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Abstract. The present study used a mild contusion injury in rat 
spinal cord to determine that thymoquinone reduces inflam-
matory response, oxidative stress and apoptosis in a spinal 
cord injury (SCI) rat model and to demonstrate its possible 
molecular mechanisms. The rats in the thymoquinone group 
received 30 mg/kg thymoquinone once daily by intragastric 
administration from 3 weeks after surgery. Hematoxylin and 
eosin staining, Basso, Beattie and Bresnahan (BBB) scale and 
tissue water content detection were used in the present study 
to analyze the effect of thymoquinone on SCI. The activity of 
inflammatory response mediators, oxidative stress factors and 
caspase‑3/9 was measured using ELISA kits. Furthermore, 
western blotting was performed to analyzed the protein expres-
sion levels of prostaglandin E2, suppressed cyclooxygenase‑2 
(COX‑2) and activated peroxisome proliferator‑activated 
receptor γ (PPAR‑γ), PI3K and Akt. The results from the study 
demonstrated that thymoquinone increased Basso, Beattie and 
Bresnahan score and decreased water content in spinal cord 
tissue. Treatment with thymoquinone decreased inflammatory 
response [measured by levels of tumor necrosis factor α, inter-
leukin (IL)‑1β, IL‑6 and IL‑18], oxidative stress (measured 
by levels of superoxide dismutase, catalase, glutathione and 
malondialdehyde) and cell apoptosis (measured by levels of 
caspase‑3 and caspase‑9) in SCI rats. Thymoquinone treatment 
inhibited prostaglandin E2 activity, suppressed COX‑2 protein 
expression and activated PPAR‑γ, PI3K and p‑Akt protein 
expression in SCI rats. These data revealed that thymoquinone 
reduces inflammatory response, oxidative stress and apoptosis 
via PPAR‑γ and PI3K/Akt pathways in an SCI rat model.

Introduction

Acute spinal cord injury (SCI) is a serious nervous system 
injury, which often results in partial or complete loss 
of feeling and motor function below the injury surface. 
According to a previous report, the annual incidence of SCI is 
15‑40/1,000,000 worldwide (1). SCI can be caused by traffic 
accidents, falls or sports injuries. Of these, traffic accidents are 
the main cause (44.5%) of SCI in the USA, followed by falls 
(16.6%) and sports injuries (12.7%) (1). The injured people are 
commonly of working age (range, 18‑80 years old). Research 
has indicated that SCI has brought great economic burden on 
individuals, families and society (2). Therefore, treatment for 
acute SCI, including nerve damage recovery or reduction, has 
great social significance. Nonetheless, SCI treatment remains 
a challenge in the medical field.

Acute SCI can be classified into primary SCI and secondary 
SCI. Secondary SCI was proposed by Allen in 1911 (3). Primary 
SCI refers to mechanical injury to part of the spinal cord. The 
magnitude of primary injury is determined by the external 
force at the moment of impact. Such injury is irreversible, so 
it is not an effective treatment strategy (4). Secondary injury 
refers to serious damage within a few minutes of the primary 
injury, including edema, inflammation, ischemia, excessively 
activated glutamate receptors, lipid peroxidation and calcium 
overload. This will result in secondary cell death for a time 
period ranging from several days to weeks. Thus, it will cause 
massive death of neurons and glia cells after primary injury (5). 
The severity of multifactorial sequence tissue destruction is even 
greater than that of primary injury. The injury area will develop 
serial reactions after SCI. It will not only damage residual nerve 
cells, but also cause damage the spinal cord tissue surrounding 
the injury center (6).

Previous results have verified that inflammation aggravates 
the post‑SCI secondary injury�������������������������������� �������������������������������(7). Apoptosis is the key mani-
festation of secondary injury; thus, inhibition of apoptosis can 
prevent or reduce secondary injury, protect nerve function and 
alleviate nerve cell loss (7). SCI has allowed the surviving 
cells to survive in primary injury and it also allows more 
nerve function to be retained (8). Apoptosis, which is also 
known as programmed cell death, is an active death process 
under the regulation of multiple signaling pathways  (9). 
Energy consumption is required during cell apoptosis, so as to 
synthesize new proteins and nucleic acids (10).
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Peroxisome proliferator‑activated receptor (PPAR) is a 
member of the ligand activated nuclear transcription factor 
superfamily  (11). PPAR agonists have been demonstrated 
in previous studies to exhibit anti‑inflammatory effects and 
inhibitory effects on brain neural apoptosis (11,12). Research 
on PPAR‑γ in SCI has focused little on its effects of protecting 
spinal neurons and promoting post‑SCI secretion of inflamma-
tory cytokines (12). The current study was thereby conducted 
aiming to observe the effects of PPAR‑γ agonist thymoqui-
none on repairing SCI in rats. Furthermore, its mechanism 
was investigated in order to provide therapeutic strategies for 
clinical SCI (13).

SCI treatments will promote nerve growth factor (NGF), 
activating the phosphoinositide 3‑kinase (PI3K)/Akt pathway 
to inhibit neuron apoptosis  (14). Therefore, post‑SCI, it is 
of particular importance to adapt proper methods to induce 
NGF activation and proliferation, repair the damaged 
spinal cord nerve and function of bladder, and activate the 
PI3K/Akt pathway to suppress apoptosis, thus improving 
neural function (15).

Black cumin, Nigella sativa, belongs to the family 
Ranunculaceae, and is an annual herbaceous plant. It is used 
as a traditional natural medicine for numerous diseases (16). 
Thymoquinone (Fig. 1) is the primary active ingredient of black 
cumin seed oil and is commonly used for anti‑inflammation, 
anti‑oxidation and anti‑tumor treatment (17). Over the past 
decade, thymoquinone could inhibit numerous cancer types, 
including breast, prostate, ovarian, liver, pancreatic and 
colorectal cancer������������������������������������������� ������������������������������������������(18‑20). The present study aimed to deter-
mine the effect of thymoquinone on inflammatory response, 
oxidative stress and apoptosis in SCI rats, and to investigate its 
possible molecular mechanisms.

Materials and methods

Animals. Male Sprague Dawley rats (age, 6 weeks; weight, 
180±10 g, n=26) were purchased from the Animal Experiment 
Center of Shandong University (Shandong, China) and indi-
vidually housed (temperature, 23±1˚C; 55‑60% humidity) 
and were exposed to a 12 h light/dark cycle (lights on from 
8:00 a.m. to 8:00 p.m.). Rats also had free access to food and 
water ad libitum. This study was performed in accordance 
with the guidelines of the National Institutes of Health of 
Zaozhuang Municipal Hospital as referred to previously (21), 
and approved by Zaozhuang Municipal Hospital of Care and 
Use Committee.

Surgical procedures and experimental setup. The rats were 
randomly divided into three groups: Sham surgery (sham, 
n=6), SCI surgery (model, n=10) and SCI + thymoquinone 
(thymoquinone, n=10). The rats from the model and thymo-
quinone groups were anesthetized with 400 mg/kg of chloral 
hydrate, and a laminectomy was performed at the T9‑T10 level. 
The underlying cord was exposed to contusion injury without 
disrupting the dura (22). The thymoquinone group received 
thymoquinone at 30 mg/kg once daily by intragastric adminis-
tration (23) from 3 weeks after surgery. The rats from the sham 
and model groups received an equal volume of vehicle (PBS) at 
the same time. In the sham group, rats were anesthetized with 
400 mg/kg of chloral hydrate, and the surgical procedure was 

not performed. Furthermore, Sham rats received normal saline 
by intragastric administration for 3 weeks.

Histological assessment. Rats were anesthetized using 35 mg/kg 
pentobarbital sodium and then was sacrificed using decollation. 
Spinal cord tissue was extracted, washed with PBS and fixed in 
10% neutral buffered formalin for 3 days at room temperature. 
Then, tissue was decalcified in 10% EDTA for 10 days and 
embedded into paraffin. Next, tissue was cut into serial paraffin 
sections (4 mm), which were stained with hematoxylin and eosin 
for 30 min at room temperature and observed using a microscope 
(Olympus IX81; Olympus Corporation, Tokyo, Japan).

Behavioral assessments. The Basso, Beattie and Bresnahan 
(BBB) scale and water content in spinal cord tissue were used 
to assess neurological function after treatment with thymoqui-
none. The BBB score is on a scale from 1 to 21, indicating 
no hindlimb movement to normal hindlimb function  (24). 
Spinal cord tissue samples were extracted after treatment with 
thymoquinone and washed with PBS. Tissue samples were 
weighed as wet weight and then dried at 72˚C for 48 h. Next, 
tissue samples were weighed as dry weight. Water content 
was calculated as follows: Water content (%) = wet weight/dry 
weight x100%.

Measurement of inflammatory response, oxidative stress 
and cell apoptosis. Tumor necrosis factor (TNF)‑α (cat. 
no.  PT516; Beyotime Institute of Biotechnology, Haimen, 
China), interleukin (IL)‑1β (cat. no. PI303; Beyotime Institute 
of Biotechnology), IL‑6 (cat. no. PI328; Beyotime Institute of 
Biotechnology), IL‑18 (cat. no.  E‑EL‑R0567c; Elabscience, 
Houston, TX, USA), superoxide dismutase (SOD; cat. no. S0109; 
Beyotime Institute of Biotechnology), catalase (CAT; cat. 
no. S0051; Beyotime Institute of Biotechnology), glutathione 
(GSH; cat. no. S0052; Beyotime Institute of Biotechnology), 
PGE2 and malondialdehyde (MDA; cat. no. S0131; Beyotime 
Institute of Biotechnology), caspase‑3 (cat. no. C1116; Beyotime 
Institute of Biotechnology) and caspase‑9 (cat. no.  C1158; 
Beyotime Institute of Biotechnology) activity levels in the 
spinal tissue were evaluated using ELISA kits after treatment 
with thymoquinone. Absorbency changes were measured 
using spectrophotometry at a wavelength of 450 nm (BioTek 
ELx800 Absorbance Microplate Reader; BioTek Instruments, 
Inc., Winooski, VT, USA). Experiments were replicated 6 times.

Western blotting. Spinal cord tissue extracts were extracted 
after treatment with thymoquinone, homogenized with radio-
immunoprecipitation assay lysis buffer (Beyotime Institute of 

Figure 1. Structural formula of thymoquinone.
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Biotechnology) or 30 min at 4˚C, then centrifuged at 12,000 x g 
for 5  min at 4˚C. Protein content was measured using a 
colorimetric protein assay kit (Bio‑Rad Laboratories, Inc., 
Hercules, CA, USA). Protein (50 µg per sample) were loaded 
onto 12% polyacrylamide gels and separated by SDS‑PAGE, 
then transferred from the gels to a nitrocellulose membrane. 
The membrane was blocked with 5% (w/v) non‑fat milk in 
Tris‑buffered saline containing 0.05% Tween‑20 at 37˚C 
for 1 h and incubated with anti‑cyclooxygenase 2 (COX‑2; 
cat. no. sc‑7951, dilution 1:1,000; Santa Cruz Biotechnology, 
Inc., Dallas, TX, USA), anti‑PPAR‑γ (cat. no. sc‑9000, dilu-
tion 1:1,000; Santa Cruz Biotechnology, Inc.), anti‑PI3K 
(cat. no. sc‑7175, dilution 1:1,000; Santa Cruz Biotechnology, 
Inc.), anti‑Akt (cat. no. sc‑8312, dilution 1:500; Santa Cruz 
Biotechnology, Inc.), anti‑p‑Akt (cat. no. sc‑7985‑R, dilution 
1:1,000; Santa Cruz Biotechnology, Inc.) and anti‑GAPDH (cat. 
no. sc‑25778, dilution 1:2,000; Santa Cruz Biotechnology, Inc.) 
at 4˚C overnight. The membrane was incubated with horseradish 
peroxidase‑conjugated goat anti‑rabbit secondary antibody 
(dilution 1:5,000, cat. no. sc‑2004; Santa Cruz Biotechnology, 
Inc.) for 1 h at 37˚C and visualized with an enhanced chemi-
luminescence system using sodium Image_Lab_3.0 (Bio‑Rad 
Laboratories, Inc.). Experiments were replicated three times.

Statistical analysis. Data are expressed as the mean ± standard 
deviation using SPSS 17.0 (SPSS, Inc., Chicago, IL, USA). 
Statistical differences were determined using one‑way 
ANOVA followed by Tukey's test. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Thymoquinone reduces symptoms of SCI. To investigate the 
in vivo effects of thymoquinone on SCI, SCI rats were treated 

with thymoquinone from 3 weeks after surgery. SCI model 
promoted necrosis in the SCI model group compared with 
the sham group (Fig. 2). Furthermore, the administration of 
thymoquinone reduced necrosis in SCI rats as compared with 
the SCI model group (Fig. 2).

Thymoquinone increases BBB score and reduces water 
content in spinal cord tissue. Next, BBB score and water 
content in spinal cord tissue were analyzed in SCI rats treated 
with thymoquinone. As shown in Fig. 3A, a significant decrease 
in BBB score was observed in the SCI model group compared 
with the sham group (P<0.01). As shown in Fig. 3B, a significant 
increase of water content was observed in the SCI model group 
tissue, compared with the sham group (P<0.01). Treatment with 
thymoquinone significantly increased BBB score and signifi-
cantly reduced spinal cord tissue water content in SCI rats as 
compared with the SCI model (P<0.01; Fig. 3A and B). These 
results demonstrated that thymoquinone could prevent SCI, but 
its mechanism required further elucidation.

Thymoquinone decreases inflammatory responses in SCI rats. 
The levels of inflammatory factors were analyzed to determine 
whether thymoquinone affected the inflammatory response in 
SCI rats. As shown in Fig. 4, TNF‑α, IL‑1β, IL‑6 and IL‑18 
activity levels in the SCI model group were significantly 
higher compared with the sham group (P<0.01). However, 
TNF‑α, IL‑1β, IL‑6 and IL‑18 activity levels were significantly 
decreased in SCI rats treated with thymoquinone compared 
with the SCI model group (Fig. 4). These results indicated 
that thymoquinone exhibits anti‑inflammatory effects in the 
treatment of SCI.

Thymoquinone decreases oxidative stress in SCI rats. In order 
to determine whether thymoquinone affects oxidative stress 

Figure 2. Effect of thymoquinone on SCI. SCI, spinal cord injury; Sham, sham surgery group; Model, SCI surgery group; Thymoquinone, SCI + thymoquinone 
group.

Figure 3. Effect of thymoquinone on (A) BBB score and (B) water content in spinal cord tissue. ##P<0.01 vs. Sham; **P<0.01 vs. Model. SCI, spinal cord injury; 
Sham, sham surgery group; Model, SCI surgery group; Thymoquinone, SCI + thymoquinone group; BBB, Basso, Beattie and Bresnahan.
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in SCI rats, SOD, CAT, GSH and MDA activity levels were 
measured using ELISA kits. As shown in Fig. 5, SOD, CAT and 
GSH levels were significantly decreased and MDA levels were 
significantly increased in SCI model rats compared with the 
sham group (P<0.01). Thymoquinone treatment significantly 
increased the SOD, CAT and GSH activity levels and signifi-
cantly decreased the MDA activity level in SCI rats compared 
with the model group (P<0.01). These results indicated that 
thymoquinone inhibits SCI‑induced oxidative stress.

Thymoquinone decreases cell apoptosis in SCI rats. In order 
to determine whether thymoquinone regulates cell apoptosis 
in SCI rats, caspase‑3 and ‑9 activity levels were measured 
using ELISA kits. As shown in Fig. 6, caspase‑3 and ‑9 activity 
levels were significantly higher in SCI model rats compared 
with the sham group (P<0.01). Treatment with thymoquinone 
significantly decreased caspase‑3 and ‑9 activity levels in 

SCI rats as compared with the SCI model (P<0.01). These 
results indicated that thymoquinone inhibits apoptosis in the 
treatment of SCI.

Thymoquinone inhibits prostaglandin E2 (PGE2) activity in 
SCI rat. To characterize the mechanism of thymoquinone on 
SCI, PGE2 activity was analyzed in SCI rats. A significant 
increase in PGE2 activity was observed in SCI model rats 
compared with the sham group (P<0.01; Fig. 7). Administration 
with thymoquinone significantly inhibited PGE2 activity in 
SCI rats as compared with the SCI model (P<0.01; Fig. 7). 
These results indicated that thymoquinone reduces PGE2 
activity to inhibit inflammation in SCI.

Thymoquinone suppresses COX‑2 and activates PPAR‑γ 
protein expression in SCI rats. To further characterize the 
mechanism of thymoquinone in SCI, COX‑2 and PPAR‑γ 

Figure 5. Effect of thymoquinone on oxidative stress in SCI rats. Activity levels of (A) SOD, (B) CAT, (C) GSH and (D) MDA were measured using ELISA kits. 
##P<0.01 vs. Sham; **P<0.01 vs. Model. SCI, spinal cord injury; Sham, sham surgery group; Model, SCI surgery group; Thymoquinone, SCI + thymoquinone 
group; SOD, superoxide dismutase; CAT, catalase; GSH, glutathione; MDA, malondialdehyde.

Figure 4. Effect of thymoquinoneon inflammatory responses in SCI rats. Activity levels of (A) TNF‑α, (B) IL‑1β, (C) IL‑6 and (D) IL‑18 were measured using 
ELISA kits. ##P<0.01 vs. Sham; **P<0.01 vs. Model. SCI, spinal cord injury; Sham, sham surgery group; Model, SCI surgery group; Thymoquinone, SCI + thymo-
quinone group; TNF, tumor necrosis factor; IL, interleukin.
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protein expression were analyzed. As shown in Fig.  8, 
COX‑2 protein expression was significantly increased and 
PPAR‑γ protein expression was significantly decreased in 
SCI model rats as compared with the sham group (P<0.01). 
Thymoquinone significantly suppressed COX‑2 and increased 
PPAR‑γ protein expression in SCI rats as compared with the 
SCI model rats (P<0.01; Fig. 8). These results indicated that 
thymoquinone reduces COX‑2 activity to inhibit inflammation, 
and increases PPAR‑γ to reduce apoptosis in SCI.

Thymoquinone activates PI3K and p‑Akt/Akt protein 
expression in SCI rats. In order to evaluate whether the 
PI3K/Akt pathway was downregulated early after SCI and 
whether thymoquinone could regulate the PI3K/Akt pathway, 
PI3K and p‑Akt/Akt protein expression were analyzed. There 
was a significant suppression of PI3K and p‑Akt/Akt protein 
expressionin the SCI model group compared with the sham 
group (P<0.01; Fig.  9). Notably, thymoquinone treatment 
significantly promoted the PI3K and p‑Akt/Akt protein expres-
sion in SCI rats as compared with the SCI model (P<0.01; 
Fig. 9). These results suggest that the PI3K/Akt pathway is 
involved in the effects of thymoquinone in SCI.

Discussion

SCI is a serious nervous system injury, which can cause motor 
dysfunction and severe disability, thus causing a large economic 
burden to individuals, families and society (25). Therefore, it is 
of great significance to treat acute SCI and recover or alleviate 
nerve damage. Acute SCI is currently classified into primary 
and secondary SCI (26). Secondary SCI is reversible and can 
be controlled. Consequently, secondary SCI determines the 

patient's final outcome (27). At present, treatment of secondary 
SCI is the key strategy for acute SCI treatment. Inflammatory 
response is the primary component of secondary injury of 
the spinal cord (25). It was identified in the present study 
that thymoquinone can reduce SCI, increase BBB score and 
decrease water content in spinal cord tissue in SCI rat.

Cytokines, inflammation, free radicals, excitatory toxins 
and other factors can trigger apoptosis  (28). Researchers 
have identified that apoptosis associated genes are involved. 
For instance, genes including caspase‑3, B‑cell lymphoma 2 
(Bcl‑2) and Bcl‑2‑associated X protein are associated with 
apoptosis (29). In particular, caspase‑3 is closely correlated 
with apoptosis regulation (29). In addition, caspase‑3 activity 
has formed the positive and negative regulation of apoptosis, 
while the ratio between the two decides cell apoptosis (29,30). 
Massive neuron apoptosis has been identified in numerous 
central nervous system injury models  (31). The present 
data indicate that thymoquinone can decrease inflamma-
tory response, oxidative stress and cell apoptosis in an SCI 
rat model. Dur et al  (17) demonstrated that thymoquinone 
could prevent inflammation and oxidative stress in rat acute 
pancreatitis. These results suggest that thymoquinone exerts 
an anti‑inflammatory, anti‑oxidative and anti‑apoptotic effect 
on SCI.

Previous studies on PPAR‑γ have primarily focused on 
lipid metabolism and internal environment stability. It has 
been identified that PPAR‑γ is involved in ���������������numerous physi-
ological and pathological processes (32). In addition, PPAR‑γ 
agonists have been demonstrated to reduce marked neuron 
loss after being injected into the cerebral cortex (33). During 
pretreatment of neural and glial cells, upregulated PPAR‑γ 
expression can upregulate GLT1/EAAT mRNA expression, 
which can also be observed in PPAR‑γ agonist‑cultured cells. 
Thus, a nerve protective effect can be achieved (34). PPAR‑γ 
activation contributes to reducing the injury effect of free 
radicals on nerves through multiple pathways. It has been 
demonstrated that PPAR‑γ activation can inhibit the expression 
of free radicals in patients with progressive spinal muscular 
atrophy, multiple sclerosis and inflammation of ischemia‑based 
nervous system (11). In inflammatory responses, PPAR‑γ can 
inhibit related inflammatory signal pathways in a competitive 
manner for the formation of inflammatory mediators (33). 
The current results suggest that thymoquinone treatment can 
inhibit PGE2 activity, suppress COX‑2 protein expression and 
promote PPAR‑γ protein expression in SCI rats. In addition, 
Pei et al ����������������������������������������������������(35) demonstrated that thymoquinone inhibited angio-
tens in II‑induced vascular smooth muscle cell proliferation 

Figure 7. Effect of thymoquinone on PGE2 activity in SCI rats. ##P<0.01 vs. 
Sham; **P<0.01 vs. Model. SCI, spinal cord injury; Sham, sham surgery group; 
Model, SCI surgery group; Thymoquinone, SCI + thymoquinone group; 
PGE2, prostaglandin E2.

Figure 6. Effect of thymoquinone on cell apoptosis in SCI rats. Activity levels of (A) caspase‑3 and (B) caspase‑9 were measured using ELISA kits. ##P<0.01 vs. 
Sham; **P<0.01 vs. Model. SCI, spinal cord injury; Sham, sham surgery group; Model, SCI surgery + exercise group; Thymoquinone, SCI + thymoquinone group.
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through the PPAR‑γ/PPAR‑γ coactivator‑1 pathway. These 
results suggested that treadmill exercise could promote the 
protective effect of thymoquinone on SCI by stimulating the 
expression of PPAR‑γ.

The PI3K/Akt signaling pathway responds to extracellular 
signals, growth factors and the energy status of the cell, as 
well as cell growth, proliferation, survival and differen-
tiation of SCI (36). This pathway serves a key function in 
neural physiological and pathological processes  (36). As 
previously demonstrated, the PI3K/Akt pathway is vital in 
neural cell proliferation, development, differentiation, axonal 
regeneration, myelin formation, apoptosis and plasticity of 

synapses (37,38). The results of the current study demonstrate 
that thymoquinone treatment contributes to activating PPAR‑γ 
and PI3K/Akt protein expression in SCI rats. Liu et al (39)
suggested that thymoquinone improves cardiovascular 
function, and inhibits inflammation, oxidative stress and apop-
tosis via the PI3K/Akt pathway in diabetic rats. These results 
suggest that thymoquinone induces activation of the PI3K/Akt 
signaling pathway, which may be associated with its protective 
effect against SCI.

The present study demonstrated that thymoquinone can 
reduce SCI, increase BBB score and decrease water content 
in the spinal cord tissue of an SCI rat model. The protective 

Figure 9. Effect of thymoquinone on PI3K/Akt protein expression in SCI rats. (A and B) Relative PI3K and p‑Akt/Akt protein expression was analyzed by 
(C) western blotting in SCI rats. ##P<0.01 vs. Sham; **P<0.01 vs. Model. SCI, spinal cord injury; Sham, sham surgery group; Model, SCI surgery group; 
Thymoquinone, SCI + thymoquinone group; PI3K, phosphoinositide 3‑kinase.

Figure 8. Effect of thymoquinoneon COX‑2 and PPAR‑γ protein expressionin SCI rats. (A) COX‑2 and (B) PPAR‑γ protein expression were analyzed by 
(C) western blotting in SCI rats. ##P<0.01 vs. Sham; **P<0.01 vs. Model. SCI, spinal cord injury; Sham, sham surgery group; Model, SCI surgery group; 
Thymoquinone, SCI + thymoquinone group; COX, cyclooxygenase; PPAR, peroxisome proliferator‑activated receptor.
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effects of thymoquinone on SCI may be attributed to its  
activation of PPAR‑γ and the PI3K/Akt pathway.
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