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Abstract

Pulmonary ventilation (V) in awake and sleeping goats does not change when antagonists to
several excitatory G protein-coupled receptors are dialyzed unilaterally into the ventral respiratory
column (VRC). Concomitant changes in excitatory neuromodulators in the effluent mock cerebral
spinal fluid (mCSF) suggest neuromodulatory compensation. Herein, we studied neuromodulatory
compensation during dialysis of agonists to inhibitory G protein-coupled or ionotropic receptors
into the VRC. Microtubules were implanted into the VRC of goats for dialysis of mCSF mixed
with agonists to either p-opioid (DAMGO) or GABAA (muscimol) receptors. We found: 1) V,
decreased during unilateral but increased during bilateral dialysis of DAMGO, 2) dialyses of
DAMGO destabilized breathing, 3) unilateral dialysis of muscimol increased V}, and 4) dialysis of
DAMGO decreased GABA in the effluent mCSF. We conclude: 1) neuromodulatory compensation
can occur during altered inhibitory neuromodulator receptor activity, and 2) the mechanism of
compensation differs between G protein-coupled excitatory and inhibitory receptors and between
G protein-coupled and inotropic inhibitory receptors.
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Introduction

From invertebrates to mammals, the excitability of neural circuits that govern motor outputs
depends largely upon the local levels of excitatory and inhibitory neuromodulators.
However, the mechanisms that regulate the local release of neuromodulators, or
compensatory shifts in second messengers downstream of neuromodulatory receptors
remain unclear. Gaining insight into regulation of neuromodulation is important to improve
treatment of disorders such as epilepsy, depression, and Parkinson’s disease, as well as
opioid induced respiratory depression; thus, there is a need for studies on control of
neuromodulators.

Data from rodent models suggests there is “neuromodulator interdependence”, whereby
changes in the activity of one or more neuromodulatory receptors are compensated by
changes in the release of other neuromodulators to maintain stable ventilation (Doi and
Ramirez, 2008, 2010). This concept has also been studied in awake and sleeping goats by
dialyzing atropine (50 mM) unilaterally into the ventral respiratory column (VRC) to reduce
or block excitatory muscarinic receptor activity (Muere et al., 2013). Rather than a
hypothesized decrease in pulmonary ventilation (V) and breathing frequency (f), atropine
dialysis increased f and V| (Muere et al., 2013) which could have been due to increases in
the excitatory neuromodulators substance P (SP) and serotonin (5-HT) as measured in the
effluent dialysate. Subsequent studies in this goat model found that a lower dose of atropine
(5 mM), or selective M2 (methoctramine) or M3 (4-DAMP) receptor antagonists had no
effect on f and V,, but increased SP in the effluent dialysate to a lesser extent than 50 mM
atropine (Muere et al., 2015a). Moreover, dialysis into the VRC of antagonists to excitatory
SP receptors (neurokinin-1; NK-1) or 5-HT receptors (5-HT4) alone or in combination with
5 mM atropine did not affect f and V|, but increased SP and decreased GABA in effluent
dialysate (Muere et al., 2015b).These findings suggest that presumptive decreases in activity
of one or more excitatory receptors are accompanied by changes in other neuromodulators to
maintain f and V, in awake and NREM sleep states which supports the concept of
neuromodulator interdependence (Doi and Ramirez, 2008). In other words, there is
“compensation” defined as no change in ventilation with dialysis of excitatory antagonists
and that this may be due to the observed concomitant increase in excitatory (SP) and
decrease in inhibitory neurotransmitters (GABA).

The studies above examined the effects of blocking excitatory, G protein-coupled
neuromodulatory receptors. It is unknown whether increased activation of inhibitory
receptors in the VRC will also elicit compensatory changes in neuromodulators and/or affect
fand V,. Widely expressed in the VRC are p-opioid inhibitory receptors (Krause et al.,
2009a; Pattinson, 2008), which are also G protein-coupled receptors (GPCRs). When
activated, p-opioid receptors act through second messenger cascades to reduce intracellular
calcium and increase potassium efflux to decrease cellular activity (Pattinson, 2008).
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Administration of -opioid receptor agonists to the preBétzinger Complex (preBo6tC) region
of the VRC has, in some studies, caused respiratory depression (Montandon and Horner,
2014; Montandon et al., 2011; Pattinson, 2008). However, other studies found that eupneic
breathing is unchanged (Krause et al., 2009a) or increased with p-opioid receptor agonists
administration to the preB6tC/VRC (Mustapic et al., 2010). The absence of a depression of
breathing with increased p-opioid receptor-mediated inhibition could be due to
neuromodulatory compensation.

Another endogenous inhibitory neuromodulator controlling breathing is y-aminobutyric acid
(GABA) acting at GABAR metabotropic receptors to regulate neuronal membrane potential.
However, acting through GABA, ionotropic receptors, GABA also directly affects neuronal
activity by altering intracellular chloride (Tillakaratne et al., 1995). It is unknown whether
neuromodulator interdependence occurs when the activity of ionotropic receptors is altered,
and whether compensation occurs by similar or different mechanisms to increases in
inhibitory signaling through GPCRs.

Herein we studied whether neuromodulatory compensation occurs in response to increased
inhibitory receptor activity by unilaterally dialyzing the p-opioid receptor agonist [D-Ala2,
N-MePhe4, Gly-ol]-enkephalin (DAMGO) or the GABA receptor agonist muscimol into
the VRC while measuring breathing and neurochemicals in the effluent dialysate of awake
and sleeping goats. We chose these inhibitory agonists due to lack of agreement among
several previous studies on effects on respiratory control of these agonists (Curran et al.,
2000; Gatti et al., 1987; Krause et al., 2009a; Lalley, 2003, 2008; Montandon et al., 2011;
Mustapic et al., 2010; Nattie and Li, 2000; Taylor et al., 2006; Yamada et al., 1981; Yamada
et al., 1982). We hypothesized that f and V; would not change during DAMGO or muscimol
dialysis, but that there would be changes in neurochemicals in the effluent dialysate. We also
hypothesized that the mechanism of compensation would differ between antagonism of
GPCR and ionotropic receptors.

Through bilateral dialysis of DAMGO, we also tested the hypothesis that increased activity
of the contralateral VRC may contribute to the stable f and V, during unilateral DAMGO
dialysis. We did not test this same hypothesis for muscimol because of the large ventilatory
and behavioral responses observed in some goats with unilateral muscimol dialysis (see
Results).

Fifteen adult female, non-pregnant goats with an average body weight of 51.0 +/- 8.5kg
were housed and studied in an environmental chamber with a fixed ambient temperature and
alternating 12-hour light-dark cycles set between 7am and 7pm. There was free access to
food and water except for study periods and the 24 hours preceding surgeries. All protocols
and procedures utilized in this study were approved by the Medical College of Wisconsin
Institutional Animal Care and Use Committee.
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Surgical Procedures

The goats were anesthetized with ketamine (I1V), intubated, and mechanically ventilated with
isoflurane in 100% oxygen for the duration of the surgery. Flunixin meglumine (2mg/kg,
IM) was administered once pre-operatively and for two days post-operatively for pain. To
minimize infection, ceftriaxone (25mg/kg, IV) in 100mL saline was administered over 30
minutes twice daily at 8-12 hour intervals for three days starting the morning of a
craniotomy surgery. Subsequently, ceftiofur sodium (4mg/kg, IM) and gentamycin (6mg/kg,
IM) were administered once daily for the remainder of the study period. To minimize
intracranial edema following the craniotomy, dexamethasone (4mg/mL, V) was
administered three times daily and tapered for a week following surgery. Surgical sites were
treated daily for 7 days with triple antibiotic ointment. Rectal temperature (TR), heart rate
(HR), and oxygen saturation were continuously monitored during surgery. Over the
following 24 post-operative hours these variables were monitored at predetermined intervals.

Under sterile conditions, two surgeries were performed separated by two weeks. During one
surgery, an incision was made in the goat’s neck to locate the carotid artery which was
subsequently dissected out, elevated to beneath the skin, and sutured to the overlaying skin
before closing the incision. Also, electroencephalographic (EEG) and electrooculographic
(EOG) electrodes were inserted into the midline cranium and the superior orbital ridge for
recordings to score wakefulness/sleep during night studies. The electrodes were attached to
screws, secured with dental acrylic, and the wires were pulled through the skin prior to
closure of the incision.

In a second surgery two weeks later, stainless steel microtubules (70.0 mm length, 1.27 mm
outer diameter, 0.84 mm inner diameter) were chronically implanted unilaterally (n=3) or
bilaterally (n=12) into or near the preBo6tC of the VRC (Figure 1A & 1B). An incision was
made that bisected the nuchal ligament along the dorsal midline of the skull and neck. A
rotary drill was used to create an occipital craniotomy for visualization of the dura which,
when opened, exposed the dorsal medulla. Obex served as an anatomical reference for
micromanipulator controlled microtubule placement into the VRC. The target for placement
was the preBotC which in goats is approximately 2.5 to 3.5 mm rostral from obex, 4.0 t0 5.0
mm lateral from the midline and 4.0 to 6.0 mm from the dorsal surface of the medulla
(Krause et al., 2009a; Wenninger et al., 2004). However, in some cases adjustments in
microtubule placement had to be made to avoid blood vessels. Following microtubule
placement, screws were inserted into the skull to which the microtubules were chronically
secured using dental acrylic. Stainless steel stylets, slightly shorter than the microtubules,
were inserted into the microtubules and the incisions sutured closed. Following the
procedure, post-operative monitoring and medications were administered as described
above.

Physiological Studies

The goats were acclimated to study protocols and equipment during the weeks of recovery
from surgery. To obtain ventilatory data, a custom fitted mask was secured to the goat’s
muzzle. A two-way breathing valve was inserted into the front of the mask with hoses
attached to the inlet and outlet of the valve. For all studies, normal room air was inhaled
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though the inlet hose which was attached to a pneumotachograph connected to a computer.
Windag data acquisition software was utilized for breath-by-breath recording of inspiratory
flow for computation of inspiratory (T) and expiratory (Tg) time, breathing frequency (f),
tidal volume (V1), mean inspiratory flow rate (V1/T;) and inspiratory minute ventilation
(V). The outlet hose was attached to a Tissot spirometer for collection of expired air (the
volume of which was measured at 5 minute intervals). Expired air was analyzed for O, and
CO», concentration and those values were used to calculate O, consumption and CO,
excretion. In several goats, heart rate (HR) and blood pressure (BP) were recorded via an
indwelling catheter secured in the elevated carotid artery (which also facilitated blood
sampling). Arterial blood samples were analyzed for pH, paCO», paO,, and O, saturation
using a Siemens RapidLab248 blood gas analyzer. For night/sleep studies, the only change
was the addition of EEG and EOG wires attached to the implanted electrodes. Rectal
temperature was routinely recorded.

Dialysis probes (Harvard Apparatus, formerly CMA microdialysis, Holliston MA) inserted
into the microtubules were 72 mm in length, 70 mm of which is a stainless-steel tube and the
final 2 mm is a semi-permeable membrane (membrane diameter 0.5 mm, 20kda cut-off, 3pl
internal volume). Only the 2mm membrane penetrated the brain tissue. During studies, the
perfusate was either mock cerebral spinal fluid (mCSF: 124mM NacCl, 2.0mM KCL, 2.0mM
MgCl,, 1.3mM K,POy4, 2.0mM CaCl,, 11mM glucose, 26mM NaHCO3™ and pH 7.32 in
sterile distilled H20) alone or with the p-opioid agonist DAMGO (10, 50 or 100uM, Sigma-
Aldrich: E7384) or the GABA agonist muscimol (0.5, 1.0, or 10.0mM, Abcam: ab120094).
The solutions were prepared in a tonometer flask, warmed to 39°C, and equilibrated with
6.4% CO5 and 12% O, balance N2. A syringe pump (Harvard Apparatus) delivered the
dialysate to the dialysis probe at a flow rate of 25uL/min. To minimize distraction of the
goat, the pump was outside of the chamber; thus, a 150 cm length of polypropylene tubing
(PE50) was needed to connect the syringe to the probe. The length of the tubing caused a
delay of about 20 minutes between the start of dialysis and the arrival of perfusate at the
probe tip. Moreover, during the initial 15-20 minutes of hour three, drug delivery to the
tissue would continue as in hour 2. In addition, thereafter washout of the drug from the
tissue would be time-dependent. As a result, the temporal pattern of ventilatory responses
(shown in Figures and Tables) likely reflect these drug delivery and washout characteristic.
To collect effluent dialysate, a short length of tubing was attached to the outlet end of the
probe which was then attached to a modified cryotube. Separate tubes were used for effluent
collection during each hour of dialysis. The effluent was then aliquoted and frozen at — 80°C
for subsequent analysis by department biochemical core lab facilities.

We performed uni- and bilateral dialysis of DAMGO, but dialysis of muscimol was only
unilateral for reasons stated on page 6. Provided in Table 1 is a list of studies which were
completed on each of the 15 goats. Thirty minutes after probe insertion, we collected data
over a fifteen-minute pre-dialysis control period which was followed by three continuous
hours of dialysis. Hour 1 was mCSF alone, hour 2 was mCSF alone or mCSF mixed with a
drug, and hour 3 was again mCSF alone. DAMGO dialysis was at concentrations of 10, 50,
or 100 uM which is over the range and duration others used in dialyses studies on rats or
dogs (Montandon et al., 2011; Mustapic et al., 2010). Muscimol dialysis was at
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concentrations of 0.5, 1.0, or 10.0 mM which is over the range and duration others used in
studies on awake and sleeping rats and piglets (Curran et al., 2001; Nattie and Li, 2008;
Taylor et al., 2006). Day studies were completed between 9 AM and 2 PM. Night studies
were completed between 7 PM and 2AM. A minimum of 36 hours was allowed between
consecutive studies on individual goats.

Neurochemical Analyses

To measure the amino acids glutamine (GLN), glycine (GLY) and GABA present in effluent
dialysate reverse phase high performance liquid chromatography was used as published by
Muere et al. with fluorescent detection using: Waters Resolve C18 column (150X 3.9) and a
fluorescent detector with excitation at 229nm and emission at 470nm, p-alanine internal
standard was used with O-phthaldialdehyde derivatization (Muere et al., 2013). To measure
5-HT and its metabolite HIAA, an identical column was used but the potential was set at 0.6
volts vs. an Ag/AgCl reference electrode and a N-methylserotonin internal standard was
used. A commercially available assay (Enzo Life Sciences, Assay Designs 900-018, range
9.76-10,000 pg/mL) and a microplate reader at 405 nm were used to determine SP levels.
Measurement of norepinephrine, dopamine and their metabolites (DOPAC and HVA) was
accomplished by using a Waters uBondapak C18 column (300 x 3.9), potential setting of
0.65 volts vs Ag/AgCL reference electrode, and a 2, 5-dihydroxybenzylamine hydrobromide
internal standard.

Microtubule location was determined both functionally and histologically. Functional
determination was accomplished via injections of N-methyl-D-aspartic acid (NMDA). The
rationale for NMDA injections was based on previous findings that glutamate receptor
agonist injections into the preBotC elicits a tachypneic ventilatory response (Krause et al.,
2009b; McCrimmon et al., 2000; Solomon et al., 1999; Wenninger et al., 2004) thus, to
approximate microtubule placement relative to the preB&tC, 500 nL injections were made of
mCSF alone or mixed with NMDA (100 mM). These injections were made in the awake
state at least two weeks after microtubule implantation when the goat had recovered from
the surgery. Injection tubes were inserted only to the distal end of the microtubule to avoid
tissue damage. Breathing was monitored continuously during a 30-minute control period and
over two hours during which, at 30 minute intervals, either mCSF or NMDA was injected
unilaterally.

A post-mortem histological determination of microtubule location was also performed in
each animal. The cerebral circulation was isolated under deep anesthesia before flushing the
brainstem with phosphate buffered saline, followed by 4% paraformaldehyde in PBS
following euthanasia. The brainstems were then extracted, dehydrated in successive 20 and
30% sucrose solutions at 4°C and then frozen (-80°C). The brainstems were serially
sectioned at 25uM in the transverse plane. One series was used for Nissl (cresyl violet)
staining to determine microtubule (MT) placement. Nissl-stained images (scanned resolution
of 4,000 dots/inch) of the entire microtubule tract were captured (Nikon Super Coolscan
9000). Image software (Metamorph) was used to calibrate and measure microtubule
placement in millimeters (relative to the midline and the ventral medullary surface) near the
middle of the rostral-caudal MT damage range.
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Data and statistical Analyses

A pump with a known airflow rate was used to calibrate the inspiratory flow signal for
breath by breath calculation of V|, f, V1, T;, Tg and V1/T), using custom designed software
programs. The EEG and EOG signals were utilized by a single investigator to score sleep
state for each breath for night studies. Individual breath ventilatory data were averaged into
5 and 15 minute bins. For all ventilatory variables, metabolic rate (VO,), arterial blood
gases, arterial blood pressure (BP), heart rate (HR), and rectal temperature (TR), a two-way
repeated (RM) measures ANOVA compared all drug (DAMGO or muscimol) doses to
mCSF alone (one factor repetition with dose and time as factors). Statistical analyses were
over different portions of the predialysis period and 3-hour dialysis protocol. The interaction
P values indicated whether there were statistically significant differences between mCSF
alone and mCSF mixed with drugs. For night studies, interaction term P values from two-
way RM ANOVAs (two factor repetition, state and time as factors) were performed to
determine the effect of sleep state on ventilatory variables. Statistical analyses were on
absolute values for each variable and again for each variable during hours 2 and 3 of the
protocol expressed as a percent of the variable over the last 15 minutes of hour 1. Variability
in ventilatory parameters was quantified using the coefficient of variation (CV). The CV was
determined for all breaths during 5 minute intervals. A two-way RM ANOVA (with dose and
time as factors) was used to determine if significant interactions occurred resulting from
DAMGO or muscimol dialysis. Holm-Sidak post hoc tests were used where appropriate
after each ANOVA.

Neurochemical Analysis

Results

For statistical analyses of neurochemical data, two-way RM ANOVASs (one factor repetition,
dose and time as factors) were used. The P values of the interaction term of ANOVA
indicated whether the effect on effluent neurochemical concentration over time of antagonist
dialysis was significantly different from that of the time-control studies. This analysis was
performed for SP, 5-HT, GLY, GABA, and norepinephrine for both muscimol and DAMGO
studies. Also, we computed the change in each neurochemical between pre and post dialysis
of DAMGO and muscimol, and then used a one-way ANOVA (drug as factor) to determine
whether the neurochemicals significantly changed.

Placement of microtubules (MTs)

Shown in Figures 1A and 1B are representative transverse sections of the goat medulla in
which the location of the distal end of the histologically identified microtubule tract is
identified for each animal (represented by number). The dialysis membrane extended 2 mm
beyond (ventral) the dorsal-most aspect of the microtubule implantation site. We did not
measure drug diffusion in this study, but conservatively estimated an affected region (Figure
1) based on our previous dialysis studies in which we measured brain pH changes at two
distances that resulted from dialysis of CO,-enriched mCSF (Hodges et al., 2004). In that
study, we measured a dose-dependent decrease in extracellular fluid pH ~220 um from the
dialysis probe when 25% or 80% CO, was dialyzed, but simultaneous measurements of pH
at a distal brainstem site (~1.4 mm) from the site of focal acidosis indicated no detectable
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change in pH. Accordingly, we conservatively estimate a minimal diffusion of DAMGO to
be ~0.25 mm from the dialysis probe recognizing that others in rats have found greater
DAMGO diffusion distance (1.5 — 2.0 mm) from the dialysis probe (Montandon et al.,
2011). We included a 2x1 mm gray box which represents a minimal estimate of the affected
brainstem region relative to the estimated location of the VRC (circle). However, our model
of pH changes with dialysis of acidified mMCSF may underestimate the diffusion area as the
in vivo brainstem has great capacity to buffer protons but there is no comparable uptake of
DAMGO.

As indicated in Table 1, we unilaterally dialyzed on both sides of the VRC in six goats and
in four other goats, unilateral dialysis was only on one side; thus, there were 16 sites of
unilateral dialysis. Of these sixteen, eleven were in the estimated affected regions. (Figure
1A). Bilateral dialysis was in seven goats. Thirteen of the fourteen estimated affected
regions for the bilateral studies (Figure 1B) reached the VRC.

As in past studies, we used the breathing frequency response to the glutamate receptor
agonist NMDA as a functional marker of proximity to the preBotC. We found breathing
frequency increased at least 10% after twenty-two of thirty-one NMDA injections made in
the fifteen goats (insets Figure 1A and 1B). In contrast, when only mCSF was injected,
breathing frequency increased more than 10% in only two of the thirty-one injections. The
variation in the responses to NMDA and the variation in histologically identified MT
placement suggests that the dialyzed receptor agonists likely were not restricted to the
targeted preBotC or the VRC in all goats. This possibility is a limitation of our study and
will subsequently be discussed.

DAMGO Microdialysis

There were no effects of time or dose (no significant interaction term; P>0.05) in the two-
way repeated (RM) measures ANOVA comparing absolute values measured during
unilateral dialyses of mCSF alone or three doses of DAMGO (Table 2). Moreover, when the
physiologic responses during and after unilateral DAMGO dialysis were normalized to Hour
1 control values (immediately prior to DAMGO dialysis), there also was no significant
effects of time and dose for V|, f, V1, (Figure 2) or any other measured physiologic
parameter. However, we noted a consistent trend for a transient reduction in V, during the
final 30 minutes of 50 uM and 100 uM DAMGO dialyses. The individual goat data
suggested there were differences between goats in the time within this period when V, was
reduced; thus, a moving time average was computed for 3 successive 5 minute intervals,
which is shown in Figure 3. Using this approach, there was a significant difference in the V,
responses among mCSF dialysis and the 3 doses of DAMGO (£ = 0.042) (one-way ANOVA,
dose as factor). The post hoc test indicated that the response to mCSF dialysis differed
significantly from 50 pM DAMGO dialysis. Finally, dialysis of DAMGO destabilized
breathing (Figure 4), where the coefficient of variation in f during and after the last 30
minutes of DAMGO dialysis was significantly (P < 0.042) increased compared to mCSF
dialysis.

There were significant (P <0.05) effects of time and drug for V|, f, T Tg, and V1/T; when
comparing bilateral dialysis of mCSF with bilateral dialysis of 100 uM DAMGO during the
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day. Expressing the data as absolute values over the entire study protocol (Table 3), or when
expressed as percent of control values immediately prior to DAMGO dialysis (Figures 5
and 6), we found that bilateral dialysis of 100 uM DAMGO during the day significantly (P
<0.05)increased V|, f, Tg, and V1 /T and decreased T. Bilateral dialysis of DAMGO also
destabilized breathing (Figure 7), where the coefficient of variation of V| and f (Figure 8)
were significantly (P <0.001) greater during the hour after bilateral DAMGO dialysis
compared to the hour after mCSF dialysis. There were no significant (£=0.516) changes in
any other measured variable during bilateral dialysis of DAMGO during the day (Table 3).

At night, for unilateral and bilateral (Figure 9) dialysis of 100 uM DAMGO, there were no
significant interaction terms in two-way ANOVA analysis (time and state as factors) when
comparing responses during awake and NREM sleep (Tables 4 and 5).

During daytime unilateral DAMGO dialysis, a one-way ANOVA analysis of the change in
GABA between pre and post dialysis of DAMGO indicated there was a significant (P <
0.020) decrease in GABA during dialysis of 50 uM and 100 uM DAMGO (Figure 10). In
addition, during both unilateral and bilateral dialysis of 100 UM DAMGO at night, there
were significant (£<0.001) decreases in GABA in the effluent mCSF. However, bilateral
dialysis of 100 uM DAMGO during the day did not significantly (P> 0.05) alter GABA.
Lastly, there were no significant changes (P> 0.05) in 5-HT, SP, glutamine, glycine,
dopamine, norepinephrine and the metabolites DOPAC, HIAA, and HVA in the effluent
dialysate during DAMGO dialyses studies (data not shown).

Muscimol Microdialysis

A two-way ANOVA (time and dose as factors) indicated there were no significant (£> 0.05)
differences in absolute values of physiologic variables between mCSF dialysis and dialysis
of three muscimol concentrations (0.5, 1.0, or 10 mM) (Table 6). However, when variables
during and after muscimol dialysis were expressed as a percent of the periods just prior to
muscimol dialysis, there were significant effects of time and dose for V, (P< 0.025) and f (P
< 0.044) when all muscimol doses were compared and when each elevated muscimol
concentration was individually compared to the mCSF study (Figure 11, 1.0 mM shown).
Expressed as percent change, only 0.5 mM muscimol significantly (£ < 0.005) altered V.
All doses of muscimol significantly (P < 0.023) decreased TE but did not significantly (P>
0.577) alter Ty or V1 /T, (Figure 6).

The highest concentration of muscimol (10.0 mM) induced varied degrees of behavioral
excitability, nystagmus, spastic limb movements, and postural instability lasting up to 4
hours following the completion of studies. In 3 of 9 studies, these behavioral effects were
too severe to warrant continuation of the study beyond the second hour. Two of the three
animals had a dramatic increase in f accompanied by severe behavioral effects, while the
third animal’s breathing frequency decreased eventually leading to terminal apnea. Despite
these major behavioral changes, there were no significant changes during or after muscimol
dialysis in all neurochemicals analyzed in the effluent mCSF, although norepinephrine
increased in 4 of 6 goats during dialysis of 10.0 mM muscimol (data not shown). For all
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doses of muscimol, there were no significant (P= 0.094) changes in paO,, paCO», BP, HR,
TR, or VO, (Table 6).
Discussion

Microdialysis of antagonists to excitatory, neuromodulatory, G protein-coupled receptors
into the VRC of awake and sleeping goats (Langer et al., 2016; Muere et al., 2013, 20153;
Muere et al., 2015b; Muere et al., 2015c¢) support the concept of neuromodulator
compensation, whereby decreases in excitatory receptor activity are compensated by
increases in other (predominantly excitatory) neuromodulators to prevent a decrease in
ventilation and breathing frequency (Doi and Ramirez, 2008, 2010). In other words, there is
“compensation” defined as no change in ventilation with dialysis of excitatory antagonists
and that this may be due to the observed concomitant increase in excitatory (SP) and
decrease in inhibitory neurotransmitters (GABA).

The objective herein was to determine whether compensation would also occur during VRC
dialyses of agonists to inhibitory, G protein-coupled (u-opioid) or inhibitory, ionotropic
(GABA) receptors in awake and sleeping goats. Ventilatory data indicated that what
appears to be compensation occurred during dialysis of both types of inhibitory receptor
agonists. Furthermore, it appears the compensation in neuromodulators differed between
agonists to inhibitory G protein-coupled (p-opioid) receptors and agonists of inhibitory
ionotropic (muscimol) receptors.

Ventilatory and neurochemical effects of opioids dialyzed into the VRC

p-opioid receptors are widely and abundantly expressed throughout respiratory control
regions in the brainstem, including the preB6tC region of the VRC (Gray et al., 1999; Haji et
al., 2003; Krause et al., 2009a; Pattinson, 2008; Stornetta et al., 2003). These inhibitory,
neuromodulatory receptors may contribute to the regulation of normal eupneic ventilation
through the activity of endogenous opioids. The activation of these receptors also contributes
to unwanted depression of ventilation with opiate use clinically, or cardiorespiratory failure
in cases of opiate abuse/overdose. Previous studies have addressed the effects of
exogenously applied opioid receptor agonists within the neural networks that control
breathing, but these studies show inconsistent effects on ventilatory variables (Krause et al.,
2009a; Lalley, 2008; Montandon et al., 2011; Mustapic et al., 2010; Pattinson, 2008).
Montandon et al. dialyzed DAMGO into the preB6tC of awake and anesthetized rats and
found that breathing frequency was depressed at low concentrations, and found complete
apnea at higher concentrations (Montandon et al., 2011). In contrast, Mustapic et al. reported
that the injection of DAMGO into the preB6tC of decerebrate (unanesthetized) dogs
increased breathing frequency and phrenic nerve output (Mustapic et al., 2010). Different
still were studies by Krause et al., in which DAMGO bilaterally injected into the preB6tC of
awake goats did not affect respiratory rhythm or pattern while breathing room air (Krause et
al., 2009a). Our current results differ from each of the above as unilateral DAMGO dialysis
decreased ventilation, but bilateral dialysis increased ventilation, breathing frequency and
ventilatory drive while it decreased inspiratory time. In addition, both unilateral and bilateral
dialysis of DAMGO destabilized breathing frequency, which is similar to previous reports
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that opioids can cause increased variability or destabilization of breathing (Mitsis et al.,
2009; Pattinson, 2008; van den Aardweg, 2009; Walker et al., 2007). Collectively, these data
suggest that the effect of opioids on ventilation might differ between species, state of
wakefulness, and the nature of the experimental preparation.

During unilateral DAMGO dialysis, a local decrease in GABA (as indicated in the collected
effluent mCSF, Figure 10) may have provided neuromodulatory compensation for a
presumed DAMGO-induced depression of ventilation (Figure 3). In other words, an initial
direct depression of ventilation (Figure 3) by DAMGO may have been offset within minutes
by a secondary/compensatory decrease in GABA or by a change in another neurochemical
to return ventilation to normal. This secondary/compensatory response may have been
relatively greater with 100 uM compared to 50 uM which is why a significant depression in
ventilation was found with 50 uM but not 100 pM DAMGO. A secondary/compensatory
response is sufficiently rapid to prevent a detectable decrease in ventilation during dialysis of
antagonists to excitatory neuromodulator receptors (Muere et al., 2013, 2015a; Muere et al.,
2015b; Muere et al., 2015c). Compensation during DAMGO dialysis may also have been
within the contralateral VRC. However, findings herein (Figure 5) do not support this
possibility as bilateral DAMGO dialysis /ncreased ventilation. This finding is similar to
bilateral dialysis of antagonists to excitatory receptors which also increased ventilation even
though ventilation did not change during unilateral dialysis of these antagonists (Langer et
al., 2016). Accordingly, during unilateral and bilateral dialysis, there likely are multiple
factors affecting ventilation, which makes it difficult to measure a steady-state, maximal
effect, or recovery effect. The cause of the increased ventilation with bilateral DAMGO was
not associated with decreased GABA; thus, we speculate it is due to other mechanisms such
as increases in excitatory neuromodulators not yet measured and/or changes in second
messengers downstream of G protein-coupled neuromodulator receptors. We have no
explanation for why the increased ventilation with bilateral DAMGO dialysis did not result
in arterial hypocapnia even though metabolic rate did not change. Nevertheless, whatever the
exact mechanism of the neurochemical response to perturbation of neuromodulator
receptors, it does not appear unique to awake and NREM sleep states as Langer et al found
increases in 5-HT and SP equal in awake and anesthetized goats during dialysis of 50 mM
atropine (Langer et al., 2016).

Opioids administered clinically in humans for pain management clearly cause respiratory
depression, and when given intravenously likely simultaneously depress multiple respiratory
nuclei (Pattinson, 2008). Why does neuromodulator compensation not prevent this
respiratory depression? It is not known whether neuromodulator compensation is widespread
throughout the brain. Thus, the specific neural sites providing a tonic drive to breathe
(chemoreceptors) and/or sites of respiratory-associated motor neurons (such as the
hypoglossal nuclei) might not display neuromodulator compensation during opiate-induced
depression, and thus could be the major substrate for respiratory depression during clinical
intravenous opioid administration. Indeed opioid respiratory depression has been linked to
increased incidence of obstructive sleep apnea and sleep disordered breathing (Randerath
and George, 2012; Zutler and Holty, 2011), which as reported by Skulsky et al. (Skulsky et
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al., 2007) and Hajiha et al. (Hajiha et al., 2009) could be due to opioid depression of
hypoglossal muscle activity.

In reduced preparations opioids added to a perfusate of the medulla induced a quantal or
step-wise, rather than progressive, slowing of respiratory frequency (Mellen et al., 2003). In
awake goats quantal slowing does not occur during opioid administration to the VRC (which
includes the preB6tC). These findings suggest a fundamental difference in the effects of
opioids between reduced and intact preparations. Indeed, an index of the drive to breathe
(V1/TI) was increased during bilateral p-opioid receptor stimulation, which likely represents
the effects of compensation (or overcompensation) by neuromodulators. Moreover, the
present findings demonstrate a fundamental difference between the effects of DAMGO and
muscimol on respiratory drive and timing mechanisms.

Ventilatory and Neurochemical Effects of unilateral Muscimol Dialysis in the VRC

The current and past dialysis studies in unanesthetized goats found neuromodulator
compensation during perturbation of G protein-coupled receptors (Muere et al., 2013,
2015a; Muere et al., 2015b; Muere et al., 2015c). Herein we found what could be interpreted
as overcompensation for increases in inhibitory ionotropic GABA receptor activity during
muscimol dialysis. Several previous studies (Akilesh et al., 1997; Curran et al., 2000; Curran
et al., 2001; Darnall et al., 2001; Gatti et al., 1987; Yamada et al., 1981; Yamada et al., 1982)
found that administering muscimol to various brainstem regions depressed breathing and/or
arousal from sleep. On the other hand, other studies (Nattie and LI 2008, and Taylor et al.
2006) found that administration of muscimol increased breathing and/or increased the
ventilatory response to CO, and hypoxia (Nattie and Li, 2000; Taylor et al., 2006). Our
findings are similar to these latter studies as we found that muscimol dialysis increased
ventilation and breathing frequency.

We found no significant change in the levels of any measured neurochemicals in the effluent
mCSF that could counter a depressant effect of muscimol on neuronal activity. However,
10.0 mM muscimol dialysis increased norepinephrine in effluent dialysate in 4 of 6 goats,
which could have contributed to the increased V| in these goats. A mechanism of GABA
receptor-mediated increase in norepinephrine release has been proposed by Scatton et al.,
1981 who found that administration of a GABA receptor agonist (Progabide) in the rat
hypothalamus activated noradrenergic neurons and increased norepinephrine turnover
(Scatton and Bartholini, 1981). Another possible explanation is that muscimol acts on
presynaptic GABA receptors to increase glutamate release and postsynaptic neuronal
activity (Jang et al., 2006; Koga et al., 2005); thus, presynaptic, GABA-mediated glutamate
responses may contribute to the increased V, and f for all doses of muscimol. The behavioral
effects observed with muscimol dialysis could also be due to increased glutamate release, as
these effects were similar to those observed by Wenninger et al. after injection of ibotenic
acid (an excitatory neurotoxin which acts glutamate receptors) into the preB&tC of goats
(Wenninger et al., 2004).

Irrespective of the mechanism and/or pathway, the ventilatory responses to muscimol
indicate that some type of compensation and/or secondary effect exists to prevent respiratory
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depression during perturbations of inhibitory ionotropic receptors, which instead increased
ventilation in the behaving goat.

p-opioid and GABA receptor-mediated breathing instabilities

There was significant ventilatory instability with dialyses of the p-opioid receptor agonist
(Figures 4,7,8) and to some degree during muscimol dialysis. This instability contrasts to
studies (Langer et al., 2016; Muere et al., 2013, 2015a; Muere et al., 2015b; Muere et al.,
2015c¢) in which dialyses of antagonists to multiple excitatory receptors in the VRC did not
destabilize breathing. The destabilization with DAMGO could be due to time-dependent
changes in the direct effect of opioid-induced depression and the indirect effect of potential
compensatory mechanisms. Or a compensatory increase in an unknown excitatory
neuromodulator may have created a “high-gain controller”, which destabilizes breathing
(Asyali et al., 2002; Khoo, 2000). Finally, destabilization in the muscimol studies could be
due to increased norepinephrine which during pathological states induced increased
variability in breathing (Viemari et al., 2013; Zanella et al., 2014).

Caveats and Limitations

We previously summarized (Muere et al., 2013, 2015a; Muere et al., 2015b; Muere et al.,
2015c¢) the limitations and caveats of dialyses studies in the medulla of awake and sleeping
goats. One limitation is that the microtubules were not all implanted at the same site (Figure
1). The variation in placement was due primarily to the need for avoiding blood vessels on
the dorsal surface during surgical implantation. A second limitation is the uncertainty of the
exact boundaries of the targeted preBo6tC. To assess the proximity of the microtubule to the
preBOtC, we utilize the ventilatory response to the glutamate receptor agonist NMDA.
Herein, there was a positive response to NMDA even in some goats (see # 11 and 15) whose
post mortem histologic measurements indicated the microtubule was outside the estimated
boundaries of the preB6tC; thus, it is possible our anatomic estimate of the preBotC may be
too restrictive. A third limitation is the study may have been under powered which could be
why we did not detect a significant depression of ventilation with 100 pM unilateral dialysis
of DAMGO even though there was a significant depression with 50 uM unilateral dialysis of
DAMGO. A fourth limitation is uncertainty regarding the diffusion of the drugs dialyzed. A
final limitation is that we currently only have the capability of measuring the selected
neurochemicals in the effluent mCSF, and as a result we likely missed potential changes in
other local neuromodulatory molecules.

Summary and Conclusions

We found that: 1) V, decreased during unilateral but increased during bilateral dialysis of
DAMGO, 2) dialyses of DAMGO destabilized breathing, 3) unilateral dialysis of muscimol
increased breathing and 4) dialysis of DAMGO decreased GABA in the effluent mCSF. We
conclude: 1) neuromodulatory compensation can occur during altered inhibitory
neuromodulator receptor activity, and 2) the mechanism of compensation differs between G
protein-coupled excitatory and inhibitory receptors and between G protein-coupled and
ionotropic inhibitory receptors, and 3) the effects of presumed perturbations of inhibitory
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receptor activity within the respiratory control network shown herein likely have general
applicability to neuronal networks throughout the brain.
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Highlights
1. Increased inhibitory receptor activity in the VRC alters & destabilizes
breathing.
2. Changes occur in heuromodulators when inhibitory receptor activity is
increased.
3. Neuromodulator compensation depends on receptor type altered.
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Figure 1.

Figures 1A and 1B show sections of the goat medulla at two rostral to caudal distances from
obex depicting the microtubule location in which DAMGO or muscimol were dialyzed
unilaterally (1A) and bilaterally (1B). Each goat was numbered for unilateral and bilateral
studies, and the numbers for the left and right microtubule are located in the images where
the distal end of the microtubule was identified by post mortem histological analysis. The
0.5 mm wide porous membrane of the dialysis probe extended 2 mm beyond the distal end
of the microtubule; thus, we inserted a 2 mm long, 1 mm wide gray filled rectangle for each
number to represent a conservative estimate of the region of diffusion of the dialyzed
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substances (see text for basis of minimal diffusion). The circle in each image is the
approximate location of the VRC in goats. The inset in 1A and 1B is the quantitation of the
breathing frequency responses to mCSF and NMDA (mCSF/NMDA) injections displayed as
percent of control. Goats number 7 and 10 were included in both groups of studies.
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Figure 2.
Unilateral dialysis during the day of 100uM DAMGO (n=9, filled circles) did not

significantly (2=0.758) alter ventilation (V,, panel A), breathing frequency (f, panel B) or
tidal volume (V, panel C) compared to dialysis of mCSF alone (n=7, open circles). Data are
means + SE. The x Axis is time from start of 180 minutes of dialysis. As indicated by the
black line, 100uM DAMGO was dialyzed between 60 and 120 minutes. The values shown
during and after DAMGO dialyses are the percent of the last 15 minutes prior to DAMGO
dialyses. F and P values are the interaction term obtained from two-way repeated measures
ANOVA using time and dose as factors. Note the trend of a transient reduction in V; and f
over the last 30 minutes of DAMGO dialysis.
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Figure 3.
Because of the trend of a transient reduction in V; over the last 30 minutes of DAMGO

dialysis (Figure 2), a moving time average was computed using 3 successive 5 minute
intervals and the lowest value for each goat over the last 30 minutes of DAMGO dialysis and
mCSF are plotted in this figure (filled circles). Average values for each dose of DAMGO are
plotted using mean symbols, data are means = SE. One-way ANOVA indicated V, as a
percent of control differed significantly (£ < 0.042) over the 4 conditions shown. The post
hoc test indicated the responses to 0 and 50 uM differed significantly (P < 0.05).
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Figure 4.
Visual inspection of ventilatory tracings indicates variability of breathing increased during

and after unilateral dialysis of 100uM DAMGO. The four tracings were from a single goat
for a portion of the last 15 minutes of the predialysis control period (panel A) and the last 15
minutes of each of three hours of mCSF dialysis (panels B-D) with DAMGO increased
during the second of the three hours (Panel C).
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Figure 5.

Bilateral dialysis of 100 uyM DAMGO during the day (filled circles, n=7) significantly
(P<0.002) increased ventilation (V}, panel A) and breathing frequency (f, panel B) but did
not alter (A<0.446) tidal volume (V, panel C) compared to dialysis of mCSF alone (open
circles, n=7). Data are means + SE. Dialysis of 100uM DAMGO occurred between 60 and
120 minutes (indicated by solid line). The values shown during and after DAMGO dialyses
are the percent of the last 15 minutes prior to DAMGO dialyses. The F and P values are
interaction terms from two-way repeated measures ANOVA using dose and time as factors.
Asterisks denote values different between open and closed symbols ((P < 0.05), post hoc

test).
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Figure 6.
Inspiratory time (TI), expiratory time (TE) and tidal volume/ inspiratory time changed

differently between bilateral dialysis of DAMGO (left panels) and unilateral dialysis of
muscimol (right panel). Data are means + SE. Bilateral dialysis of 100 uM DAMGO (n=7)
during the day significantly (£< 0.001) decreased TI, increased TE during the post DAMGO
dialyses period, and increased V1/TI during and after DAMGO dialysis. Tl and V1 /Tl
increased after muscimol dialysis while TE was significantly (£ < 0.001) decreased during
and after muscimol dialysis. Filled circles indicate studies during which 100 yM DAMGO
was dialyzed during 60 to 120 minutes (solid line indicates period of DAMGO dialysis).
Two-way repeated measures ANOVA was used to obtain F and P values and values shown
are the interaction term of the ANOVA. Asterisks denote values different between open and
closed symbols (P < 0.05, post hoc test).
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Figure 7.
Visual inspection of ventilatory tracings indicates variability of breathing increased and

inspiratory time decreased during and after bilateral dialysis of 200uM DAMGO. The four
tracings were from a single goat for a portion of the last 15 minutes of the predialysis control
period (panel A) and the last 15 minutes of each of three hours of mCSF dialysis (panels B-
D) with DAMGO increased during the second of the three hours (Panel C).
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Figure 8.

The coefficient of variation of ventilation (V,, panel A) and breathing frequency (f, panel B)
within 5 minute periods was significantly (£ < 0.001) greater during the period after bilateral
100 pM DAMGO dialysis than after bilateral mCSF dialysis. Data are means + SE. The x
Axis is time from start of 180 minutes of dialysis. As indicated by the black line, DAMGO
was dialyzed between 60 and 120 minutes. The F and P values are interaction terms from
two-way repeated measures ANOVA using dose and time as factors. Asterisks denote values
different between open and closed symbols (P < 0.05, post hoc test).
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Figure 9.

During bilateral dialysis of 1200 uyM DAMGO (n=7) at night, there were no significant (P>
0.348) interaction terms for any ventilatory variable of the two-way ANOVA comparing

awake and NREM sleep (state and time). Data are means + SE.
averaged in 15 minute bins, the filled circles indicate the awake

Data from each state were
state and open circles

indicate the NREM sleep state. Dialysis of 100 uM DAMGO occurred during minutes

60-120 of the study and is indicated by the solid line.
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Figure 10.

Unilateral dialysis of 50 uM and 100 uM DAMGO during the day significantly (P< 0.02)
decreased GABA in the effluent dialyzed mCSF. Data are means = SE. On the x-axis are the
DAMGO doses and y axis indicates the change in GABA between hours 1 and 3 of dialysis.
Statistical analysis was by one-way ANOVA (drug as factor).
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Figure 11.
Unilateral dialysis of 1.0 mM (n=7) muscimol (filled circles) during the day significantly

increased ventilation (V,, panel A, £=0.025) and breathing frequency (f panel B, £=0.044)
but did not alter tidal volume (V, panel C, £=0.196) compared to dialysis of mCSF alone
(open circles) (n=7). Data are means + SE. The solid lines indicate the period during which
muscimol was dialyzed (60-120 minutes). Two-way repeated measures ANOVA was used
(dose and time as factors) to obtain F and P values. Asterisks denote values significantly
different between open and closed symbols (P < 0.05, post hoc test).
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