn more complex and subtle patterns than simple one or two-layer neural 

networks.21

Clinically, ANNs have significantly outperformed more traditional risk prediction 

approaches. For example, an ANN’s sensitivity (89%) and specificity (96%) outperformed 

APACHE II sensitivity (80%) and specificity (85%) for prediction of pancreatitis severity six 

hours after admission.22 By using clinical variables such as patient history, medications, 

blood pressure, and length of stay, ANNs, in combination with other ML approaches, have 

yielded predictions of in-hospital mortality after open abdominal aortic aneurysm repair with 

sensitivity of 87%, specificity of 96.1%, and accuracy of 95.4%.23

Computer Vision

Computer vision describes machine understanding of images and videos, and significant 

advances have resulted in machines achieving human-level capabilities in areas such as 

object and scene recognition.24 Important healthcare-related work in computer vision 

includes image acquisition and interpretation in axial imaging with applications including 

computer-aided diagnosis, image-guided surgery, and virtual colonoscopy.25 Initially 

influenced by statistical signal processing, the field has recently shifted significantly towards 

more data-intensive ML approaches, such as neural networks,26 with adaptation into new 

applications.

Utilizing ML approaches, current work in computer vision is focusing on higher level 

concepts such as image-based analysis of patient cohorts, longitudinal studies, and inference 

of more subtle conditions such as decision-making in surgery. For example, real-time 

analysis of laparoscopic video has yielded 92.8% accuracy in automated identification of the 

steps of a sleeve gastrectomy and noted missing or unexpected steps.27 With one minute of 

high-definition surgical video estimated to contain 25 times the amount of data found in a 

high-resolution computed tomography image28, video could contain a wealth of actionable 

data.29, 30 Thus, while predictive video analysis is in its infancy, such work provides proof-

of-concept that AI can be leveraged to process massive amounts of surgical data to identify 

or predict adverse events in real-time for intraoperative clinical decision support (Figure 3).

Synergy Across AI and Other Fields

The promise of AI lies in applications that combine aspects of each of the above subfields 

with other elements of computing such as database management and signal processing.7 The 

increasing potential of AI in surgery is analogous to other recent technological developments 

(e.g. mobile phones, cloud computing) that have arisen from the intersection of hyper-cycle 
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advances in both hardware and software (i.e. as hardware advances, so too does software and 

vice versa).

Synergy between fields is also important in expanding the applications of AI. Combining 

NLP and computer vision, Google (Mountain View, CA, USA) Image Search is able to 

display relevant pictures in response to a textual query such as a word or phrase. 

Furthermore, neural networks, specifically deep learning, now form a significant part of the 

architecture underlying various AI systems. For example, deep learning in NLP has allowed 

for significant improvements in the accuracy of translation (60% more accurate translation 

by Google Translate31) while its use in computer vision has resulted in greater accuracy of 

classification of images (42% more accurate image classification by AlexNet32).

Clinical applications of such work include the successful utilization of deep learning to 

create a computer vision algorithm for the classification of smartphone images of benign and 

malignant skin lesions at an accuracy level equivalent to dermatologists.33 NLP and ML 

analyses of postoperative colorectal patients demonstrated that prediction of anastomotic 

leaks improved to 92% accuracy when different data types were analyzed in concert instead 

of individually (accuracy of vital signs – 65%; lab values – 74%; text data – 83%).34

Early attempts at using AI for technical skills augmentation focused on small feats such as 

task deconstruction and autonomous performance of simple tasks (e.g. suturing, knot-tying).
35, 36 Such efforts have been critical to establishing a foundation of knowledge for more 

complex AI tasks.37 For example, the Smart Tissue Autonomous Robot (STAR) developed 

by Johns Hopkins University was equipped with algorithms that allowed it to match or 

outperform human surgeons in autonomous ex-vivo and in-vivo bowel anastomosis in 

animal models.38

While truly autonomous robotic surgery will remain out of reach for some time, synergy 

across fields will likely accelerate the capabilities of AI in augmenting surgical care. For AI, 

much of its clinical potential is in its ability to analyze combinations of structured and 

unstructured data (e.g. EMR notes, vitals, laboratory values, video, and other aspects of “big 

data”) to generate clinical decision support. Each type of data could be analyzed 

independently or in concert with different types of algorithms to yield innovations.

The true potential of AI remains to be seen and could be difficult to predict at this time. 

Synergistic reactions between different technologies can lead to unanticipated revolutionary 

technology; for example, recent synergistic combinations of advanced robotics, computer 

vision, and neural networks led to the advent of autonomous cars. Similarly, independent 

components within AI and other fields could combine to create a force multiplier effect with 

unanticipated changes to healthcare delivery. Therefore, surgeons should be engaged in 

assessing the quality and applicability of AI advances to ensure appropriate translation to the 

clinical sector.

Limitations of AI

As with any new technology, AI and each of its subfields are susceptible to unrealistic 

expectations from media hype that can lead to significant disappointment and 
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disillusionment.39 AI is not a “magic bullet” that can yield answers to all questions. There 

are instances where traditional analytical methods can outperform ML40 or where the 

addition of ML does not improve on its results.41 As with any scientific endeavor, use of AI 

hinges on whether the correct scientific question is being asked and whether one has the 

appropriate data to answer that question.

ML provides a powerful tool with which to uncover subtle patterns in data. It excels at 

detecting patterns and demonstrating correlations that may be missed by traditional methods, 

and these results can then be used by investigators to uncover new clinical questions or 

generate novel hypotheses about surgical diseases and management.42, 43 However, there are 

both costs and risks to utilizing ML incorrectly.

The outputs of ML and other AI analyses are limited by the types and accuracy of available 

data. Systematic biases in clinical data collection can affect the type of patterns AI 

recognizes or the predictions it may make,44, 45 and this can especially affect women and 

racial minorities due to long-standing under-representation in clinical trial and patient 

registry populations.46–48 Supervised learning is dependent on labeling of data (such as 

identification of variables currently used in surgery-specific patient registries) which can be 

expensive to gather, and poorly labeled data will yield poor results. A publically available 

National Institutes of Health (NIH) dataset of chest x-rays and reports has been utilized to 

generate AI capable of generating diagnoses of chest x-rays. NLP was used to mine 

radiology reports to generate labels for chest x-rays, and these labels were used to train a 

deep learning network to recognize pathology on images with particularly good accuracy in 

identifying a pneumothorax.49 However, an in-depth analysis of the dataset by Oakden-

Rayner50 revealed that some of the results may have been from improperly labeled data. 

Most of the x-rays labeled as pneumothorax also had a chest tube present, raising concern 

that the network was identifying chest tubes rather than pneumothoraces as intended.

An important concern regarding AI algorithms involves their interpretability51, for 

techniques such as neural networks are based on a “black box” design.52 While the 

automated nature of neural networks allows for detection of patterns missed by humans, 

human scientists are left with little ability to assess how or why such patterns were discerned 

by the computer. Medicine has been quick to recognize that the accountability of algorithms, 

the safety/verifiability of automated analyses, and the implications of these analyses on 

human-machine interactions can impact the utility of AI in clinical practice.53 Such 

concerns have hindered the use of AI algorithms in many applicative fields from medicine to 

autonomous driving and have pushed data scientists to improve the interpretability of AI 

analyses.54, 55 However, many of these efforts remain in their infancy, and surgeon input 

early in the design of AI algorithms may be helpful in improving accountability and 

interpretability of big data analyses.

Furthermore, despite advances in causal inference, AI cannot yet determine causal 

relationships in data at a level necessary for clinical implementation nor can it provide an 

automated clinical interpretation of its analyses.56 While big data can be rich with variables, 

it is poor in providing the appropriate clinical context with which to interpret the data. 
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Human physicians, therefore, must critically evaluate the predictions generated by AI and 

interpret the data in clinically meaningful ways.

Implications for Surgeons

The first widespread uses of AI are likely be in the form of computer-augmentation of 

human performance. Clinician-machine interaction has already been demonstrated to 

augment decision-making. Pathologists have utilized AI to decrease their error rate in 

recognizing cancer-positive lymph nodes from 3.4% to 0.5%.57 Furthermore, by allowing 

for improved identification of high risk patients, AI can assist surgeons and radiologists in 

reducing the rate of lumpectomy by 30% in patients whose breast needle biopsies are 

considered high risk lesions but ultimately found to be benign after surgical excision.58

In the future, a surgeon will likely see AI analysis of population and patient-specific data 

augmenting each phase of care (Figure 4). Preoperatively, a patient undergoing evaluation 

for bariatric surgery may be tracking weight, glucose, meals, and activity through mobile 

applications and fitness trackers, with the data feeding into their EMR.59–61 Automated 

analysis of all preoperative mobile and clinical data could provide a more patient-specific 

risk score for operative planning and yield valuable predictors for postoperative care. The 

surgeon could then augment their decision-making intraoperatively based on real-time 

analysis of intraoperative progress that integrates EMR data with operative video, vital signs, 

instrument/hand tracking, and electrosurgical energy usage. Intraoperative monitoring of 

such different types of data could lead to real-time prediction and avoidance of adverse 

events. Integration of pre-, intra-, and post-operative data could help to monitor recovery and 

predict complications. After discharge, post-operative data from personal devices could 

continue to be integrated with data from their hospitalization to maximize weight loss and 

resolution of obesity-related comorbidities.62 Such an example could be applied to any type 

of surgical care with the potential for truly patient-specific, patient-centered care.

AI could be utilized to augment sharing of knowledge through the collection of massive 

amounts of operative video and EMR data across many surgeons around the world to 

generate a database of practices and techniques that can be assessed against outcomes. Video 

databases could use computer vision to capture rare cases or anatomy, aggregating and 

integrating data across pre-, intra-, and post-operative phases of care.63, 64 Such powerful 

analyses could create truly disruptive innovation in generating and validating evidence-based 

best practices to improve care quality.

The Surgeon’s Role

With big data analytics predicted to yield annual healthcare savings between $300 billion 

and $450 billion annually in the US alone65, there is great economic incentive to incorporate 

AI and big data into multiple elements of our healthcare system. Surgeons are uniquely 

positioned to help drive these innovations rather than passively waiting for the technology to 

become useful.

Since lack of data can limit the predictions made by AI, surgeons should seek to expand 

involvement in clinical data registries to ensure all patients are included. These can include 
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registries at the local, national, or international levels. As data cleaning techniques improve, 

registries could become linked to expand their utility and increase the availability of clinical, 

genomic, proteomic, radiographic, and pathologic data.

Surgeons, as the key stakeholders in adoption of AI-based technologies for surgical care, 

should seek opportunities to partner with data scientists to capture novel forms of clinical 

data and help generate meaningful interpretations of that data.66 Surgeons have the clinical 

insight that can guide data scientists and engineers to answer the right questions with the 

right data, while engineers can provide automated, computational solutions to data analytics 

problems that would otherwise be too costly or time-consuming for manual methods.

Technology-based dissemination of surgical practice can empower every surgeon with the 

ability to improve the quality of global surgical care. Given that research has demonstrated 

that surgical technique and skill correlates to patient outcomes,67, 68 AI could help pool 

surgical experience – similar to efforts in genomics and biobanks69 – to bring the decision-

making capabilities and techniques of the global surgical community into every operation. 

Big data could be leveraged to create a “collective surgical consciousness” that carries the 

entirety of the field’s knowledge, leading to technology-augmented real-time clinical 

decision support, such as intraoperative, GPS-like guidance.

Surgeons can provide value to data scientists by imparting their understanding of the 

relevance and importance of the relationship between seemingly simple topics, such as 

anatomy and physiology, to more complex phenomena, such as a disease pathophysiology, 

operative course, or postoperative complications. These types of relationships are important 

to appropriately model and predict clinical events, and they are critical to improving the 

interpretability of ML approaches. Surgeons and engineers alike should demand 

transparency and interpretability in algorithms so that AI can be held accountable for its 

predictions and recommendations. With patients’ lives at stake, the surgical community 

should expect automated systems that augment human capabilities to provide care to at least 

meet, if not exceed, the standards to which clinicians and scientists are held.

Surgeons are ultimately the ones providing clinical information to patients and will have to 

establish a patient communication framework through which to relay the data made 

accessible by AI.70 An understanding of AI will be key to appropriately conveying the 

results of complex analyses such as risk predictions, prognostications, and treatment 

algorithms to patients within the appropriate clinical context.71, 72

Working with patients, surgeons should develop and deliver the narrative behind optimal 

utilization of AI in patient care, avoiding complications that can arise when external forces 

(e.g. regulators, administrators) mandate implementation of new technologies73 without 

fully evaluating potential impacts on those who would use the technology most. If 

appropriately developed and implemented, AI has the potential to revolutionize the way 

surgery is taught and practiced with the promise of a future optimized for the highest quality 

patient care.
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Conclusion

AI is expanding its footprint in clinical systems ranging from databases to intraoperative 

video analysis. The unique nature of surgical practice leaves surgeons well-positioned to 

help usher in the next phase of AI, one focused on generating evidence-based, real-time 

clinical decision support designed to optimize patient care and surgeon workflow.
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Figure 1. 
In supervised learning, human labeled data are fed to a machine learning algorithm to teach 

the computer a function, such as recognizing a gallbladder in an image or detecting a 

complication in a large claims database. In unsupervised learning, unlabeled data are fed to a 

machine learning algorithm, which then attempts to find a hidden structure to the data, such 

as identifying bright red (e.g. bleeding) as different from non-bleeding tissue.
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Figure 2. 
Artificial neural networks are composed of many computational units known as “neurons” 

(dotted red circle) that receive data inputs (similar to dendrites in biological neurons), 

perform calculations, and transmit output (similar to axons) to the next neuron. Input level 

neurons receive data while hidden layer neurons (many different hidden layers can be used) 

conduct the calculations necessary to analyze the complex relationships in the data. Hidden 

layer neurons then send the data to an output layer that provides the final version of the 

analysis for interpretation.
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Figure 3. 
Computer vision utilizes mathematical techniques to analyze visual images or video streams 

as quantifiable features such as color, texture, and position that can then be used within a 

dataset to identify statistically meaningful events such as bleeding.
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Figure 4. 
Integration of multimodal data with AI can augment surgical decision-making across all 

phases of care both at the individual patient and at the population level. An integrated AI 

serving as a “collective surgical consciousness” serves as the conduit to add individual 

patient data to a population dataset while drawing from population data to provide clinical 

decision support during individual cases.

CV: computer vision, ANN: artificial neural network, NLP: natural language processing, SP: 

signal processing.
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