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Abstract

Background: Targeted PCR amplicon sequencing (TAS) techniques provide a sensitive, scalable, and cost-effective
way to query and identify closely related bacterial species and strains. Typically, this is accomplished by targeting
housekeeping genes that provide resolution down to the family, genera, and sometimes species level. Unfortunately,
this level of resolution is not sufficient in many applications where strain-level identification of bacteria is required
(biodefense, forensics, clinical diagnostics, and outbreak investigations). Adding more genomic targets will increase
the resolution, but the challenge is identifying the appropriate targets. VaST was developed to address this challenge
by finding theminimum number of targets that, in combination, achievemaximum strain-level resolution for any strain
complex. The final combination of target regions identified by the algorithm produce a unique haplotype for each
strain which can be used as a fingerprint for identifying unknown samples in a TAS assay. VaST ensures that the targets
have conserved primer regions so that the targets can be amplified in all of the known strains and it also favors the
inclusion of targets with basal variants which makes the set more robust when identifying previously unseen strains.

Results: We analyzed VaST’s performance using a number of different pathogenic species that are relevant to human
disease outbreaks and biodefense. The number of targets required to achieve full resolution ranged from 20 to 88%
fewer sites than what would be required in the worst case and most of the resolution is achieved within the first 20
targets. We computationally and experimentally validated one of the VaST panels and found that the targets led to
accurate phylogenetic placement of strains, even when the strains were not a part of the original panel design.

Conclusions: VaST is an open source software that, when provided a set of variant sites, can find the minimum
number of sites that will provide maximum resolution of a strain complex, and it has many different run-time options
that can accommodate a wide range of applications. VaST can be an effective tool in the design of strain identification
panels that, when combined with TAS technologies, offer an efficient and inexpensive strain typing protocol.
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Background
High-resolution strain identification is vital in appli-
cations ranging from tracking of disease outbreaks
and surveillance of virulent or antimicrobial resistant
pathogens [1–3] to the investigation of bioterrorism and
other crimes [4–6]. One of the most promising methods
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for molecular-based strain identification is targetedmulti-
plex PCR amplicon sequencing (TAS) using high through-
put sequencing (HTS) platforms [7]. From an unknown
isolate, targets are amplified together in a multiplexed
PCR reaction and sequenced, the sequences are then
analyzed and compared to sequences of known isolates
for identification. PCR enrichment of target sequences
allows TAS to be more cost effective than whole genome
sequencing and tolerant to low amounts of starting
material [8]. Combining this with HTS technology allows
scaled processing of hundreds to thousands of samples on
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a single machine. The challenge is then deciding which
targets to choose to achieve the desired outcome.
The targeted sequences have often been either a sin-

gle housekeeping gene (e.g. the 16S rRNA gene [9]) or in
the case of multi-locus sequence typing (MLST), a col-
lection of a few housekeeping or well-conserved genes
[10]. The variation within these genes is used to define
a well curated set of different sequence types (ST) that
distinguish bacterial species or strains. Depending on the
amount of diversity, MLST can provide decent resolu-
tion and, as HTS techniques are increasingly applied, it
is becoming more scaleable and cost-effective [11]. For
some applications, however, the resolution from only a
few genes can be insufficient, especially for differentiat-
ing between closely related or highly clonal variants [12].
When identifying genetic variation that distinguishes spe-
cific strains there is not always enough variation found
among the established targets.
VaST was designed to find a minimal set of target loci

that provide a desired level of resolution across a given
strain complex. It can add resolution to an existing MLST
assay or it can generate a complete set of targets from
scratch whenMLST loci have not been established. Either
way, the goal of VaST is to provide flexibility and control to
the design of specialized strain-typing assays for a number
of different applications that can be customized for spe-
cific sequencing technologies. This begins with the user
defining the level of strain resolution that they desire from
the panel. If resolution among a specific group of strains
is particularly important, this can be defined and VaST
will focus on maximizing resolution for those strains.
Next, established targets of variation (such as loci from
a MLST assay [10, 13–19] or canonical SNPs [20–33])
can be added as a starting point which will override the
VaST optimization function to guarantee their inclusion
in the final set. Other targets, such as those associated
with virulence or antimicrobial resistance can also be
included. VaST will search for additional targets, consid-
ering many different types of genetic variation including:
single nucleotide polymorphisms (SNPs), microsatellites,
variable number tandem repeat (VNTRs), and small inser-
tion/deletions (indels). These targets will be contained
within a user-specified amplicon size that is appropri-
ate for the desired sequencing technology. Because the
selected targets must be amplifiable across all the strain
variants, VaST will pre-filter any target that does not have
sufficiently well conserved flanking primer sequences.
VaST will identify and add new targets until either max-
imum resolution is reached, a predetermined resolution
level is reached, or a specified number of targets have been
identified.
Finding the minimal number of targets to achieve the

desired resolution is important because it keeps costs low
and it limits the potential for adverse primer interactions

during multiplex PCR. Given a set of variable genomic
sites to choose from, this task is, in essence, a minimum
spanning set problem— the minimum set of genomic fea-
tures that is capable of uniquely identifying each strain.
Naively, one would hope to find a single polymorphic site
per strain that uniquely distinguishes it from all other
strains. In practice, finding a signature polymorphism for
each strain is unlikely and the significance of such a sig-
nature may erode when additional strains are considered.
Instead, our approach seeks to identify a “haplotype” or
a collection of polymorphisms which in concert, provide
a composite signature that is unique for any given strain.
The resulting set of targets needs to be robust enough to
proactively handle the rapid expansion of sequences for
new strains that come with the genomic age. For this rea-
son, we believe that the best set of targets should include
basal genomic features that are stable across entire clades
of strains and allow accurate placement of strains that
have not been seen before. Our minimum spanning set
algorithm selects each new target site based on its abil-
ity to evenly split up groups of unresolved strains. An
important aspect of evenly splitting the strain complex at
each step is that the early additions to the minimum span-
ning set tend to be more phylogenetically basal. Due to an
abundance of “deep” phylogenetic markers, our approach,
as we demonstrate, is very robust to characterizing previ-
ously unseen strains.
Several groups have developed approaches for identify-

ing a minimum set of target markers for various purposes.
Pan-PCR [34] and the Loci Selector Module of PanSeq
[35] are the most thematically similar approaches as they
both focus on strain typing; however, there are other
methods which focus on different problems like finding
a minimum set of haplotype tagging Single Nucleotide
Polymorphisms (htSNPs) for identifying haplotype blocks
[36–40]. The Pan-PCR algorithm uses whole genome
sequence data from closely related strains to find a mini-
mum number of gene targets whose presence or absence
in a PCR product can be used to distinguish a set of input
strains. Primers are designed specifically for each target
to ensure that they produce different sized PCR products
and the amplified targets are separated in a gel, produc-
ing a unique banding pattern that acts as a fingerprint for
each of the strains of interest. In contrast, VaST’s mini-
mum spanning set algorithm is able to take advantage of
variation that exist in both coding and non-coding regions
of the genome which provides a larger pool of options
for strain differentiation. This is critical when expanding
this approach to viral organisms. VaST is also intended
to be used in a sequencing-based approach which will
maximize the information content of polymorphic sites,
making it possible to detect presence of previously unseen
strains and to place them within existing phylogenies.
The Loci Selector (LS) module of the PanSeq program is
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another algorithm which attempts to find loci that offer
maximum discriminatory power between certain strains.
Like, VaST, the LS module is agnostic with respect to
the type of sequence variation that is provided as input.
Unlike VaST however, the goal of the LS module is not
to find a minimum set of sites that together provide max-
imum resolution, but rather to find a set (of a provided
size) of the most discriminatory loci that have the least
amount of overlap. In this case, loci that are “deeper” in the
phylogeny are not prioritized because they resolve clades
rather than individual strains. The resulting set of targets
provides strain resolution but are less robust to correctly
placing “new” strains – those not part of the original panel.
In this paper we present the VaST algorithm which

computes a minimum set of targets for the purpose of
bacterial strain differentiation. We provide benchmarks,
computational and experimental validation, and resolu-
tion comparisons to the LS module of PanSeq and MLST
assays to demonstrate how VaST can help streamline the
development of fast, efficient, and cost-effective strain
identification assays.

Implementation
VaST is written in Python and is designed to convert
a set of genomic features from different strains into a
minimum spanning set of targets which will achieve a
maximum (or user-defined) level of strain differentiation.
The set of genomic features can be identified using a num-
ber of available software packages that detect variant sites
across a collection of genomes (we utilized NASP, a single
nucleotide polymorphism (SNP) detection pipeline [41]).
VaST accepts a variant site matrix where each row rep-
resents a genomic site that varies across the columns of
strains; the values in the matrix characterize the state of
each strain at the variable sites (See example in Table 1).

Table 1 SNP Matrix example

LocusID Strain A Strain B Strain C Strain D Strain E

genome123::115::115 A T A A T

genome123::120::120 G C G G C

genome123::121::121 T C C C C

genome123::130::130 C G G G C

genome123::209::209 A C C N G

genome123::405::405 - - X C C

genome123::511::541 10 8 8 10 8
...

...
...

...
...

...

The first column of a variant site matrix contains a genome identifier, a start
position, and an end position, each separated by two colons. The start and end
position should be the same for SNPs. Each additional column represents a strain
and the calls made at each variant site for that strain. The first five rows contain
SNPs, the sixth row contains an indel with missing data for Strain C, and the last row
contains the lengths of VNTRs (the stopping position is based on the longest repeat
of 3 in this case)

Many different types of genomic variation can be included
in this matrix (SNPs, indels, VNTRs, etc.) provided that
the variable region is short enough to be captured in a
single amplicon.
VaST is able to correctly interpret variant site matri-

ces that contain missing data and ambiguous base calls;
although, such sites can slow down the processing of the
matrix. To speed up the preprocessing, VaST can be run in
a strict mode which will ignore any site with ambiguous or
missing data. By default, missing data is represented by an
“X”, and deletions are represented by a “-”, and VNTRs can
be represented by the number of repeats. The only other
permissible character states in the matrix are DNA bases
and IUPAC ambiguous base codes [42].
To run the Amplicon Filter Module (Fig. 1a), VaST

requires information about the regions upstream and
downstream of each of the variant sites. Therefore, a full
genome matrix must be provided which should include a
call for each position in the genome for all of the strains.
This matrix can be generated through the alignment of
genome assemblies to a reference genome or from Vari-
ant Call Format (VCF) files [43] that contain calls for each
position in the genome.

Finding candidate amplicons from target sites
It is assumed that the target sites identified by VaST will
ultimately be amplified using PCR and sequenced. There-
fore, we included an Amplicon Filter Module which treats
each variant site as a potential amplicon, combining adja-
cent sites as necessary, and filters out any amplicons that
may be difficult to amplify in all strains.
When multiple variant sites are clustered together, it is

more efficient to consider them together as a single ampli-
con which can be amplified with one pair of primers. The
combination of sites in such an amplicon may sometimes
provide more strain resolution than any one of the sites
individually, and these more efficient amplicons will natu-
rally be favored during the VaST Pattern SelectionModule
(Fig. 1a). Themaximumdistance between adjacent variant
sites is defined by a window size parameter. The window
starts at the position of the first variant site, and the algo-
rithm checks to see if any of the next variant sites are
captured within the window. If the window contains only
the original site, this single target amplicon will be sent to
the filtering step. If the window contains multiple variant
sites, as shown in Fig. 1b, then the amplicon containing
all of the sites will be sent to the filter. If this multi-target
amplicon fails the filter, the last target site in the window
will be removed and this modified amplicon will be sent
to the filter. This will be repeated until either an ampli-
con passes the filter or there are no more target sites in
the amplicon. Once the options at the first position are
exhausted, the window shifts down to the next variant site.
It is possible for the same region to be captured inmultiple
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Fig. 1 VaST Pipeline Schematic. a Overview of the VaST pipeline. b The window (gray box) starts at the first site (115) and captures two additional
sites (120 and 121). The amplicon (black box) extends from the first to the last variant site in the window and the primer zones (arrows) extend in
opposite directions. c The primer zone region is extracted from the full genome matrix and the number of strains that are missing data (X) or have a
base call that differs from the reference are counted for each position. d A position in the primer zone is flagged (!) when the number of poorly
conserved strains is greater than or equal to the strain cutoff value. e To pass the filter in this example, 20% of the primer zone positions must be a
member of a conserved segment that is longer than three positions. f The table shows the variant sequence features of the amplicons g The
resolution pattern of each amplicon is determined and the amplicons that contain redundant information are combined (e.g. Amplicon 3 & 4 into
Pattern 3). For ambiguous (N) or missing calls (X), all of the possibilities are enumerated and the strain simultaneously belongs to all of the feature
categories that overlap with those of the other strains. The bottom row is the resolution score, r, for each pattern. The minimum spanning set
algorithm favors patterns that evenly split up groups of strains. Using SNPs as an example, h is the best case scenario where N strains can be
resolved with log4(N) SNPs; however, i log2(N) is more likely with bi-allelic SNPs. j In the worst case, highly unbalanced splitting can occur which
can require at most N − 1 SNPs to resolve N strains. k The associated haplotypes for each of the minimum spanning sets in (h-j)

amplicons so VaST will avoid choosing overlapping ampli-
cons in the final solution. Customizing window lengths
allows VaST to be optimized for a wide range of sequenc-
ing platforms, which vary widely in the lengths of genomic
sequences that can be produced.
To amplify the target sites in a PCR, primers must be

designed to anneal in the regions upstream and down-
stream of the target. If a single set of primers is to be
designed that will amplify the target across all of the
strains, the primer region must be well conserved. While
VaST does not attempt to design the primers themselves,
it does consider the conservation of the upstream and
downstream primer regions and filters out targets that
contain too much variation. During the filtering step,
the proposed upstream and downstream PCR primer
zones are analyzed and if they contain too much varia-
tion between the known strains (based on the number of

strains with an alternative allele), or if there are too many
strains with missing data, the amplicon is removed from
consideration. This ensures that any remaining target sites
will have highly conserved primer zones, and thus, have
many options for primer design. The cutoffs for accept-
able amounts of variation and number of missing strains
are user-defined.
More specifically, amplicon filtering is determined by

a number of user-provided parameters: the size of the
primer zone, a strain cutoff, a primer zone filter percent,
and a primer zone filter length. For each amplicon, the
base calls for the upstream and downstream primer zone
are retrieved from the full genome matrix (Fig. 1c). For
each position in the primer zone, the number of strains
with a variation or with missing data are counted and, if
the count is greater than or equal to the strain cutoff, the
position is flagged (Fig. 1d). The segments of the primer
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zone that are not interrupted by flagged positions are
highly conserved and are appropriate for primer design
(Fig. 1e). However, in order to pass the filter, a certain
percent (primer zone filter percent) of the primer zone
positions must be present in segments that are longer
than the primer zone filter length. This ensures that the
conserved sections of the primer zone are long and con-
tiguous. The primer zone filter is applied separately to the
upstream and downstream primer zones, and both zones
must pass the filter in order for the amplicon to remain.
Table 2 provides a summary of the parameters required
for the Amplicon Filter Module.

Characterizing the discriminatory power of candidate
amplicons
A resolution pattern is calculated for each amplicon
after it passes the amplicon filter. The resolution pattern
describes which strains share the same features for a given
amplicon (Fig. 1f). The Pattern Discovery Module maps
the vector of strain features, q, for each amplicon to a
pattern vector, p, which contains sets denoting the mem-
bership of each strain in a unique feature category (Eq. 1
and Fig. 1g). Strains will typically belong to a single fea-
ture category but they may belong to multiple categories
when they have ambiguous or missing base calls at the
target sites within the amplicon (Fig. 1g, Pattern 4, Strain
D). When operating under strict mode, the algorithm can

assume that there are no missing or ambiguous calls and
Eq. 1 simplifies to Eq. 2.

q = [s1, s2, . . . , sn] ; where s is the set of feature states
for each of the n strains

p = [
f (s1), f (s2), . . . , f (sn)

]

f (s; a = {q : |si| = 1}) =
{
g(s; a) if g(s; a) �= ∅
f (s; a ∪ s) otherwise

g (s; a) = {i : ai ∩ s �= ∅}
(1)

Assuming there are no missing or ambiguous calls, Eq. 1
simplifies to:

fs (s; a = {q}) �→ {i : ai ∈ s} (2)

Despite differences in the specific sequence information
of each amplicon, many amplicons will contain redundant
strain differentiating information (e.g. Fig. 1f, Amplicon
3 & Amplicon 4). Therefore, instead of storing all of the
amplicons individually, they are grouped together based
on their strain resolution pattern (Fig. 1g, Pattern 3). Each
of these patterns along with the start and stop positions
of their associated amplicons are saved in a JSON file that
can be passed repeatedly to the Pattern Selection Module
without rerunning the preprocessing steps.

Table 2 Amplicon Filter Module parameter descriptions and considerations

Parameter Description Notes

Strict mode VaST ignores missing or ambiguous
data in input matrix

Speeds up preprocessing but some sites are
lost

Window size Maximum distance between adja-
cent sites that can be combined
into a single amplicon

The desired amplicon length should be con-
sidered when setting the window size. A
larger window may increase the number of
variant sites that are included in the ampli-
cons making themmore efficient

Primer zone size Size of the region upstream and
downstream of the target to evalu-
ate in the amplicon filter

The primer zones begin immediately before
the first and immediately after the last tar-
get site in the window, so the maximum
amplicon size is 2 × primer zone size + win-
dow size. A smaller primer zonemay limit the
number of primer options.

Strain Cutoff The number of strains at a primer
zone site that can have a non-
conserved call before the site is
flagged.

A strain cutoff greater than one will not guar-
antee that the primer zone sequences are
conserved across all of the strains but it may
be appropriate in cases where one or a few
strains have low sequence coverage

Primer zone filter percent The percent of primer zone posi-
tions that must be present in un-
flagged segments of the primer
zone that are longer than the
primer zone filter length.

A higher primer zone filter percent will
increase the total number of primer options
in amplicons that pass the filter

Primer zone filter length The length of un-flagged primer
zone segments that count toward
the primer zone filter percent

The primer zone filter length should be
at least as long as the minimum accept-
able primer length to ensure that conserved
primers can be found within the primer zone
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Constructing theminimal set of targets
The primary goal of the Pattern Selection Module is to
find aminimum spanning set, which we define as the min-
imum number of patterns that are required to achieve
maximum strain resolution. A naive brute-force approach
to solving for the minimum spanning set requires an
exhaustive search of all possible subsets of variant sites,
starting from size 1 to N where N is the size of the min-
imum spanning set. In the worst case, this approach has
exponential complexity (O(2n)), which quickly becomes
an intractable problem even for relatively small sets of
variant sites. For example, given a set V of 1,000 variant
sites, the size of the search space, |S|, that is required to
find a minimum spanning set of size 50 is on the order of
1085 combinations — more than the estimated number of
atoms in the universe. For reference, a typical SNP matrix
for a well-studied bacterial strain complex contains 10-30
thousand SNPs.

|S|=
N∑

k=1

|V |!
k! (|V |−k) !

; where V is the set of variant sites and N is the

size of the first minimum spanning set.
(3)

Because a brute-force approach is intractable, we take a
greedy approach which does not guarantee that the abso-
lute minimum spanning set will be found but it will find
a locally-optimal, minimized spanning set in a reasonable
amount of time. The minimum spanning set algorithm
implemented in VaST takes advantage of the exponential
increase in discriminatory power with each additional pat-
tern that is added to the set. For example, a single SNP
can differentiate at most three strains because there are
4 DNA bases and at least one of the variants must be
repeated for any group of more than four strains. When
two SNPs are combined into a haplotype the number of
possible combinations increases to 16, and a maximum of
15 strains may be uniquely identified. The discriminatory
power increases exponentially at 4n − 1 where n is the
number of SNPs in the haplotype. In contrast, binary vari-
ant (presence/absence or wild-type/mutant) approaches
(c.p. [34]) can achieve a maximum discriminatory power
of only 2n − 1.
For SNPs, the theoretical minimum spanning set

requires log4(N) SNPs to resolve N strains (Fig. 1h). To
achieve this minimum, each SNP must contain all four
allelic variants and the variants must evenly split up each
group of unresolved strains. In practice, many SNPs are
only bi- or tri-allelic so a more realistic minimum would
be log2(N) which may still be difficult to achieve when
working with a limited set of available patterns (Fig. 1i).
In the worst case, each SNP is only able to differentiate a
single strain which causes highly uneven splitting and can
require up to N − 1 SNPs (Fig. 1j).

In order to get as close as possible to theminimumnum-
ber of variant sites, VaST favors the addition of sites that
do the best job of evenly splitting up the most remaining
groups of unresolved strains. In practice, this predis-
poses VaST to prefer at least some phylogenetically basal
variants in its solutions (stable variants that occurred suf-
ficiently far in the organism’s past to be established in
multiple clades’ lineages). This confers significant advan-
tages when encountering previously unobserved strains.
More specifically, the algorithm iteratively incorporates
patterns into the set by choosing the pattern that pro-
vides the greatest reduction in the set resolution score, r,
(Eq. 4, Fig. 1g, bottom row). Before any sites are added,
each value in the minimum spanning set pattern vector is
zero because all of the strains are members of the same
null haplotype category. The resolution score is also set
to the maximum value of N (N − 1) where N is the num-
ber of strains. At the beginning, a resolution score is also
calculated for each of the amplicon pattern vectors and
they are sorted from lowest (best) to highest (worst). Due
to the nature of greedy algorithms, it is likely that pattern
choices that are locked in the early stages can lead to a sub-
optimal solution. Therefore, a number of the top patterns
from the sorted list can be selected to seed several dis-
tinct, independently-built sets and the best solution will
be returned at the end.
When the first pattern is added, the minimum spanning

set pattern vector is updated (Eqs. 5 or 6 in strict mode),
the resolution score is recalculated and the selected pat-
tern is removed from further consideration. The remain-
ing pattern vectors are then updated so they reflect their
resolution combined with the resolution of the current
minimum spanning set (Eqs. 5 or 6) and their scores are
recalculated (Eq. 4). The pattern with the best score is then
added to the minimum spanning set. Patterns are con-
tinually added in this manner until (1) full resolution is
reached at which point each strain will have a unique hap-
lotype and the set resolution score is zero; (2) when none
of the remaining patterns are able to improve the current
resolution of the set; (3) when some predefined number
of sites or resolution threshold is reached; (4) no more
patterns remain.

r =
max(p)∑

i=0
s2i − si; (4)

where p is a pattern vector and si is the number of strains
in the ith feature category.

pupdate = [
f (pt1 × ps1), f (pt2 × ps2), . . . , f (ptn × psn)

]
;

where pti × psi is the cartesian product between sets in a
pattern vector, pt, and the current minimum spanning set
pattern vector, ps.
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a = {
pti × psi∀i ∈ {1, 2, . . . , n} : |pti × psi| = 1

}

f (pt × ps; a) =
⎧
⎨

⎩

g(pt × ps; a) if g(pt×ps; a) �= ∅

f (pt × ps; a ∪ (pt × ps)) otherwise
(5)

Assuming there are no missing or ambiguous calls, Eq. 5
simplifies to:

fs(pt×ps; a={pti×psi∀i ∈ {1, 2, . . . , n}}) �→{i : ai∈(pt×ps)}
(6)

If multiple patterns tie for the best score, the one that is
further up in the original sorted list is chosen because it
will provide the greatest redundancy in the final set of pat-
terns. This is due to the fact that higher ranking patterns
offer more diversity, and therefore are more likely to com-
plement other patterns in the set and partially compensate
for them if they are missing. This added tolerance is bene-
ficial because some of the targetsmight not be successfully
amplified and sequenced.
As patterns are added, their associated amplicons are

checked for overlap with the amplicons that are already
included in the set. If a conflict cannot be resolved by
removing one of the amplicons, then the new pattern is
skipped and the pattern with the next best score is added
and checked.

Customizing the VaST workflow
Several user-defined parameters change the way the Pat-
tern Selection Module handles the input data. Certain
strains that are included in the preprocessing step can be
marked for removal and will therefore not be considered
in determining the final resolution. Lists of variant sites
can be flagged either for removal or for mandatory inclu-
sion in the final set. By default, VaST attempts to achieve
maximum strain resolution; however, there are settings
which will force VaST to stop once a certain number of
amplicons have been added or when a resolution thresh-
old has been met. Finally, an additional input array may
be supplied which defines an alternative resolution objec-
tive. By default, VaST will not prioritize the resolution of
any particular strains. If an alternative resolution objec-
tive is provided, VaST will favor patterns that help attain
the alternative resolution before attempting full resolu-
tion. Alternative resolution objectives are useful when it
is more critical to resolve certain strains over others. To
summarize, VaST can be run using any of the following
workflow options: the full workflow which provides full
strain resolution using any of the amplicon candidates,
the abridged workflow which stops once a user-specified
number of amplicons are added or a resolution thresh-
old is met, the weighted workflow which prioritizes the

resolution of certain groups of strains using an alterna-
tive resolution objective, and the set extension workflow
which appends to an existing set of targets.

Results
Benchmarking
We benchmarked VaST’s performance using 6 bacterial
strain complexes: 537 strains of Escherichia coli using
189,570 SNPs, 373 strains of Burkholderia pseudoma-
llei using 94,647 SNPs, 269 strains of Yersinia pestis
using 11,249 SNPs, 186 strains of Bacillus anthracis
using 11,989 SNPs, 64 strains of Francisella tularen-
sis using 16,720 SNPs, and 122 strains of Staphylococ-
cus aureus using 169,382 SNPs. These pathogens were
chosen based on their relevance to human disease out-
breaks and their potential for use as biothreat agents. The
strains we used were drawn from previously published
and well-established strain complexes [44–47]. We gen-
erated minimum spanning sets for each strain complex
to demonstrate how well VaST performs in a number of
genomic contexts. The E. coliminimum spanning set was
the most efficient by resolving all 537 strains with only 69
amplicons which is 88% fewer than the number required
in the worst case (dotted gray line in Fig. 2). For the other
species, the number of required sites was relatively higher,
providing only a 66%, 52%, 32%, 22%, and 17% reduc-
tion in the number of required sites over the worst case
for B. pseudomallei, Staphylococcus aureus, Y. pestis, B.
anthracis, and F. tularensis, respectively. The resolution
index — the difference between the number of strains and
the average unresolved group size — increases dramati-
cally within the first few sites which suggests that most
of the resolution is achieved early on, generally within the
first 20 sites for the species we tested. The remaining sites
typically resolve only a couple of strains each.
The haplotype-based approach to building a minimum

spanning set (as opposed to using a single unique marker
to identify each strain) adds a large amount of redun-
dancy. For example, no matter how early in the set a strain
is resolved, its haplotype will still consist of all the tar-
get sites (e.g. Fig. 1j, strain 4). Similarly, if two strains are
not resolved until the last site, all of the previous sites are
redundant and do not provide any useful information for
resolving the two strains (e.g. Fig. 1j, strains 1 & 2). All of
this redundancy is useful because it makes the set more
robust to missing targets. This is evident in Fig. 3 which
shows how tolerant the Y. pestisminimum spanning set is
to an increasing number of missing sites. Even when dif-
ferent combinations of 20 sites are missing, the median
resolution index is 267.9 which is only slightly lower than
the maximum resolution index of 269.
The entire VaST pipeline can be run on a laptop com-

puter. The preprocessing modules (Amplicon Filter and
Pattern Discovery) require the most computing resources,
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Fig. 2Most of the resolution is achieved within the first few targets.
Minimum spanning sets were generated for strains of Bacillus
anthracis, Burkholderia pseudomallei, Escherichia coli, Francisella
tularensis, Staphylococcus aureus, and Yersinia pestis. The plot shows
how the resolution index (Nstrains − average group size ± SD)
increases with each additional site.The number of differentiable
strains included in the panel design and the size of the minimum
spanning set is indicated next to each plot. The dashed vertical lines
indicate the number of sites expected in the worst-case (N − 1 sites)

Fig. 3 The redundancy built into the minimum spanning set design
makes it tolerant to missing sites. The plot shows how well the
Yersinia pestisminimum spanning set tolerates missing sites. The
x-axis is the number of missing sites and the y-axis is the expected
resolution index. Each box-plot shows the distribution of resolution
values for different panels (N = 50) with 1 to 20 sites randomly
removed. The resolution index of the full panel is 269 and the median
resolution when 20 sites are missing is 267.9— a difference of only 1.1

but the amount of time and memory required is highly
dependent on the size of the initial variant site matrix
and whether or not strict mode is activated. As an exam-
ple, using a single core of a laptop with a 2.4 GHz Intel
Core i5 processor and 8GB of RAM, the preprocessing
for the Y. pestis data set took approximately 4 hours. If
more computing resources are available, VaST can use
multiprocessing to speed up the preprocessing steps. The
Pattern Selection module runs relatively quickly, and took
under an hour for the Y. pestis data.

Computational validation
We tested the performance of the full Y. pestis min-
imum spanning set using publicly available HTS data
from NCBI’s Sequence Read Archive. We aligned
reads generated from five different strains (Harbin35
(SRR1283952) [48], Pestoides B (SRR2177700) [49],
Angola (SRR2153449) [50], Antiqua (SRR2176134) [51]
from [52], and KIM10 (SRR2084698) [53] from [54]) to a
reference genome (NC_003143.1 [55]) using bowtie2 [56]
and analyzed the calls at each of the target locations. In
all five cases the haplotype collected from the sequencing
data matched the expected strain.
Sometimes samples will contain strains that were not a

part of the original target panel design. To see how well
the panel can perform when identifying such samples, we
redesigned the Y. pestis panel after removing 5 of the orig-
inal strains. The new panel required 176 sites to achieve
full resolution and the removed strains were treated as if
they were samples of new strains. Using the calls at the
176 target sites, we identified the strains that were most
closely related to the sample strains based on how many
of the calls matched. In each case, the strain that was the
best match was also very closely related in the phylogentic
tree (based on patristic distance) and the size of the clade
that included both strains was small (Table 3).

Comparison to other methods
We compared the resolution achieved using VaST to the
Loci Selector module of Panseq [35] to demonstrate how
our approach is different. Using a matrix of 96 SNPs iden-
tified from E. coli O157:H7 [57], the LS module identified
a collection of 20 SNPs that each individually offered
the best discrimination for unique sets of strains. Com-
bined, these 20 SNPs completely resolved 12 of the 19
strains, leaving a group of 7 unresolved strains. How-
ever, only 7 of the identified sites increased the resolution
and the remaining 13 provided only redundant informa-
tion. Because VaST prioritizes targets that evenly split up
groups of strains rather than finding the most discrimina-
tory targets at each step, it was able to completely resolve
13 strains (with a group of 6 remaining) using 6 sites.
As the number of strains considered increases, we would
expect an even larger improvement in performance.
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Table 3 New strains that were not used to build the minimum spanning set are identified as closely related strains

Assembly accession Strain name Patristic distance In same clade Clade size

GCA_000255875.1 [61] Biovar Orientalis AS200901434 2 Yes 3

GCA_000186725.1 [62] Biovar Medievalis Harbin 35 7 Yes 2

GCA_000182545.1 [63] Pestoides A 1 Yes 3

GCA_000006645.1 [64] KIM10 9 Yes 2

GCA_000013805.1 [65] Nepal516 10 Yes 3

The Y. pestisminimum spanning set was regenerated with 5 of the original strains removed. These strains were then treated as samples and identified using the new
minimum spanning set. In each case, the strain that most closely matched the sample strain’s haplotype was closely related. The table shows the assembly accession and
name of each of the strains that were removed. The patristic distance between the sample strain and the strain it was identified as was calculated using the full tree. The clade
size is the size of the clade that included both strains

We also compared the strain resolution achieved with
VaST to that of a traditional MLST assay using a total
of 159 S. aureus whole genome sequences from the
NCBI RefSeq database. Using these sequences, we gen-
erated a SNP matrix using NASP [41] and identified the
ST from 7 housekeeping genes (arcC, aroE, glpF, gmk,
pta, tpi, and yqiL) using an open-source MLST program
(https://github.com/tseemann/mlst). A total of 41 differ-
ent groups were resolved using MLST genes, with group
sizes ranging from a single strain (n = 20) to 44 strains
and a mean size of 4.0. Using a total of 59 amplicons,
VaST resolved 138 groups, with group sizes ranging from
a single strain (n = 122) to 8 strains and a mean size
of 1.2. Figure 4 compares the resolution and it is clear

Fig. 4 VaST identifies more targets than a traditional MLST and
provides greater strain resolution. The neighbor joining tree was built
using 5,000 SNPs from 159 strains of Staphylococcus aureus. The colors
in the heatmap represent different strain groups ranging from 1-138.
The MLST loci only resolved 41 groups as indicated by the smaller
range of colors compared to VaST which resolved 138 groups

that the VaST targets can resolve strains within very
closely related groups.

Experimental validation
We experimentally validated the Y. pestisminimum span-
ning set that VaST produced by performing a TAS assay.
Due to the challenges associated with optimizing a multi-
plex PCR reaction for a large number of targets, we opted
to use a truncated version of the panel which included
only the first 42 amplicons. This truncated panel had a
slightly lower resolution index (266.1 compared to 269 for
the full panel) but it was able to resolve most of the major
clades. Table 4 shows the number of unresolved groups
of different sizes which were used to calculate the res-
olution index for the truncated panel. Using only 42 of
the 183 sites, 38 strains can be uniquely identified (group
size 1). The largest unresolved group consisted of 20 very
similar biovar Orientalis strains that were all isolated from

Table 4 Resolution of truncated Yersenia pestis minimum
spanning set

Group size Count

1 38

2 18

3 9

4 6

5 5

6 2

7 6

8 1

11 1

12 1

15 1

20 1

The table shows the expected resolution using only the first 42 of the 183-site Y.
pestisminimum spanning set. The group size indicates a number of strains that
could not be differentiated from one another and the count is how many groups of
each size exist. A total of 28 strains were fully resolved and the largest group
contained 20 unresolved strains
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rodents in Peru. The median group size is 5 so at least half
of the strains are in groups of 5 or smaller.
The targets of the truncated minimum spanning

set were amplified in sample DNA from six differ-
ent Y. pestis strains (Pestoides A, Pestoides F, KIM10,
Harbin35, Nepal515, and Antiqua) and the amplicons
were sequenced. The calls made at each of the target
sites placed every sample strain within the correct clade
(Fig. 5). In each case, the maximum resolution expected
for the minimum spanning set was achieved.

Discussion
We have developed, benchmarked, and tested a desktop-
compatible pipeline which identifies a minimum set of
targets that are appropriate for bacterial strain identifi-
cation. We anticipate that this software will aid in the
design of customized, high-resolution typing assays that
will be useful for forensic and epidemiological applica-
tions, or even for identifying and maintaining laboratory
stocks of bacterial isolates. The minimum spanning algo-
rithm implemented in VaST optimizes a combinatorially
complex problem in a minimal amount of time even on
a desktop computer. The haplotypes produced by VaST

provide built-in redundancy which allows the panel to
tolerate the likely failure of some amplicons without sac-
rificing much resolution. The many different run-time
options available in VaST provide flexibility to accommo-
date many different situations. When some strains have
particularly low coverage (lots of missing or ambiguous
sites), turning off strict mode will open up many more tar-
get options for better results. On the other hand, when
there is fairly even coverage across the strains, enabling
strict mode will speed up the preprocessing steps. The set
extension workflow can easily extend existing panels when
additional strains or clades are identified or sequenced.
Compared to other strain typing methods, VaST offers

a several advantages. Unlike the Pan-PCR method [34],
VaST is able to take advantage of variation that exists
in both coding and non-coding regions of the genome
which provides a larger pool of options for strain differ-
entiation. This is critical when expanding this approach
to viral organisms. As a sequencing based approach,
opposed to presence/absence detection, VaST is also able
to maximize the information content of polymorphic
sites, which makes it possible to detect the presence of
previously unseen strains and place them within existing

Fig. 5 The Y. pestis samples were correctly identified using the target sites identified by VaST. The placement and resolution of the sample strains on a
neighbor joining tree produced using the full SNPmatrix (11,249 SNPs). The group of strains indicated for each sample represent the strains that were
most similar to the sample strain at each of the targets analyzed in the truncated panel. The branch lengths indicate the number of SNP differences
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phylogenies. A failed target amplification in the Pan-PCR
assay can easily corrupt the expected presence/absence
signal and lead to a complete mis-characterization of a
strain sample. In a VaST panel, the failure of certain
targets will reduce resolution but will not result in a
mis-identified strain.
The LSModule of PanSeq focuses on finding the variant

sites that offer the most discriminatory power and thus it
does not prioritize the addition of variants that are deeper
in the phylogeny, as they resolve clades rather than indi-
vidual strains. The resulting set of targets will therefore be
less robust when new strains are introduced that were not
a part of the panel design process. In contrast, VaST prior-
itizes sites that evenly split strain complexes at each step
so that the early additions to the minimum spanning set
tend to be more phylogenetically basal — stable variation
that occurred earlier in the evolution of the organism. In
essence, this approach seeks to resolve the full phylogeny,
rather than just the leafs of the species tree. As a result,
an important feature of VaST is its ability to character-
ize previously unseen strains, due to abundance of “deep”
phylogenetic variants. This was demonstrated in our com-
putation simulations which consistently place strains that
were not included in the design of the panel into the
correct clade with their most closely related neighbors.
Finally, over the last 20 years, a number of well validated

variant markers and MLST profiles have been proposed
for the purpose of identifying bacterial clades, particularly
for identifying strains that are important in the biode-
fense sector and clinically relevant strains [30, 45, 58–60].
Using the information from previously established mark-
ers, VaST can add targets that are specifically designed to
improve resolution, in a user-defined way, starting from
the resolution provided by these markers. This allows for
backwards compatibility and consistency with previous
work thus avoiding the need to repeat the validation of
well-established markers.

Conclusions
Fine-scale resolution of bacterial strains is vital when
narrowing down potential sources of a pathogen in foren-
sic investigations, providing an accurate prognosis when
diagnosing an infection, and establishing the transmis-
sion pattern of an infectious strain outbreak. As more
and more strains are being identified and sequenced, it
is important to be able to rapidly design, implement, and
update strain identification panels. Strain typing using
TAS technology can provide high resolution (hundreds or
thousands of targets can be run simultaneously), scalabil-
ity (many samples can be processed in a single sequencing
run), and sensitivity (PCR amplification allows samples
to be identified using small amounts of DNA). Using the
ever-growing collection of variant sites identified through
whole genome sequencing, VaST provides a tool which

will automate the task of finding efficient strain typing
markers for use in TAS panels.

Availability and requirements
Project Name: VaST
Project Home Page:
https://github.com/FofanovLab/VaST.git
Operating system(s): Platform independent
Programming language: Python
Other requirements: Anaconda (to use virtual environ-
ment)
License:MIT License

Abbreviations
HTS: High-Throughput Sequencing; Indel: Insertion or deletion; PCR:
Polymerase Chain Reaction; SNP: Single Nucleotide Polymorphism; TAS:
Targeted PCR amplicon sequencing; VNTR: Variable Number Tandem Repeat

Funding
This work was funded by the Department of Homeland Security, Homeland
Security Advanced Research Projects Agency, Chemical Biological Division
under contract number HSHQDC-16-C-B0031.

Availability of data andmaterials
The SNP matrices and identified targets are available in the FigShare repository
at https://doi.org/10.6084/m9.figshare.5536744.v1 (DOI:
10.6084/m9.figshare.5536744.v1). The sequencing reads used for the
computational validation are publicly available in the National Center for
Biotechnology Information (NCBI) Sequence Read Archive at https://www.
ncbi.nlm.nih.gov/sra. [48–51]. The S. aureus whole genome assembly
sequences are publicly available in the NCBI RefSeq database and the GCF
accession IDs are listed in the FigShare repository. The primers and sequencing
reads used in the experimental validation of the Y. pestis panel are available
from the corresponding author on reasonable request. The VaST source code
is available at https://github.com/FofanovLab/VaST.git and has been archived
at https://doi.org/10.5281/zenodo.1036007 (DOI: 10.5281/zenodo.1036007).

Authors’ contributions
TNF wrote the program, and performed the computational validations and
analysis. JHC performed the amplicon sequencing assay. JWS provided the
SNP matrices for the strain complexes and the Y. pestis DNA. TNF and VYF
conceived and designed the algorithm and experiments and wrote the
manuscript. JHC and JWS critically reviewed the manuscript. All authors read
and approved the final version of the manuscript.

Ethics approval and consent to participate
Not applicable.

Competing interests
TNF, JWS, and VYF declare that they have applied for a patent for the
truncated Y. pestis primer panel.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 6 November 2017 Accepted: 30 May 2018

References
1. Brzuszkiewicz E, Thürmer A, Schuldes J, Leimbach A, Liesegang H,

Meyer F, et al. Genome sequence analyses of two isolates from the recent
Escherichia coli outbreak in Germany reveal the emergence of a new
pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC).
Arch Microbiol. 2011;193(12):883–91. Available from: http://www.ncbi.
nlm.nih.gov/pmc/articles/PMC3219860/.

https://github.com/FofanovLab/VaST.git
https://doi.org/10.6084/m9.figshare.5536744.v1
https://www.ncbi.nlm.nih.gov/sra.
https://www.ncbi.nlm.nih.gov/sra.
https://github.com/FofanovLab/VaST.git
https://doi.org/10.5281/zenodo.1036007
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3219860/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3219860/


Furstenau et al. BMC Bioinformatics  (2018) 19:222 Page 12 of 13

2. Deng X, den Bakker HC, Hendriksen RS. Genomic Epidemiology:
Whole-Genome-Sequencing Powered Surveillance and Outbreak
Investigation of Foodborne Bacterial Pathogens. Annu Rev Food Sci
Technol. 2016;7(1):353–74. PMID: 26772415 Available from: https://doi.
org/10.1146/annurev-food-041715-033259.

3. Pires dos Santos T, Damborg P, Moodley A, Guardabassi L. Systematic
Review on Global Epidemiology of Methicillin-Resistant Staphylococcus
pseudintermedius: Inference of Population Structure from Multilocus
Sequence Typing Data. Front Microbiol. 2016;7:1599. Available from:
https://www.frontiersin.org/article/10.3389/fmicb.2016.01599.

4. Rasko D, Worsham P, Abshire T, Stanley S, Bannan J, Wilson M, et al.
Bacillus anthracis comparative genome analysis in support of the
Amerithrax investigation. Proc Natl Acad Sci U S A. 2011;108:5027–32.

5. Schmedes SE, Sajantila A, Budowle B. Expansion of Microbial Forensics.
J Clin Microbiol. 2016;54(8):1964–74. Available from: http://jcm.asm.org/
content/54/8/1964.abstract.

6. Yang R, Keim P. Microbial forensics: A powerful tool for pursuing
bioterrorism perpetrators and the need for an international database.
J Bioterr Biodef. 2012;S3:007. https://doi.org/10.4172/2157-2526.S3-007.

7. Bybee SM, Bracken-Grissom H, Haynes BD, Hermansen RA, Byers RL,
Clement MJ, et al. Targeted Amplicon Sequencing (TAS): A Scalable Next-
Gen Approach to Multilocus, Multitaxa Phylogenetics. Genome Biol Evol.
2011;01(3):1312–23. Available from: https://doi.org/10.1093/gbe/evr106.

8. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, et al.
Target-enrichment strategies for next-generation sequencing. Nat
Methods. 2010;01(7):111–8. Available from: https://doi.org/10.1038/
nmeth.1419.

9. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA
amplification for phylogenetic study. J Bacteriol. 1991;173:697–703.
Available from: http://jb.asm.org/content/173/2/697.abstract.

10. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al.
Multilocus sequence typing: A portable approach to the identification of
clones within populations of pathogenic microorganisms. Proc Natl Acad
Sci. 1998;95(6):3140–5. Available from: http://www.pnas.org/content/95/
6/3140.

11. Boers SA, van der Reijden WA, Jansen R. High-Throughput Multilocus
Sequence Typing: Bringing Molecular Typing to the Next Level. PLoS
ONE. 2012;7(7):1–8. Available from: https://doi.org/10.1371/journal.pone.
0039630.

12. Fournier P, Dubourg G, Raoult D. Clinical detection and characterization
of bacterial pathogens in the genomics era. Genome Med. 2014;6(11):
114. Available from: https://doi.org/10.1186/s13073-014-0114-2.

13. Bartual SG, Seifert H, Hippler C, Luzon MAD, Wisplinghoff H,
Rodríguez-Valera F. Development of a Multilocus Sequence Typing
Scheme for Characterization of Clinical Isolates of Acinetobacter
baumannii. J Clin Microbiol. 2005;43(9):4382–90. Available from: http://
jcm.asm.org/content/43/9/4382.abstract.

14. Blanchard AM, Jolley KA, Maiden MCJ, Coffey TJ, Maboni G, Staley CE,
et al. The Applied Development of a Tiered Multilocus Sequence Typing
(MLST) Scheme for Dichelobacter nodosus. Front Microbiol. 2018;9:551.
Available from: https://www.frontiersin.org/article/10.3389/fmicb.2018.
00551.

15. Boonsilp S, Thaipadungpanit J, Amornchai P, Wuthiekanun V, Bailey MS,
Holden MTG, et al. A Single Multilocus Sequence Typing (MLST) Scheme
for Seven Pathogenic Leptospira Species. PLoS Negl Trop Dis. 2013;7(1):
1–10. Available from: https://doi.org/10.1371/journal.pntd.0001954.

16. Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. Development of a
Multilocus Sequence Typing Scheme for the Opportunistic Pathogen
Pseudomonas aeruginosa. J Clin Microbiol. 2004;42(12):5644–9. Available
from: http://jcm.asm.org/content/42/12/5644.abstract.

17. King SJ, Leigh JA, Heath PJ, Luque I, Tarradas C, Dowson CG, et al.
Development of a Multilocus Sequence Typing Scheme for the Pig
Pathogen Streptococcus suis: Identification of Virulent Clones and Potential
Capsular Serotype Exchange. J Clin Microbiol. 2002;40(10):3671–80.
Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC130843/.

18. Shibata Y, Tien LHT, Nomoto R, Osawa R. Development of a multilocus
sequence typing scheme for Streptococcus gallolyticus. Microbiology.
2014;160(1):113–22. Available from: http://mic.microbiologyresearch.org/
content/journal/micro/10.1099/mic.0%.071605-0.

19. Woo PC, Teng JL, Tsang AK, Tse H, Tsang VY, Chan KM, et al.
Development of a multi-locus sequence typing scheme for Laribacter

hongkongensis, a novel bacterium associated with freshwater fish-borne
gastroenteritis and traveler’s diarrhea. BMC Microbiol. 2009;9(1):21.
Available from: https://doi.org/10.1186/1471-2180-9-21.

20. Chanturia G, Birdsell DN, Kekelidze M, Zhgenti E, Babuadze G,
Tsertsvadze N, et al. Phylogeography of Francisella tularensis subspecies
holarctica from the country of Georgia. BMC Microbiol. 2011;11(1):139.
Available from: https://doi.org/10.1186/1471-2180-11-139.

21. Griffing SM, MacCannell DR, Schmidtke AJ, Freeman MM, Hyytiä-Trees E,
Gerner-Smidt P, et al. Canonical Single Nucleotide Polymorphisms (SNPs)
for High-Resolution Subtyping of Shiga-Toxin Producing Escherichia coli
(STEC) O157:H7. PLoS ONE. 2015;10(7):1–13. Available from: https://doi.
org/10.1371/journal.pone.0131967.

22. Gyuranecz M, Birdsell DN, Splettstoesser W, Seibold E,
Beckstrom-Sternberg SM, László M, et al. Phylogeography of Francisella
tularensis subsp. holarctica, Europe. Emerg Infect Dis. 2012;18(2):290.
Available from http://wwwnc.cdc.gov/eid/article/18/2/11-1305.

23. Hornstra HM, Priestley RA, Georgia SM, Kachur S, Birdsell DN, Hilsabeck R,
et al. Rapid Typing of Coxiella burnetii. PLoS ONE. 2011;6(11):1–8. Available
from: https://doi.org/10.1371/journal.pone.0026201.

24. Karlsson E, Svensson K, Lindgren P, Byström M, Sjödin A, Forsman M,
et al. The phylogeographic pattern of Francisella tularensis in Sweden
indicates a Scandinavian origin of Eurosiberian tularaemia. Environ
Microbiol. 2013;15(2):634–45. Available from: https://onlinelibrary.wiley.
com/doi/abs/10.1111/1462-2920.12052.

25. Karlsson E, Macellaro A, Byström M, Forsman M, Frangoulidis D, Janse I,
et al. Eight New Genomes and Synthetic Controls Increase the
Accessibility of Rapid Melt-MAMA SNP Typing of Coxiella burnetii. PLoS
ONE. 2014;9(1):1–12. Available from https://doi.org/10.1371/journal.pone.
0085417.

26. Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, Wagner DM,
et al. Yersinia pestis genome sequencing identifies patterns of global
phylogenetic diversity. Nat Genet. 2010;42(10):1140–3. Available from:
http://dx.doi.org/10.1038/ng.705.

27. Okinaka RT, Henrie M, Hill KK, Lowery K, Van Ert M, Pearson T, et al.
Single Nucleotide Polymorphism Typing of Bacillus anthracis from
Sverdlovsk Tissue. Emerg Infect Dis. 2008;14(4):653–6. Available from:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570946/.

28. Simonson TS, Okinaka RT, Wang B, Easterday WR, Huynh L, U’Ren JM,
et al. Bacillus anthracis in China and its relationship to worldwide
lineages. BMC Microbiol. 2009;9(1):71. Available from: https://doi.org/10.
1186/1471-2180-9-71.

29. Svensson K, Granberg M, Karlsson L, Neubauerova V, Forsman M,
Johansson A. A Real-Time PCR Array for Hierarchical Identification of
rancisella Isolates. PLoS ONE. 2009;4(12):1–14. Available from: https://doi.
org/10.1371/journal.pone.0008360.

30. Van Ert MN, Easterday WR, Simonson TS, U’Ren JM, Pearson T, Kenefic LJ,
et al. Strain-Specific Single-Nucleotide Polymorphism Assays for the
Bacillus anthracis Ames Strain. J Clin Microbiol. 2007;45:47–53. Available
from: http://jcm.asm.org/content/45/1/47.abstract.

31. Van Ert MN, Easterday WR, Huynh LY, Okinaka RT, Hugh-Jones ME,
Ravel J, et al. Global Genetic Population Structure of Bacillus anthracis.
PLoS ONE. 2007;2(5):1–10. Available from: https://doi.org/10.1371/journal.
pone.0000461.

32. Vogler AJ, Birdsell D, Price LB, Bowers JR, Beckstrom-Sternberg SM,
Auerbach RK, et al. Phylogeography of Francisella tularensis: Global
Expansion of a Highly Fit Clone. J Bacteriol. 2009;191(8):2474–84.
Available from: http://jb.asm.org/content/191/8/2474.abstract.

33. Vogler AJ, Chan F, Wagner DM, Roumagnac P, Lee J, Nera R, et al.
Phylogeography and Molecular Epidemiology of Yersinia pestis in
Madagascar. PLoS Negl Trop Dis. 2011;5(9):1–11. Available from: https://
doi.org/10.1371/journal.pntd.0001319.

34. Yang JY, Brooks S, Meyer JA, Blakesley RR, Zelazny AM, Segre JA, et al.
Pan-PCR, a Computational Method for Designing Bacterium-Typing
Assays Based onWhole-Genome Sequence Data. J Clin Microbiol. 2013;51:
752–8. Available from http://jcm.asm.org/content/51/3/752.abstract.

35. Laing C, Buchanan C, Taboada EN, Zhang Y, Kropinski A, Villegas A, et al.
Pan-genome sequence analysis using Panseq: an online tool for the rapid
analysis of core and accessory genomic regions. BMC Bioinformatics.
2010;11:461. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC2949892/.

https://doi.org/10.1146/annurev-food-041715-033259
https://doi.org/10.1146/annurev-food-041715-033259
https://www.frontiersin.org/article/10.3389/fmicb.2016.01599
http://jcm.asm.org/content/54/8/1964.abstract
http://jcm.asm.org/content/54/8/1964.abstract
https://doi.org/10.4172/2157-2526.S3-007
https://doi.org/10.1093/gbe/evr106
https://doi.org/10.1038/nmeth.1419
https://doi.org/10.1038/nmeth.1419
http://jb.asm.org/content/173/2/697.abstract
http://www.pnas.org/content/95/6/3140
http://www.pnas.org/content/95/6/3140
https://doi.org/10.1371/journal.pone.0039630
https://doi.org/10.1371/journal.pone.0039630
https://doi.org/10.1186/s13073-014-0114-2
http://jcm.asm.org/content/43/9/4382.abstract
http://jcm.asm.org/content/43/9/4382.abstract
https://www.frontiersin.org/article/10.3389/fmicb.2018.00551
https://www.frontiersin.org/article/10.3389/fmicb.2018.00551
https://doi.org/10.1371/journal.pntd.0001954
http://jcm.asm.org/content/42/12/5644.abstract
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC130843/
http://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0%.071605-0
http://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0%.071605-0
https://doi.org/10.1186/1471-2180-9-21
https://doi.org/10.1186/1471-2180-11-139
https://doi.org/10.1371/journal.pone.0131967
https://doi.org/10.1371/journal.pone.0131967
http://wwwnc.cdc.gov/eid/article/18/2/11-1305
https://doi.org/10.1371/journal.pone.0026201
https://onlinelibrary.wiley.com/doi/abs/10.1111/1462-2920.12052
https://onlinelibrary.wiley.com/doi/abs/10.1111/1462-2920.12052
https://doi.org/10.1371/journal.pone.0085417
https://doi.org/10.1371/journal.pone.0085417
http://dx.doi.org/10.1038/ng.705
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570946/
https://doi.org/10.1186/1471-2180-9-71
https://doi.org/10.1186/1471-2180-9-71
https://doi.org/10.1371/journal.pone.0008360
https://doi.org/10.1371/journal.pone.0008360
http://jcm.asm.org/content/45/1/47.abstract
https://doi.org/10.1371/journal.pone.0000461
https://doi.org/10.1371/journal.pone.0000461
http://jb.asm.org/content/191/8/2474.abstract
https://doi.org/10.1371/journal.pntd.0001319
https://doi.org/10.1371/journal.pntd.0001319
http://jcm.asm.org/content/51/3/752.abstract
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949892/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949892/


Furstenau et al. BMC Bioinformatics  (2018) 19:222 Page 13 of 13

36. Ding K, Zhang J, Zhou K, Shen Y, Zhang X. htSNPer1.0: software for
haplotype block partition and htSNPs selection. BMC Bioinformatics.
2005;6:38. Available from: https://doi.org/10.1186/1471-2105-6-38.

37. Frei UK, Wollenweber B, Lübberstedt T. “PolyMin”: software for
identification of the minimum number of polymorphisms required for
haplotype and genotype differentiation. BMC Bioinformatics. 2009;10(1):
176. Available from: https://doi.org/10.1186/1471-2105-10-176.

38. Hao K, Liu S, Niu T. A Sparse Marker Extension Tree Algorithm for
Selecting the Best Set of Haplotype Tagging Single Nucleotide
Polymorphisms. Genet Epidemiol. 2005;29:336–52. Available from: http://
www.ncbi.nlm.nih.gov/pmc/articles/PMC2712933/.

39. Ke X, Cardon LR. Efficient selective screening of haplotype tag SNPs.
Bioinformatics. 2003;19:287–8. Available from: http://dx.doi.org/10.1093/
bioinformatics/19.2.287.

40. Sebastiani P, Lazarus R, Weiss ST, Kunkel LM, Kohane IS, Ramoni MF.
Minimal haplotype tagging. Proc Natl Acad Sci. 2003;100:9900–5.
Available from: http://www.pnas.org/content/100/17/9900.abstract.

41. Sahl JW, Lemmer D, Travis J, Schupp JM, Gillece JD, Aziz M, et al. NASP:
an accurate, rapid method for the identification of SNPs in WGS datasets
that supports flexible input and output formats. Microb Genom. 2016;2:
e000074. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5320593/.

42. Cornish-Bowden A. Nomenclature for incompletely specified bases in
nucleic acid sequences: Recommendations 1984. Nucleic Acids Res.
1985;13(9):3021–30. Available from: http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC341218/.

43. Danecek P, Auton A, Abecasis G, Al bers CA, Banks E, DePristo MA, et al.
The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137218/.

44. Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, et al.
Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl
Acad Sci U S A. 2004;101:17837–42. Available from http://www.pnas.org/
content/101/51/17837.abstract.

45. Johansson A, Farlow J, Larsson P, Dukerich M, Chambers E, Byström M,
et al. Worldwide Genetic Relationships among Francisella tularensis
Isolates Determined by Multiple-Locus Variable-Number Tandem Repeat
Analysis. J Bacteriol. 2004;186:5808–18. Available from: http://www.ncbi.
nlm.nih.gov/pmc/articles/PMC516809/.

46. Sahl JW, Schupp JM, Rasko DA, Colman RE, Foster JT, Keim P.
Phylogenetically typing bacterial strains from partial SNP genotypes
observed from direct sequencing of clinical specimen metagenomic
data. Genome Med. 2015;7:52. Available from https://doi.org/10.1186/
s13073-015-0176-9.

47. Sahl JW, Pearson T, Okinaka R, Schupp JM, Gillece JD, Heaton H, et al.
A Bacillus anthracis Genome Sequence from the Sverdlovsk 1979 Autopsy
Specimens. mBio. 20167. Available from: http://mbio.asm.org/content/7/
5/e01501-16.abstract.

48. Johnson SL, Daligault HE, Davenport KW, Jaissle J, Frey KG, Ladner JT,
et al. Yersinia pestis strain:Harbin35 Genome sequencing. SRR1283952
[Sequence Read Archive]. 2015. Available from https://www.ncbi.nlm.nih.
gov/sra. Accessed 27 Sept 2017.

49. Johnson SL, Daligault HE, Davenport KW, Jaissle J, Frey KG, Ladner JT,
et al. Whole Genome Sequencing of Yersinia pestis str. Pestoides B.
SRR2177700 [Sequence Read Archive]. 2015. Available from: https://www.
ncbi.nlm.nih.gov/sra. Accessed 27 Sept 2017.

50. Johnson SL, Daligault HE, Davenport KW, Jaissle J, Frey KG, Ladner JT,
et al. Yersinia pestis Angola Genome sequencing. SRR2153449 [Sequence
Read Archive]. 2015. Available from: https://www.ncbi.nlm.nih.gov/sra.
Accessed 27 Sept 2017.

51. Johnson SL, Daligault HE, Davenport KW, Jaissle J, Frey KG, Ladner JT,
et al. Yersinia pestis Antiqua Genome sequencing. SRR2176134
[Sequence Read Archive]. 2015. Available from: https://www.ncbi.nlm.nih.
gov/sra. Accessed 27 Sept 2017.

52. Johnson SL, Daligault HE, Davenport KW, Jaissle J, Frey KG, Ladner JT,
et al. Thirty-Two Complete Genome Assemblies of Nine Yersinia Species,
Including Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica. Genome
Announc. 2015;3:e00148–15. Available from: http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC4417686/.

53. Johnson SL, Minogue TD, Daligault HE, Wolcott MJ, Teshima H,
Coyne SR, et al. Yersinia pestis Antiqua Genome sequencing. SRR2084698

[Sequence Read Archive]. 2015. Available from: https://www.ncbi.nlm.nih.
gov/sra. Accessed 27 Sept 2017.

54. Johnson SL, Minogue TD, Daligault HE, Wolcott MJ, Teshima H, Coyne SR,
et al. Finished Genome Assembly of Yersinia pestis EV76D and KIM 10v.
Genome Announc. 2015;3:e01024–15. Available from: http://www.ncbi.
nlm.nih.gov/pmc/articles/PMC4574367/.

55. Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MT, Prentice MB,
et al. Yersinia pestis CO92 chromosome, complete genome. NC_003143.1
[NCBI Reference Sequence]. 2015. Available from: https://www.ncbi.nlm.
nih.gov/refseq/. Accessed 27 Sept 2017.

56. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012;9:357–9.

57. Manning SD, Motiwala AS, Springman AC, Qi W, Lacher DW, Ouellette LM,
et al. Variation in virulence among clades of Escherichia coli O157:H7
associated with disease outbreaks. Proc Natl Acad Sci. 2008;105(12):
4868–73. Available from: http://www.pnas.org/content/105/12/4868.

58. Birdsell DN, Johansson A, Öhrman C, Kaufman E, Molins C, Pearson T,
et al. Francisella tularensis subsp. tularensis Group A.I, United States. Emerg
Infect Dis. 2014;20:861–5. Available from http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4012810/.

59. Li Y, Cui Y, Cui B, Yan Y, Yang X, Wang H, et al. Features of Variable
Number of Tandem Repeats in Yersinia pestis and the Development of a
Hierarchical Genotyping Scheme. PLoS ONE. 2013;8:e66567.

60. Vogler AJ, Driebe EM, Lee J, Auerbach RK, Allender CJ, Stanley M, et al.
Assays for the rapid and specific identification of North American Yersinia
pestis and the common laboratory strain CO92. Biotechniques. 2008;44:
201–7. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3836605/.

61. Gibbons HS, Krepps MD, Ouellette G, Karavis M, Onischuk L, Leonard P,
et al. Comparative Genomics of 2009 Seasonal Plague (Yersinia pestis) in
New Mexico. PLoS ONE. 2012;7:1–11. Available from: https://doi.org/10.
1371/journal.pone.0031604.

62. Plunkett GI, Anderson BD, Baumler DJ, Burland V, Cabot EL, Glasner JD,
et al. Yersenia pestis biovar Medievalis str. Harbin 35 (enterobacteria).
GCA_000186725.1 [GenBank Assembly]. 2011. Available from: https://
www.ncbi.nlm.nih.gov/genbank/. Accessed 27 Sept 2017.

63. Anisimov AP, Dentovskaya SV, Svetoch TE, Panfertsev EA. Variability of
the Protein Sequences of LcrV Between Epidemic and Atypical
Rhamnose-Positive Strains of Yersinia pestis. In: The Genus Yersinia: From
Genomics to Function. New York: Springer New York; 2007. p. 23–7.

64. Deng W, Burland V, Plunkett III G, Boutin A, Mayhew GF, Liss P, et al.
Genome Sequence of Yersinia pestis KIM. J Bacteriol. 2002;184:4601–11.
Available from: http://jb.asm.org/content/184/16/4601.abstract.

65. Chain PSG, Hu P, Malfatti SA, Radnedge L, Larimer F, Vergez LM, et al.
Complete Genome Sequence of Yersinia pestis Strains Antiqua and
Nepal516: Evidence of Gene Reduction in an Emerging Pathogen. J
Bacteriol. 2006;188:4453–63. Available from: http://jb.asm.org/content/
188/12/4453.abstract.

https://doi.org/10.1186/1471-2105-6-38
https://doi.org/10.1186/1471-2105-10-176
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712933/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712933/
http://dx.doi.org/10.1093/bioinformatics/19.2.287
http://dx.doi.org/10.1093/bioinformatics/19.2.287
http://www.pnas.org/content/100/17/9900.abstract
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320593/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320593/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC341218/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC341218/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137218/
http://www.pnas.org/content/101/51/17837.abstract
http://www.pnas.org/content/101/51/17837.abstract
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC516809/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC516809/
https://doi.org/10.1186/s13073-015-0176-9
https://doi.org/10.1186/s13073-015-0176-9
http://mbio.asm.org/content/7/5/e01501-16.abstract
http://mbio.asm.org/content/7/5/e01501-16.abstract
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417686/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417686/
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574367/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574367/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/refseq/
http://www.pnas.org/content/105/12/4868
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012810/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012810/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836605/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836605/
https://doi.org/10.1371/journal.pone.0031604
https://doi.org/10.1371/journal.pone.0031604
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
http://jb.asm.org/content/184/16/4601.abstract
http://jb.asm.org/content/188/12/4453.abstract
http://jb.asm.org/content/188/12/4453.abstract

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Finding candidate amplicons from target sites
	Characterizing the discriminatory power of candidate amplicons
	Constructing the minimal set of targets

	Customizing the VaST workflow

	Results
	Benchmarking
	Computational validation
	Comparison to other methods
	Experimental validation

	Discussion
	Conclusions
	Availability and requirements
	Abbreviations
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	References

