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Cancer Drug Response Profile scan 
(CDRscan): A Deep Learning Model 
That Predicts Drug Effectiveness 
from Cancer Genomic Signature
Yoosup Chang1, Hyejin Park1, Hyun-Jin Yang2, Seungju Lee1, Kwee-Yum Lee2,3,  
Tae Soon Kim2,4, Jongsun Jung5 & Jae-Min Shin1

In the era of precision medicine, cancer therapy can be tailored to an individual patient based on the 
genomic profile of a tumour. Despite the ever-increasing abundance of cancer genomic data, linking 
mutation profiles to drug efficacy remains a challenge. Herein, we report Cancer Drug Response profile 
scan (CDRscan) a novel deep learning model that predicts anticancer drug responsiveness based on a 
large-scale drug screening assay data encompassing genomic profiles of 787 human cancer cell lines 
and structural profiles of 244 drugs. CDRscan employs a two-step convolution architecture, where the 
genomic mutational fingerprints of cell lines and the molecular fingerprints of drugs are processed 
individually, then merged by ‘virtual docking’, an in silico modelling of drug treatment. Analysis of the 
goodness-of-fit between observed and predicted drug response revealed a high prediction accuracy of 
CDRscan (R2 > 0.84; AUROC > 0.98). We applied CDRscan to 1,487 approved drugs and identified 14 
oncology and 23 non-oncology drugs having new potential cancer indications. This, to our knowledge, 
is the first-time application of a deep learning model in predicting the feasibility of drug repurposing. By 
further clinical validation, CDRscan is expected to allow selection of the most effective anticancer drugs 
for the genomic profile of the individual patient.

Over the past two decades, we have witnessed remarkable progress in understanding the complexity of genomic 
landscape of cancer. Exhaustive catalogues of somatic mutations of various cancer types have been created1,2, and 
major cancer-causing mutations have been identified3. It is not surprising that the expectation towards tailoring 
cancer treatments to a particular genomic signature of individual tumours is growing rapidly; yet, the current rate 
of new cancer agents to be approved and used clinically is deemed unsustainable for all stakeholders of healthcare, 
including cancer patients and pharmaceutical industry4. An efficient and systematic approach to evaluate the link 
between genomic information and the response of anticancer agents is very much needed.

Several collaborative efforts have been made to catalogue molecular profiling data of cancer cell lines and drug 
sensitivity data5–7 aimed at identifying genomic biomarkers predictive of anticancer drug response. Genomics in 
Drug Sensitivity in Cancer6 (GDSC, https://www.cancerrxgene.org) is an example of such publicly available data-
bases providing experimentally measured drug sensitivities of 1,001 human cancer cells against 265 anticancer 
compounds6. Importantly, the molecular profiles of the entire cancer cell lines used in GDSC6 were extensively 
characterised as a part of COSMIC cell line project1 (CCLP, https://cancer.sanger.ac.uk/cell_lines), including pro-
filing of somatic genomic alterations. These resources are expected to bring great benefit to the realisation of 
genomic-driven precision cancer medicine. Despite the potential value of such databases, the high-dimensionality 
and complexity of the datasets poses problems for integrative analysis. A number of approaches have been 
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previously devised for the systematic identification of molecular markers in anticancer drug sensitivity using 
various machine learning methods. Examples of the methods include regularised regression, elastic net, random 
forests, kernel based methods, and/or shallow neural network5,8–16. However, these methods have their prediction 
accuracy at a moderate level at best and are often challenged by large-scale and highly intricate genomic data.

An increasingly applied method to enhance the prediction accuracy and to address the technical challenges is 
a deep learning model, which has received a great deal of attention with recent advances in information technol-
ogy17. The deep learning method is a branch of machine learning techniques similar to shallow neural network 
but with multiple hidden layers and more complex parameters used in training. The method enables high level 
abstraction from a large volume of heterogeneous and high-dimensional raw datasets18. Until recently, the efficacy 
of learning was directly limited to the availability of relevant data19. Nevertheless, with a methodological improve-
ment and a powerful machine with parallel computing horsepower, a deep learning model can be trained with 
multiple hidden layers, containing thousands of hidden units20,21. Since it can operate several types of structural 
information, such as pharmacological, genomic, and transcriptomic data, it is suitable for predicting drug-target 
interaction with minimal guidance17.

The pharmaceutical industry has begun showing its vested interest in deep learning to exploit these types of 
data for drug discovery22. Recently, several promising results have been demonstrated using deep learning in 
drug development23–26, drug-target profiling27 and drug repurposing/repositioning (i.e., identification of poten-
tial new purposes of approved or investigational drugs) with superior prediction accuracy compared to other 
conventional machine learning models28,29. Nevertheless, majority of the deep learning-based drug development 
focuses on the prediction of drug-target interaction, which is based on molecular structures, and few studies take 
genomics into consideration in developing their deep learning models13.

In this study, we have developed the Cancer Drug Response profile scan (CDRscan), a cancer genomic 
landscape-guided drug response prediction algorithm. By employing a novel dual convergence architecture deep 
learning model run on accelerated computing, and incorporating comprehensive drug response assay datasets 
obtained from CCLP1 and GDSC6 databases, the prediction accuracy of CDRscan was further enhanced over that 
of the previous computational modelling approaches. This accurate and robust drug response prediction model 
represents an important milestone for the realisation of precision cancer medicine through its application in the 
drug development processes such as drug repurposing and screening small chemical libraries for new anticancer 
drug candidate. In the clinical settings, CDRscan is expected to streamline patient-tailored anticancer drug selec-
tion as a clinical decision support system with further clinical validation studies.

Results
Overview of CDRscan and structure of datasets.  CDRscan is an ensemble of five convolutional neu-
ral network (CNN)-based models30 with varied architectures (Table 1, Supplementary Fig. S1, Supplementary 
Table S1). Each model predicts the half-maximal inhibitory concentration (IC50) values of anticancer compounds 
from the genomic signature of tumour samples, and the mean is reported as the final prediction value. Input 
datasets were obtained from two perhaps the most comprehensive public databases related to cancer: CCLP for 
genomic profiles of human cancer cell lines1; and GDSC for anticancer drug sensitivity assays6 (Fig. 1a). The 
entire datasets from the databases contained 686,312 mutation positions from 1,001 cell lines and 265 drugs 
(Fig. 1b), covering 30 cancer types as defined by The Cancer Genome Atlas (TCGA) studies (https://gdc.cancer.
gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations). We curated a subset of the data to include 
only gene mutations contained in Cancer Gene Census1,31 (CGC, https://cancer.sanger.ac.uk/census), which is a 
catalogue of 567 genes strongly associated with cancer pathology (Fig. 1b, Table 2). In addition, the datasets were 
further screened to exclude the followings: (1) cancer types that were represented by fewer than 10 different cell 
lines (Table 2, Supplementary Table S2); (2) drugs without PubChem Compound Identifier; (3) drugs with molec-
ular weight greater than 1000 g/mol (Supplementary Table S3, see Methods for more details on exclusion criteria). 
The final datasets yielded a total of 152,594 instances which contained 787 cell lines across 25 TCGA cancer types, 
mutation information at 28,328 base positions in 567 genes, and IC50 measurements of cell line-drug treatment in 
244 drugs (Table 2, Supplementary Tables S2, S3).

The input features of the entire instance were represented by 31,400 binary digits. Of these, 28,328 bits repre-
sented mutational status of 28,328 genomic positions in each of the 787 cell lines, while 3,072 bits encoded molec-
ular profiles of the individual drugs generated by PaDEL-descriptors32 (Fig. 1b). To effectively process the two 
distinctive types of inputs, namely the genomic fingerprints of cancer cell lines and the molecular fingerprints of 
the drugs, a dual convergence architecture was employed in four models (‘master’, ‘fully connected’, ‘shallow’, and 
‘tanh’). A series of convolutions was performed independently for each set, thereby generating ‘virtual tumour 
cells’ and ‘virtual drugs’, respectively. Subsequently, ‘virtual docking’ (i.e., in silico simulation of drug treatment to 

Model Virtual 
docking Layer

Dense 
Activation

Compile 
Optimizer Parameter EpochNo. Name

1 master Yes 28 linear Adam 365,486 250

2 fully connected Yes 31 linear Adam 367,116 500

3 shallow Yes 24 linear Adam 8,427,949 250

4 tanh Yes 31 tanh Adam 367,124 250

5 unified No 17 linear Adam 262,306 250

Table 1.  Five models of Cancer Drug Response profile scan (CDRscan).

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://cancer.sanger.ac.uk/census


www.nature.com/scientificreports/

3Scientific RePorTS |  (2018) 8:8857  | DOI:10.1038/s41598-018-27214-6

cells) took place to merge the two separate convoluted features, followed by additional rounds of convolution. In 
one of the five CDRscan models (‘unified’), a conventional approach was employed, where all 31,400 descriptors 
in the input layer were convoluted together as one entity. All five models generated predicted IC50 values across 
the 244 anticancer drugs for each virtual cell line as a final output layer of the models. The average of the five val-
ues predicted by each model was then reported as the final outcome of CDRscan.

Training of CDRscan and assessment of prediction accuracy.  Of the total of 152,594 instances span-
ning 25 cancer types, 144,953 instances (i.e., compilation of randomly selected 95% of instances for each cancer 
type) were selected to train all five models of CDRscan. The remaining 7,641 instances, corresponding to 5% of 
the total instances, were set aside for evaluation of performance of the models (test set). We then examined the 
correlation between the observed IC50 values from GDSC6 and the values predicted by CDRscan using the test 
set. The observed and the predicted IC50 values showed a strong agreement with the mean coefficient of deter-
mination (R2) value of 0.843, ranging from 0.838 to 0.853 across five models (Fig. 2a,b, Supplementary Fig. S2). 
Among the five models, the ‘master’ model exhibited the highest R2 (0.853). The four models that employed the 
dual convergence architecture had higher R2 values than the ‘unified’ model (Fig. 2b, Supplementary Fig. S2). The 
averaged root mean squared error (RMSE) value of the five models was 1.069 (s.d. = 0.018, n = 5), confirming that 
the prediction was accurate in most instances (Fig. 2b, Supplementary Fig. S2). To further confirm the prediction 
accuracy of CDRscan, we assessed the area under the receiver operating characteristic curve (AUROC) in the test 
set (n = 7,641). The cell lines were classified as being sensitive against a drug when ln(IC50) <−2 (−2 corresponds 
to IC50 of approximately 0.135 µM), which was set as a cut-off value for AUROC. The AUROC score of 0.98 was 
obtained as a result (Supplementary Fig. S3).

Across cancer types, a wide variation was demonstrated in the degree of mutation burden (Supplementary 
Fig. S4), in the total number of associated cell lines of the final datasets, and in the total number of mutation 
positions (Table 2). Nevertheless, when the performance of CDRscan was assessed against each cancer type, 
the predicted IC50 values for each of the 25 cancer types strongly agreed with the observed IC50 values across all 

Figure 1.  Overview of Cancer Drug Response profile scan (CDRscan). (a) Two main applications of CDRscan 
and dataset structure. For any given genomic fingerprint (i.e., a list of somatic mutations) of a tumour, CDRscan 
predicts which of 244 Genomics in Drug Sensitivity in Cancer (GDSC) anticancer drugs would be effective. The 
input of CDRscan can be molecular information of a particular small molecule for which CDRscan reports the 
predicted sensitivity of 787 cancer cell lines. The datasets used to train CDRscan were extracted from COSMIC 
cell line project (CCLP) and GDSC databases which represent 787 cancer cell lines across 25 cancer types 
defined by TCGA, 28,328 mutation positions in 567 cancer associated genes, and assay results from treatment 
of 244 anticancer drugs. (b) Data filtering procedure and final datasets. CCLP and GDSC databases contain 
genomic characterisation of 1,001 cancer cell lines and IC50 values measured from treatment of 1,001 cell lines 
with 265 anticancer drugs. The datasets were refined to include only the 567 Cosmic Cancer Gene Census genes 
and the cancer types that have at least 10 cell lines. Drugs without PubChem Compound Identifier or having 
molecular weight greater than 1000 g/mol were excluded. Totals of 28,328 and 3,072 features were extracted 
from cell line genomic signatures and drugs, respectively, constituting binary encoding of 31,400 features in 
total. The graphical image used in Fig. 1a is an original creation by Ye-Bin Jung and is reprinted under a CC BY 
license with permission from Ye-Bin Jung. All rights reserved.
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models (Supplementary Fig. S5), wherein values of R2 ranged from 0.77 (chronic myelogenous leukaemia, LCML, 
n = 112) to 0.89 (lung squamous cell carcinoma, LUSC, n = 144) (Supplementary Fig. S5). Interestingly, ranks of 
25 cancer types based on R2 values were identical across the five models (Supplementary Fig. S5). According to 
Pearson correlation analysis, we did not find any significant correlation between the prediction accuracy (i.e., R2 
values) of individual cancer types and the average mutation burdens or the number of cell lines per cancer type 
(Supplementary Fig. S4).

Lastly, the R2 values of individual cell lines (785 in total) and drugs (244 in total) were assessed. Two cell lines 
were excluded in the assessment since their drug treatment data was available for only one or two compounds, the 
number of which was too small to derive reliable R2 values. Cell line-centric analysis revealed a high mean R2 of 
five models between the observed and the predicted IC50 values for most cell lines. Amongst all cell lines, BFTC-
909 (kidney renal clear cell carcinoma, KIRC) showed the highest R2 value of 0.967 (n = 151), while COR-L32 
(small cell lung cancer, SCLC) had the lowest at 0.779 (n = 30) (Fig. 3a, Supplementary Fig. S6). Consistent with 
the high R2 values, the predicted and observed IC50 values showed strong correlation across all cell lines with p 
values less than 2.86e−11 (Fig. 3a).

In the drug-centric correlation analysis, dasatinib (tyrosine kinase inhibitor) had the highest mean R2 of 
0.902 (n = 288), and bicalutamide (androgen receptor inhibitor) had the lowest at −2.024 (n = 683) (Fig. 3b, 
Supplementary Fig. S7). Drugs that had negative mean R2 values were characterised by small degrees of vari-
ance in the drug activity and in most cases showed little activity [ln(IC50) >−2] across all assayed cell lines. For 
instance, the observed ln(IC50) values of the bicalutamide-treated cell lines, having the lowest R2, ranged from 
−0.293 to 4.661 (mean = 2.586, range = 4.954), while those of dasatinib, the drug that was ranked the highest 
based on R2, ranged from −6.875 to 5.052 (mean = 0.222, range = 11.927) (Fig. 3b, Supplementary Fig. S7). When 

Cancer Type (TCGA-defined) Cancer gene census

Abbreviation Description
Number of 
cell lines

Number of 
genes

Number of mutation 
positions

Datasets included in the final model

1 ALL Acute lymphoblastic leukemia 26 441 2,104

2 BLCA Bladder Urothelial Carcinoma 19 240 484

3 BRCA Breast invasive carcinoma 51 372 1,103

4 CESC Cervical squamous cell carcinoma and endocervical 
adenocarcinoma 14 219 406

5 COAD_READ Colon adenocarcinoma and Rectum adenocarcinoma 51 478 5,582

6 DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 35 325 933

7 ESCA Esophageal carcinoma 35 334 880

8 GBM Glioblastoma multiforme 36 247 533

9 HNSC Head and Neck squamous cell carcinoma 42 299 729

10 KIRC Kidney renal clear cell carcinoma 32 233 490

11 LAML Acute Myeloid Leukemia 28 326 816

12 LCML Chronic Myelogenous Leukemia 10 214 346

13 LGG Brain Lower Grade Glioma 17 176 285

14 LIHC Liver hepatocellular carcinoma 17 181 315

15 LUAD Lung adenocarcinoma 63 389 1,689

16 LUSC Lung squamous cell carcinoma 15 188 324

17 MESO Mesothelioma 21 170 286

18 MM Multiple Myeloma 18 205 351

19 NB Neuroblastoma 32 267 512

20 OV Ovarian serous cystadenocarcinoma 34 336 917

21 PAAD Pancreatic adenocarcinoma 30 230 448

22 SCLC Small Cell Lung Cancer 66 405 1,598

23 SKCM Skin Cutaneous Melanoma 55 391 1,610

24 STAD Stomach adenocarcinoma 24 336 910

25 THCA Thyroid carcinoma 16 201 310

Subtotal 787 567 28,328

Datasets excluded from the final model

1 ACC Adrenocortical carcinoma 1 20 20

2 CLL Chronic Lymphocytic Leukemia 3 29 33

3 MB Medulloblastoma 4 47 52

4 PRAD Prostate adenocarcinoma 6 259 454

5 UCEC Uterine Corpus Endometrial Carcinoma 9 377 1,168

Table 2.  Overview of genomic signature datasets.
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the Pearson correlation coefficient (r) was computed for all the drugs, even the drugs with low R2 values showed 
relatively high r values with p values less than 3.86e−37 (Fig. 3b).

One of the previous drug response prediction models has used the datasets obtained from the same databases 
as in our study (CCLP1 and GDSC6), although there were differences in the total number of datasets and in how 

Figure 2.  Assessment of prediction accuracy of CDRscan. (a) Scatter plots showing correlation between the 
observed and predicted IC50 values for CDRscan and two other machine learning models to benchmark the 
prediction accuracy. The test datasets, which correspond to 5% of the total cell line-drug pairs, were used to 
assess the coefficient of determination (R2). (b) Table summarizing the R2 values and root mean squared errors 
(RMSE) of CDRscan (mean value of the five models and values for individual models), random forest, and 
support vector machine.

Figure 3.  Cell line- and drug-centric correlation analyses. (a) Prediction accuracy assessment for each cell 
line. Scatter plots show the correlation between observed and CDRscan-predicted ln(IC50) values for the cell 
lines that showed the strongest (BFTC-909, left) and the lowest agreement (COR-L32, right). The COSMIC 
IDs of the two cell lines and the corresponding cancer types are indicated above the scatter plots, and the R2 
values, Pearson correlation coefficient (r), p values, and the number of instances (n) are shown in the upper 
left corner of each plot. Histograms on the right show the overall distribution of prediction accuracy assessed 
for individual cell lines using indicated metrics. (b) Scatter plots showing the strongest and weakest agreement 
between observed and CDRscan-predicted ln(IC50) in drug-centric correlation analysis. The drug name and 
its PubCHEM ID are indicated in each plot. The R2 values, Pearson correlation coefficient (r), p values, and 
the instance counts (n) are also indicated. Histograms on the right show the overall distribution of prediction 
accuracy (R2) assessed for individual drugs using indicated metrics.
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the genomic and drug features were expressed13. To address whether and to what degree the application of dual 
convergence architecture deep learning model can improve the prediction accuracy, we compared the perfor-
mance of CDRscan and the previously developed prediction model13. For direct comparison, we re-evaluated 
the prediction accuracy of CDRscan using multi-fold cross validation (five-fold with each fold containing 29,001 
instances). The resulting R2 values of the five independent models of CDRscan ranged from 0.843 to 0.852 
(Supplementary Table S4, Supplementary Fig. S8), which were comparable to that from the validation using the 
5% leave-out test set (R2 = 0.843, Fig. 2a,b, Supplementary Fig. S2). Using the same cross validation method, we 
confirmed that CDRscan exhibited the performance that is significantly higher than that of the previous model 
(R2 = 0.72)13. Since the advent of the previous CCLP/GDSC-based machine learning model13, there has been a 
substantial increase in the amount of GDSC data sets6, which may also have influence the performance of the 
prediction model in addition to the deep learning architecture. We thus trained two commonly used machine 
learning models, random forest (RF) and support vector machine (SVM), using the identical instances to train 
(n = 144,953) and evaluate (n = 7,641) CDRscan, and compared the performances across the three models. The 
R2 values of RF and SVM models were 0.698 and 0.562, respectively (Fig. 2a,b), showing that their prediction 
accuracy is significantly compromised compared to CDRscan.

Feasibility of drug repurposing using CDRscan.  As a proof of concept in the drug repurposing potential 
of CDRscan, chemical descriptors of the approved drugs33 (see Methods for more details) were used to predict 
IC50 values of 787 cell lines. A total of 1,487 compounds were used in the analysis, and 102 of them were clas-
sified as oncology drugs according to National Cancer Institute34 (NCI, https://www.cancer.gov/about-cancer/
treatment/drugs) (Fig. 4a). As in the AUROC analysis, ln(predicted IC50) < −2.0 was used to define positive 
anticancer drug response, which is a stringent criteria when compared to other similar studies35. Thirty seven 
of the 102 approved anticancer drugs had the potential for new caner type indications. In addition, 176 of 1,385 
approved non-oncology drugs had the potential anticancer activities in addition to their original drug indica-
tions. However, some of the cancer types predicted as a new ‘purpose’ of the approved drugs contained only few 
drug responder cell lines. When those cancer types with only a few likely sensitive cell lines - less than 10% of the 
total cell lines showing predicted drug sensitivity - were excluded, the number of approved oncology drugs with 
repurposing potential was reduced from 37 to 23 (Fig. 4a). Nine of these 23 drugs had CDRscan-predicted anti-
cancer activity against more than 90% (23/25) of the total types (Fig. 4a), suggesting a universal antiproliferative/
cytotoxic activity of the compounds. Likewise, 27 of initially selected 176 non-oncology drugs (approximately 2% 
of 1,385 approved non-oncology drugs) showed strong predicted efficacy for at least one of the 25 cancer types, 
for which the predicted anticancer response was seen in at least 10% of the cell lines (Fig. 4b). Four of 27 drugs 
demonstrated strong predicted anticancer activity against more than 90% of all cancer types (Fig. 4b).

Figure 4.  Feasibility of drug repurposing using CDRscan (a) Approved anticancer drugs with potential 
repurposing opportunity. CDRscan predicted that 23 out of 102 approved anticancer drugs have activity against 
at least one new cancer type in addition to the originally approved indications. Nine of these showed predictive 
sensitivity of more than 90% cancer types, indicating nonspecific antiproliferative/cytotoxicitc effects. (b) 
Approved non-oncology drugs with potential repurposing opportunity. Of the 1,385 non-oncology drugs, 27 
showed potential anticancer activity. Four of these 27 drugs were predicted to have activity against over 90% of 
cancer types.

https://www.cancer.gov/about-cancer/treatment/drugs
https://www.cancer.gov/about-cancer/treatment/drugs
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Discussion
Here we describe CDRscan, a dual convergence architecture deep learning model, which predicts somatic muta-
tion profile-based drug responsiveness by linking the tumour genomic fingerprint and its sensitivity to drugs. 
When the fingerprints of drugs or any small molecules are provided, CDRscan predicts the IC50 values of the 
CCLP panel of 787 human cancer cell lines (Fig. 1a). From these predictions, the new use of known drugs (i.e., 
drug repurposing) or novel anticancer agents can be inferred. Two major innovative methods were employed for 
the design of CDRscan, namely the dual convergence architecture for deep learning and the employment of five 
independent models. In the former, the cell line genomic fingerprint and the molecular fingerprint of drugs were 
modelled separately since they contained different types of information, and then the two were merged into one 
virtual docking model. With the latter, the robustness of the CDRscan was further enhanced by reporting the 
mean prediction values from multiple models. Of the five individual models of CDRscan, two models, ‘master’ 
and ‘fully connected’, performed better than the final ensemble model (i.e., mean prediction values). Nevertheless, 
by reporting the mean value from the ensemble of models, generalisability of CDRscan is ensured by minimizing 
the artefact that can be derived from a particular model architecture.

It has been shown that the best predictive outcome for estimating drug sensitivity can be obtained using gene 
expression data36, which has been taken into consideration for most of conventional computational modelling 
approaches37. However, genomic profile-based drug response prediction algorithms are in greater demand than 
of the gene expression-based algorithms, since genomic sequencing of a tumour sample is more commonly per-
formed in clinics and for drug development. For instance, genetic testing for the detection of known biomark-
ers for targeted therapy is a routine clinical practice, and the majority of molecularly targeted cancer drugs are 
developed against cancer-specific mutant proteins38. The accurate prognosis and prediction of potential relapse 
by time series genomic analysis of cell free DNA may become a common practice in near future although it is 
currently costly and technically challenging39,40. We thus reasoned that development of a prediction model uti-
lising genomic profile data including somatic mutations would have a wider array of practical application than a 
model using only gene expression profiles. Consistently high R2 values across all 25 cancer types in all five models 
strongly suggest that indeed the somatic mutation signatures have a significant influence on the responsiveness of 
anticancer drugs. Taken together, our model not only demonstrates high predictive accuracy and robustness, but 
also supports practicality for future applications.

Identification of new lead molecules for the treatment of diseases, including cancer therapies, is often the 
result of more than a decade of dedicated efforts from many research groups. Of these painstakingly selected drug 
candidates, only 5% finally make it to the market41. One solution to this issue is to use already approved drugs 
for new disease indications. By significantly reducing the time and cost associated with drug development42, 
drug repurposing benefits both patients and pharmaceutical industry. Despite the promise this method of drug 
discovery offers, currently there are limited success in repurposing drugs as anticancer agents mainly due to the 
lack of a systematic approach43. We propose that CDRscan can be an effective tool for this purpose by enabling 
high throughput in silico screening of drugs against their anticancer activity. When the chemical features of com-
mercially available drugs are provided to CDRscan a subset of the 787 CCLP cell lines with potential sensitivity to 
the input drugs as well as the corresponding cancer types can be reported (Fig. 1a). The newly predicted cancer 
types represent a potential new indication for already approved drugs. Notably, CDRscan identified 37 approved 
drugs (2.5% of total 1,487 approved small molecule drugs in all therapeutic area) with potential new cancer 
indications. This number may be an underestimation since a stringent set of criteria were applied in our study to 
operationally define a drug with potential repurposing opportunity: (1) ln(IC50) <−2 for anticancer response; (2) 
10% or more cell lines within the cancer type to have the predicted drug response; (3) exclusion of the drugs with 
pan-cancer type antiproliferative/cytotoxic effect. In vitro and/or clinical evidence supported a subset of the new, 
CDRscan-predicted indications of multiple oncology drugs (e.g., belinostat44–47, cabozantinib48, cobimetinib49, 
etc.) and non-oncology drugs (e.g., pravastatin50–52 and ouabain53–55). Notably, many of the potentially repurpos-
able drugs with supporting evidence were not in GDSC (i.e., outside the CDRscan training set), strongly arguing 
for the prediction accuracy as well as the practicality of CDRscan as a systematic in silico screening method for 
drug repurposing. Although the predicted results require in vitro validation prior to subsequent clinical studies, 
our results offer a realistic opportunity in drug repurposing. It should also be emphasised that CDRscan can be 
utilised to screen for new candidates of lead molecules when the chemical features of small compounds from 
chemical libraries such as the ZINC56,57 are used as an input instead of limiting the input to approved drugs.

It is important to note that CDRscan predicts a drug response at the level of cancer cell lines, not of the cancer 
types. We considered the cancer types as new indications when they contained the susceptible cell lines with 
ln(predicted IC50) less than −2. This criteria was chosen for a practical reason since the current guideline for 
anticancer drug treatment is primarily based on the site of a tumour22. However, one should keep in mind that the 
genomic fingerprints of the predicted drug responder cell lines may not be truly representative of the cancer type 
that they belong to. It is important to evaluate how frequently drug response-predictive mutation patterns appear 
between the genomes of various cancer types. In a hypothetical scenario where a predictive mutational pattern 
is present in many cancer patients but independent of cancer types, new indication of the drug to be repurposed 
should be determined by genomic biomarkers, not by cancer types. Ideally, the identification of a minimal num-
ber of mutations that appear specifically in sensitive cell lines irrespective of cancer types would represent a 
good candidate of ‘genomic biomarker’ for indication. In line with this, for the first time, the U.S. Food and Drug 
Administration has recently approved Keytruda (pembrolizumab) for tumours with a certain genetic biomarker 
regardless of their origin58. The drug response-associated genomic markers have already been included in drug 
labels to serve as guidelines for drug prescription, and the genomic marker based approval of anticancer drug is 
expected to become a more common practice. The rise in the number of companion diagnostics for detecting 
specific genomic biomarkers is also expected to gain momentum.
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Recent analyses have reported that only a limited number of cancer patients would benefit from genetic screen-
ing to select targeted drugs using known biomarkers, since those with positive biomarkers are rare59,60. Even among 
patients with a well-defined biomarker for targeted therapies, the expected clinical outcome is often lost due to 
prevalent crosstalk between genes. In the clinical settings, CDRscan can be applied to screen for the drugs with the 
likely effectiveness for individual tumours. As CDRscan predicts drug sensitivity from genomic fingerprints rather 
than individual mutation, it further broadens the use of genomic screening results in the identification of effective 
drugs. Eventually, CDRscan would facilitate individually tailored cancer treatment, guiding clinical decision in the 
selection of anticancer agent(s) that best suits the genomic signature of the individual patients.

Challenges still remain for routine application of CDRscan. Despite its strong predictive accuracy, the model 
was built on in vitro data. Cancer cell lines of CCLP1 and GDSC6 represent cancer models that are extensively 
used in the cancer research community33,61–63. While those databases archive a large collection of cancer cell lines 
across a broad spectrum of cancer types, it remains to be determined whether these cell lines truly represent 
tumours that are growing in vivo41,64. Cancer cell lines are derived from patient tumour samples, but they are 
homogenous, subject to additional mutational events, and not surrounded by microenvironment. Thus, further 
in vivo validation of the predictions made by CDRscan is a mandatory next step. Especially, given that CDRscan is 
developed using selected mutation positions significant for cancer (28,328 positions from 567 genes), mutations 
occurring outside this range is not used as inputs for genomic fingerprints. Expanding the input positions by 
coupling it with a solid analysis for clinical validation can be done in the future by using genomic sequence data 
of cancer patients receiving chemotherapy. In recent years, patient-derived organoids65 and xenograft mice66 have 
become widely accepted platforms for drug screening in cancer research. These new platforms open up additional 
avenues for validating the performance of CDRscan.

By incorporating additional data types into computational models, the predictive prowess can be further 
strengthened15,33. Among several types of molecular profile data, transcriptomes of a large cohort of cancer cell 
lines in particular have been extensively characterised by a few large-scale projects such as CCLP1 and Cancer Cell 
Line Encyclopedia1,5. In this regard, there is no doubt that the performance of CDRscan can be further improved by 
incorporating additional high quality ‘-omics’ data including transcriptome information. Despite the excellent over-
all performance of CDRscan, prediction accuracy of a few GDSC compounds was compromised with low R2 values 
due to limited variance of data where the observed IC50 values had a very narrow range (Fig. 3b, Supplementary 
Fig. S7). Although most of the drug-centric analysis of CDRscan showed strong prediction of trend/order with high 
r values, incorporating additional assay results whenever available would also enhance the accuracy of prediction.

In this study, we introduced CDRscan, a novel and robust ensemble of deep learning models to predict drug 
efficacy based on genomic signatures. A web service will soon be available to allow browsing of the datasets used 
in CDRscan, the predicted and observed IC50 values, and some of the interesting examples of newly predicted 
indications for approved drugs. With further improvement, we envision that CDRscan will contribute to the rap-
idly evolving field of oncology by promoting the use of genome data for precision cancer medicine.

Methods
Software and hardware.  To design CDRscan, we have implemented CNN using TensorFlow 1.3.0, 
Keras 2.0.6., and Ubuntu 16.04.3 LTS. Model design, training, and validation were performed on a workstation 
equipped with NVidia GTX 1080Ti.

Datasets.  The genomic and drug sensitivity datasets of a wide array of cancer cell lines were obtained from 
CCLP1 (version 82, grch37) and GDSC6 (release 6.0). CCLP1 contains various types of molecular profile data, 
including whole exome sequencing data of 1,001 human cancer cell lines commonly used in cancer research. 
We selected sequence variation information at 28,328 positions from 567 genes in CGC31 (COSMIC v82, last 
obtained in Oct 2017). Five types of cancer (Table 2) were excluded since they had a limited number of available 
cell lines (<10). As a result, the final dataset contained 787 cell lines.

GDSC6 provides IC50 values from drug sensitivity assays for over 200,000 drug-cancer cell line pairs. In 
GDSC6, the identical set of 1,001 cell lines genomically characterised by CCLP1 was used, and 265 anticancer 
therapeutics from various sources, ranging from approved to those under investigation, were included in the 
assays. A line notation of simplified molecular-input line entry system (SMILES)67 was initially used to extract 
the structural and chemical features of each drug from PubChem68. However among 265 drugs, 18 drugs were 
not registered in SMILES, and three drugs had a molecular weight exceeding 1,000 g/mol. These 21 drugs were 
removed from the dataset. We also noticed that in GDSC, some identical chemicals were counted as two discrete 
entities6. There were 15 such pairs, but since the IC50 values were different across all pairs, we considered the 
15 pairs as 30 distinctive drugs. The final dataset had 244 drugs representing 229 individual small chemicals 
(Fig. 1b, Supplementary Table S3). A total of 152,594 instances were in the final matrix of cell lines and drugs and 
employed to develop the deep learning models.

Feature extraction.  Two different sources of input were used in CDRscan, which were genomic sequence var-
iations of individual cancer cell lines and chemical properties of the anticancer drugs. The genomic fingerprints of 
cancer cell lines were expressed as a string of 28,328 binary codes, each representing a somatic mutation status. We 
have used only the variants that passed a series of stringent quality control filters, which were finally accepted in the 
COSMIC database. The list of somatic mutations were filtered further to include only those in CGC1. The presence 
of a somatic mutation was encoded as 1 and absence as 0. In a given mutation position, the same position substituted 
with a different base was considered identical. Insertions and deletions were not distinguished from base substitutions.

For SMILES of each of the 244 GDSC drugs6, a PaDEL-descriptor (v2.2.1)32 was employed to extract descrip-
tors of three classes of fingerprints: (1) fingerprinter, (2) extended fingerprinter, and (3) graph only finger-
printer69–71, totalling 3,072 binary descriptors per drug, termed ‘molecular fingerprints’.
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Model architecture.  Two main principles were applied in designing CDRscan deep learning models. First, 
we employed novel CNN architectures, which we designated as a dual convergence deep learning architecture, 
to effectively process two very distinct types of input information. This architecture was applied to four of the 
CDRscan models. Second, we aimed to design a generalisable prediction model. To this end, we employed an 
ensemble of five independent models to minimise artifact derived from a particular model architecture. The 
architecture of each model was designed so that they were sufficiently distinct from one another. The major 
differences we introduced to the model architectures were as follows: (1) The number of convolution layers, (2) 
presence of absence of fully connected layer, (3) normalisation, and (4) inclusion of dual convergence architecture 
(Table 1, Supplementary Fig. S1, Supplementary Table S1).

One of the main hurdles for designing a robust deep learning model is overfitting. We thus employed the 
following techniques to prevent overfitting (Supplementary Fig. S1, Supplementary Table S1): (1) Three to four 
dropout layers were applied in all five models. In these layers, a subset of parameters (10–20% of the total param-
eters) were randomly selected and ignored during training, making it less likely to overfit the training data. (2) 
Maxpooling layers, which reduce dimensionality of input, were included in all models. When the mean square 
errors (MSE) of train and test set were plotted against the number of epochs, we did not observe an increase 
nor fluctuations of the test set error (Supplementary Fig. S2), which are considered as typical signs of overfit-
ting. In addition, (3) the performance score of CDRscan measured by five-fold cross validation was consistent 
(described in the next section), indicating that the high performance score of CDRscan was not due to overfitting 
(Supplementary Table S4, Supplementary Fig. S8).

Model training and performance evaluation.  We randomly selected 144,953 instances to train the 
models (95% of the total 152,594 instances). To ensure that all 25 cancer types are represented equally in the 
training set, we randomly choose 95% of the instances from each cancer type. As a result, 25 subsets were created 
and subsequently compiled as a single training set. The remaining 5% of the instances of individual cancer types 
were set aside to be used as test sets (i.e., train-test split method), both as 25 separate lists and as one consolidated 
list. Next, the performance of CDRscan and its five individual models was evaluated using the test datasets. For 
the evaluation, the experimentally obtained (observed) IC50 values and their counterparts predicted by CDRscan 
were plotted on a natural log scale. A coefficient of determination (R2), a widely accepted measure of prediction 
accuracy in machine learning72, was then computed using the following formula:
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where y1, y2, … yn are observed IC50 values of each test set with n instances; f1, f2, …, fn are the predicted IC50 
values for the corresponding instances; y  is the mean of the observed values.

Root mean squared error (RMSE) values were also calculated to evaluate the level of accuracy of predic-
tion. Performance evaluation was also performed on the 25 separate test sets for individual cancer types, and for 
individual cell lines or for individual drugs. In the drug-centric evaluation of CDRscan performance, Pearson 
correlation coefficients (r) and p values were assessed for selected subsets of instances using SciPy (https://www.
scipy.org; version 0.19.1). AUROC was also computed for the compiled training set. A classification criteria was 
applied to IC50 values using ln(IC50) of −2 as a cut-off (approximately 0.135 µM), where a drug is deemed active 
at ln(IC50) <−2 and inactive otherwise.

To benchmark the level of prediction accuracy, random forest and support vector machine models were 
trained with the identical test sets and parameters used in CDRscan. The prediction accuracy of two machine 
learning models were assessed using the same evaluation metrics.

In five-fold cross validation of CDRscan, the train set (144,953 instances) was partitioned into five equal-sized 
subsamples (28,991 instances in each subsample). One of the subsamples was held as a test set, and each model 
was trained with the remaining four subsamples. This process was repeated four more times, each time leaving a 
different subgroup as a test set.

Demonstration of predicting potential new indication of already approved drugs using 
CDRscan.  The list of drugs approved in U.S., Canada, or E.U. was obtained from DrugBank33 (https://www.
drugbank.ca; last accessed on September 20th, 2017). This list contained small molecules as well as complex mol-
ecules, such as biologic drugs, which cannot be properly expressed by 3,072 PaDEL descriptors used in CDRscan. 
Thus, the drugs that are compatible for CDRscan were selected from the initial list of the approved drugs by 
excluding the compounds according to the following criteria: (1) having no SMILES and/or no molecular weight 
information; (2) having a molecular weight <200 g/mol or >650 g/mol; (3) containing two or more parts that 
are not bonded together (including ‘ . ’ in their SMILES); and (4) being inorganic compounds. As a result, the 
final list of 1,487 approved drugs was generated. The final list included both non-oncology and oncology drugs, 
in which the oncology drugs were from the list provided in National Cancer Institute (NCI, https://www.cancer.
gov/about-cancer/treatment/drugs). The structure information of these drugs was converted into 3,072 descrip-
tors using the aforementioned PaDEL-descriptor (v2.2.1), which were used as input for CDRscan. To define 
‘drug-sensitive’ cell lines, ln(predicted IC50) of −2 was used again as a cut-off, and the cancer types were designated 
as being sensitive to a given drug when more than 10% of the corresponding cell lines had ln(predicted IC50) less 
than −2. When counting the number of the potentially novel anticancer drugs, all non-oncology drugs with at 
least one sensitive cancer type were counted. For oncology drugs, only those with CDRscan-predicted cancer type 
indications in addition to the originally approved ones were considered as the drugs with repurposing potentials.

https://www.scipy.org
https://www.scipy.org
https://www.drugbank.ca
https://www.drugbank.ca
https://www.cancer.gov/about-cancer/treatment/drugs
https://www.cancer.gov/about-cancer/treatment/drugs
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