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ABSTRACT
Macroautophagy, a highly conserved process in eukaryotic cells, is initiated in response to stress,
especially nutrient starvation. Macroautophagy helps cells survive by engulfing proteins and
organelles into an unusual double-membraned structure called the autophagosome, which then
fuses with the lysosome. Upon degradation of the engulfed contents, the building blocks are
recycled for synthesis of new macromolecules. Recent work has demonstrated that construction of
the autophagosome requires a variety of small GTPases in variations of their normal roles in
membrane traffic. In this Commentary, we review our own recent findings with respect to 2
different GTPases, Arl1, a member of the Arf/Arl/Sar family, and Ypt6, a member of the Rab family, in
the yeast S. cerevisiae in light of other information from the literature and discuss future directions
for further discerning the roles of small GTPases in autophagy.
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Introduction

Macroautophagy is a process by which defective proteins
or organelles are packaged and transported for
breakdown in lysosomes (called vacuoles in the yeast
Saccharomyces cerevisiae) so that building blocks (amino
acids, lipids, etc.) can be recycled for reuse, especially
under stress conditions such that induced by nitrogen
starvation. Activation of this pathway, initiated by
inhibition of the Tor complex results in the construction
of an unusual double-membraned structure called the
autophagosome, which grows from a structure called the
phagophore at the phagophore assembly site (PAS). As
macroautophagy proceeds, the autophagosomes fuse
with the lysosome/vacuole then the inner membrane as
well as the engulfed contents are broken down by
degradative enzymes contained in the lysosome/
vacuole.1,2

Packaging of material into autophagosomes is a
complex process requiring membranes from a number
of different organelles, including the ER, Golgi appara-
tus, plasma membrane and mitochondria.3 Construction
and then consumption of autophagosomes require a
number of proteins specific to autophagy, the Atg
proteins. Finally, small GTPases of the Arf/Arl/Sar and
Rab families are required for both construction of the
autophagosome and fusion of the autophagosome with
the lysosome (or vacuole in yeast) in a variation of their

roles as membrane traffic regulators for the secretory
pathway and endocytosis.4-7 In this Commentary, we
will describe our recent work documenting roles for 2
GTPases in macroautophagy, Arl1, a member of the Arf/
Arl/Sar family of small GTPases, and Ypt6, a member of
the Rab family, in S. cerevisiae,8 describe how these data
fit into a larger understanding of the roles of membrane
traffic in macroautophagy, then discuss future directions.
We will focus primarily on what has been learned from
studies in yeast, but note that this process is highly
conserved across eukaryotes, including higher plants and
animals.

The roles of yeast ARL1 and YPT6
in macroautophagy

Arl1, highly conserved in eukaryotes, is involved in
membrane traffic in the secretory and endocytic path-
ways.9,10 Arl1 is also a mediator of KC homeostasis in
yeast,11-13 although it is unknown whether Arl1 plays a
similar role in other eukaryotes.

Our interest in exploring a potential role for Arl1 in
macroautophagy was initially sparked by results
describing a role for ARL1 in autophagic cell death in S.
cerevisiae,14 specifically, that a mutant allele of ARL1,
ARL1[D151G] extended the viability of a cdc28 mutant.
By using specific autophagy assays, the GFP-Atg8 assay,15

CONTACT Anne Rosenwald, PhD anne.rosenwald@georgetown.edu Georgetown University, 306 Regents, 37th and O Sts, NW, Washington, DC 20057,
USA.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/ksgt.
© 2016 Taylor & Francis

SMALL GTPASES
2018, VOL. 9, NO. 5, 409–414
https://doi.org/10.1080/21541248.2016.1246280

https://crossmark.crossref.org/dialog/?doi=10.1080/21541248.2016.1246280&domain=pdf&date_stamp=2018-06-07
http://www.tandfonline.com/ksgt
https://doi.org/10.1080/21541248.2016.1246280


which measures transfer of a key regulator of autophagy,
Atg8 to the vacuole by examining whether free GFP is
produced; and the Pho8D60 assay,16 which measures
arrival of phosphatase activity in the vacuole by auto-
phagy, we found that an arl1D mutant was unable to per-
form autophagy under certain conditions. Specifically the
defective autophagy phenotype was only observed at the
restrictive temperature of 37oC; autophagy proceeded
normally at the permissive temperature, 30�C. In addi-
tion, the phenotype was fully reversible upon reincuba-
tion of the cells at 30�C.8

Because YPT6 exhibits synthetic lethality with
ARL1,17 we also explored the potential role of YPT6 in
macroautophagy, and found a similar phenotype: ypt6D
strains are unable to complete autophagy at 37�C, yet the
phenotype is reversible upon reincubation at 30�C.8 By
using protein degron technology18 to construct a
degradable version of Arl1, we temporarily induced loss
of Arl1 in a ypt6D background and found that the cells
now showed an autophagy defect at 30�C, suggesting
that Arl1 and Ypt6 function reciprocally in autophagy.

The GTP-restricted allele of Arl1, ARL1[Q72L],
complements defects in membrane traffic,9,10 while a
nucleotide-free version of the protein, encoded by ARL1
[N127I] complements defects in KC homeostasis.12,19 We
therefore investigated which Arl1 alleles complemented
the autophagy phenotype and found only wild type and
the GTP-restricted allele, ARL1[Q72L] were able to do

so, supporting the hypothesis that Arl1s role in the
process is as a membrane traffic regulator. Interestingly,
the ARL1 allele, ARL1[D151G], despite the fact that this
allele appeared to extend lifespan in a cdc28 mutant14

was not able to complement the phenotypes we mea-
sured. However, similar to Arl1, the GTP-restricted allele
of YPT6, YPT6[Q69L], complemented the phenotype
whereas a GDP-restricted allele, YPT6[T24N] did not.8

Arl1 and Ypt6 are necessary for the construction of
the autophagosome, and are required for the anterograde
traffic of the sole transmembrane protein known to be
involved in autophagy, Atg9, to this structure. Moreover,
the 2 GTPases are required for at least delivery of mem-
brane components from the Golgi apparatus to the PAS,
but whether they also are required for delivery of
membrane components from other membranes (ER,
mitochondria, etc.) remains an open question. Finally,
based on previous data showing both Arl1 and Ypt6
interact with the Golgi-associated retrograde protein
(GARP) complex (specifically, Arl1 binds to the Vps53
subunit20 and Ypt6 binds to the Vps52 subunit21 of the
GARP complex) and that the GARP complex is
necessary for some forms of autophagy,22 we examined
the colocalization of Arl1 and Ypt6 with GARP complex
subunits Vps52 and Vps53 at the PAS upon induction of
autophagy,8 which resulted in the following model for
the roles of these 2 small GTPases in macroautophagy
(Fig. 1).

Figure 1. Current model for the reciprocal roles of Arl1 and Ypt6 in macroautophagy. Data shown in ref. 8 demonstrate that Arl1 and
Ypt6 in S. cerevisiae function to deliver Atg9-containing vesicles from the Golgi apparatus to the growing phagophore at the
phagophore assembly site (PAS) to make the autophagosome by virtue of their interactions with the Golgi-associated retromer complex
(GARP). In mutants lacking either ARL1 or YPT6, autophagy proceeds normally at the permissive temperature of 30�C because one of the
2 proteins is sufficient to bind to the GARP comples. However, in mutants lacking either of the genes, autophagy is inhibited at the
restrictive temperature of 37�C presumably because the strength of the interaction with a single small GTPase is insufficient to retain
GARP on the membrane at this temperature. A conditional mutant lacking both small GTPases is unable to perform autophagy at the
permissive temperature.
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Future directions

What is the complete set of small GTPase proteins
required for macroautophagy?

There are several dozen small GTPases found in S.
cerevisiae. The number found in multicellular eukaryotes
is even larger, especially with respect to the Rab protein
family (equivalent to the Ypt family in S. cerevisiae). No
systematic study has been undertaken of all the GTPase
proteins in even a simple unicellular organism like S.
cerevisiae, although it is clear several members of the
Arf/Arl/Sar and Ypt/Rab families are required for
construction of the autophagosome and for fusion of the
autophagosome with the vacuole.4,23,24 Members of the
Rac/Rho/Cdc42 family, proteins generally viewed as
regulators of cell polarity and cytoskeletal function, also
appear to have signaling roles in autophagy.25,26 Interest-
ingly, RhoA along with its downstream effector, ROCK1
appears to mediate switching between autophagy and
apoptosis via control of Beclin-1 (the ortholog of Atg6 in
S. cerevisiae) levels in mammalian cells.24 Ras proteins
appear to be involved in initiation of autophagy via
regulation of TORC1.27 In contrast, the GTPase complex
made of Gtr1 and Gtr2 (equivalent to RagA and RagB in
mammals) appears to stimulate TORC1.28,29 At present,
there is no evidence that Ran proteins, which regulate
movement of molecules in and out of the nucleus via
nuclear pores, have a role, but this question appears not
to have been explored to date.

How does regulation of nucleotide binding on small
GTPases affect macroautophagy?

The GTP-restricted versions of Arl1 and Ypt6 are
required for autophagy.8 Other GTPases in autophagy
also function in the GTP-bound state; examples include
Ypt1,30,31 Ypt31/32,32 and Ypt7,33-35 suggesting that
guanine nucleotide exchange factors (GEFs) are also
important for autophagy. Indeed, the Mon1/Ccz1 GEF
for Ypt733-35 and the Trs130 protein,32 part of the
complex that regulates Ypt31/32, have been shown to be
necessary for autophagy. However, it may be challenging
to determine which GEF is the relevant one for
autophagy for a given small GTPase, including Arl1 and
Ypt6, given that many small GTPases are turned on by
several different GEFs and that many GEFs activate
several different GTPases. For example, a network of
GEFs and GTPases appear to work together for Arf and
Arl proteins.36,37 In addition, GEF proteins can be regu-
lated spatially and temporally by the addition of protein
subunits. As an example, the TRAPP complex which
serves as a GEF for Ypt1 is found in 3 different forms,
TRAPP I, which regulates traffic from the ER to the

cis-Golgi; TRAPP II, which regulates intra-Golgi traffic;
and TRAPP III, which is specific for autophagy share a
number of subunits, but TRAPP II and TRAPP III have
more subunits than TRAPP I.30,31,38-41

Recently, it has been demonstrated that Syt1, a GEF
for Arl1, is phosphorylated upon induction of the
unfolded protein response, resulting in increased
activation of Arl1.42 Similarly, the Rab12 GEF, DENND3
is phosphorylated by ULK1 (the ortholog of Atg1 in S.
cerevisiae) which then promotes autophagy.43,44 It is
conceivable that other GEF post-translational modifica-
tions might be important for activation of small GTPases
in their roles as modulators of autophagy.

By similar reasoning, GTPase activating proteins
(GAPs) would also be expected to be important for
regulation of autophagy, since they would be responsible
for terminating the signals transmitted by GTPases in
the GTP-bound state. This appears to be the case, at least
for Rab proteins, where it has been shown that several
Rab GAPs coordinate autophagy and “normal” functions
of Rab proteins in the secretory pathway and endocyto-
sis.45-47 While the issue of networks of GAPs and
GTPases may make this a challenging problem to
investigate,36,37 recent work has elucidated some of the
details with respect to Rabs and RabGAPs in particular
in different forms of autophagy, including in xenophagy,
the process by which autophagy is induced in response
to bacteria or viruses.6

Which effectors are required for macroautophagy?

Arl1 and Ypt6 appear to direct the GARP tethering
complex to the growing autophagosome.8 Other
elements of the membrane traffic apparatus appear to be
co-opted by the autophagy machinery in order to grow
the autophagosome and then fuse the autophagosome
with the vacuole/lysosome, including other tethering
complexes, such as the HOPS complex downstream of
Ypt7;48 SNAREs;49 coat proteins such as COPII,
downstream of Ypt1;50 and membrane deformation
proteins such as Ivy1, an I-BAR protein downstream of
Ypt7.48 Likely other downstream effectors, including
other modulators of membrane traffic will be revealed to
have roles in autophagy.

Are small GTPases required for other forms
of autophagy?

The preceding discussion focuses on macroautophagy,
that induced by starvation. However, less is known about
the roles of small GTPases in other forms of autophagy.
We demonstrated that Arl1 and Ypt6 have modest roles
in the cytosol-to-vacuole (CVT) pathway, a constitutive
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process responsible for delivery of several enzymes to the
vacuole in yeast.8 However, we have not yet investigated
whether these 2 GTPases have roles in other forms of
autophagy, including mitophagy, induced to recycle
defective mitochondria; pexophagy, for elimination of
unwanted peroxisomes; ER-phagy, for elimination of
excess ER; etc. These pathways, which have been shown
to involve other small GTPases, will provide interesting
avenues for future research into the roles of Arl1 and
Ypt6 in cellular functions.
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