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Abstract

Hypertension represents a major cardiovascular risk factor. The pathophysiology of increased 

blood pressure (BP) is not yet completely understood. Transcriptome profiling offers possibilities 

to uncover genetics effects on BP. Based on 2 populations including 2549 individuals, a meta-

analyses of monocytic transcriptome-wide profiles were performed to identify transcripts 

associated with BP. Replication was performed in 2 independent studies of whole-blood 

transcriptome data including 1990 individuals. For identified candidate genes, a direct link 

between long-term changes in BP and gene expression over time and by treatment with BP-

lowering therapy was assessed. The predictive value of protein levels encoded by candidate genes 

for subsequent cardiovascular disease was investigated. Eight transcripts (CRIP1, MYADM, 

TIPARP, TSC22D3, CEBPA, F12, LMNA, and TPPP3) were identified jointly accounting for up 

to 13% (95% confidence interval, 8.7–16.2) of BP variability. Changes in CRIP1, MYADM, 

TIPARP, LMNA, TSC22D3, CEBPA, and TPPP3 expression associated with BP changes—among 

these, CRIP1 gene expression was additionally correlated to measures of cardiac hypertrophy. 

Assessment of circulating CRIP1 (cystein-rich protein 1) levels as biomarkers showed a strong 

association with increased risk for incident stroke (hazard ratio, 1.06; 95% confidence interval, 

1.03–1.09; P=5.0×10−5). Our comprehensive analysis of global gene expression highlights 8 novel 

transcripts significantly associated with BP, providing a link between gene expression and BP. 

Translational approaches further established evidence for the potential use of CRIP1 as emerging 

disease-related biomarker.
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Hypertension as a major cardiovascular risk factor continues to be a significant health 

challenge1 and imparts an increased risk of cardiovascular and kidney diseases.2,3 

Hypertension is determined by multiple factors, and during the past years, the immune 

system (mainly T cells) and inflammatory processes have emerged as key contributors to 

elevated blood pressure (BP) in several experimental animal and human models.4,5 A shared 

pathophysiology with manifest cardiac disease is suggested.3,6 Nevertheless, there is also a 

substantial genetic heritability of 30% to 60% for hypertension.7

Large-scale genome-wide association studies on hypertension or BP traits have been 

published.8–10 Some of the identified genetic variants primarily associated with higher BP 

also confer an increased risk for coronary artery disease, consistent with a causal 

relationship of increased BP and coronary artery disease risk.11,12 However, the distinct 

genetic variants identified by genome-wide association studies to date exhibit small effect 

sizes and explain 3.5% of the BP variance.10,11,13 Moreover, most genes near the identified 

genetic variants are not known to be functionally related to BP.14
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Global gene expression profiling offers novel possibilities for functional genomics, and 

possible effects of genetic variants on clinical phenotypes may be uncovered. Recent gene 

expression analyses for hypertension and BP traits identified gene expression signatures 

involved in multiple biological processes that contribute to BP regulation.15–19

Here, we investigated (1) the global gene expression based on transcripts levels in relation to 

BP traits in a 2-stage meta-analysis of 4 population-based studies, (2) the relationship of 

changes in BP and transcript levels over time, and (3) the clinical application of candidate 

genes as BP-related biomarkers.

Material and Methods

A detailed description of the methods and the study samples is given in the online-only Data 

Supplement. All studies followed the recommendations of the Declaration of Helsinki, and 

study protocols were approved by the local ethics committees. Written informed consent 

was obtained from all study participants.

Study Workflow

The study workflow is outlined in Figure S1 in the online-only Data Supplement.

1. A discovery meta-analysis of global monocyte gene expression and BP traits 

(systolic BP [SBP], diastolic BP [DBP], and pulse pressure) was performed 

combining data from the population-based studies GHS (Gutenberg Health 

Study)22 (n=1285) and MESA (Multi-Ethnic Study of Atherosclerosis)23 

(n=1264). Multiple testing was controlled by a false discovery rate approach 

implementing the Benjamin–Hochberg method. At this step, a false discovery 

rate threshold of 0.01 was used.

2. Transcripts displaying suggestive evidence for BP-associated changes were taken 

forward to external validation in whole-blood transcriptomic data sets of 1990 

individuals from 2 independent population-based studies (SHIP-TREND [Study 

of Health in Pomerania-TREND]24 [n=997] and KORA [Cooperative Heath 

Research in the Augsburg Region]25 F4 [n=993]). Criteria were (1) evidence for 

statistical significance (P<0.05) in each study for at least 1 BP trait, and (2) 

consistent direction of effect in discovery and replication.

To relate expression of candidate transcripts to BP changes, transcript levels were assessed 

in different settings: (1) a setting of long-term changes in BP for 5 years in GHS (n=1092), 

and (2) in the setting of a clinical trial to test the influence of BP-lowering medication by 

routinely used telmisartan/amlodipine and olmesartan on candidate transcript levels for 6 

months (n=406).

To assess additional clinical implications of the findings, candidate transcript levels were 

linked to measures of subclinical cardiovascular disease (CVD), and the relation of protein 

levels encoded by BP-related candidate transcripts was determined for incident 

cardiovascular events in serum samples of the population-based Moli-Sani Study26 (n=379) 

to test the applicability as circulating biomarkers.
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Gene Expression Profiling Using Microarray Technology

In GHS, KORA F4, and SHIP-TREND, RNA was processed using the Illumina 

TotalPrep-96 RNA Amp Kit (Ambion, Darmstadt, Germany), and labeled cRNA was 

hybridized to the Illumina HumanHT-12 v3 Expression BeadChip as described previously.27 

GHS 5-year follow-up samples were processed using the Illumina TotalPrep-96 RNA Amp 

Kit (Ambion), and labeled cRNA was hybridized to the IlluminaHT-12 v4 Expression 

BeadChips following manufactures recommendations. In MESA, the Illumina TotalPrep-96 

RNA Amplification Kit (Ambion) and the Illumina HumanHT-12 v4 Expression BeadChip 

were used for gene expression profiling.28

Statistical Analyses

Identification of BP-Related Candidate Transcripts—The microarray data were pre-

processed, normalized, log2-transformed, and quality controlled as described previously for 

GHS, KORA, SHIP-TREND,27 and MESA.28 Associations between mRNA levels and BP 

traits were estimated using linear regression models and adjusted for sex, age, body mass 

index, and the technical covariates plate layout, RNA Integrity Number, and storage time.27 

In MESA, the models were additionally adjusted for ethnicity. Association statistics from 

GHS and MESA were pooled by inverse-variance weighting of SEs using METAL (Meta 

Analyses Helper).29 In the primary analyses, individuals receiving antihypertensive 

treatment were not excluded. In a sensitivity analysis, individuals receiving antihypertensive 

drug treatment were excluded, leading to 941 eligible individuals in GHS, 815 in MESA, 

570 in KORA F4, and 602 in SHIP-TREND.

Analyses of Changes in Candidate Transcript Expression Over Time—A 

detailed description is given in the online-only Data Supplement. Briefly, association 

analysis between changes of BP traits and changes in candidate transcript expression after 5 

years in the GHS was performed using linear regression. Adjustments were performed for 

sex, age, BP trait at baseline, and body mass index change between baseline and follow-up. 

Controlling for multiple testing was performed using the Benjamini–Hochberg method,30 

and the significance level was set to 0.05. For changes in gene expression for 5 years in the 

GHS, results are given as mRNA change per 10-mm Hg increase in BP trait (delta mRNA)

±SE.

In the BP-lowering clinical trial, differential expression of candidate transcripts before and 

after BP-lowering therapy was calculated by linear mixed models adjusted for sex, age, and 

body mass index. Controlling for multiple testing was performed using the Benjamini–

Hochberg method,30 and the significance level was set to 0.05. For differential gene 

expression in the clinical trial, results are given as percent mRNA change (%mRNA change) 

after 6 months±SE.

Expression Quantitative Trait Loci (eQTL) Analysis in the GHS—eQTL analyses 

were performed in 1333 individuals from the GHS with available gene expression and 

available genome-wide genotyping data.20 Two approaches were used to identify eQTLs 

related to BP or CVD: (1) cis-eQTLs were calculated for single nucleotide polymorphisms 

(SNPs) within ±250 kb around the transcription start site and a minor allele frequency ≥1%, 
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and (2) eQTLs calculated based on published genome-wide association study results of BP-

related traits retrieved from the genome-wide association studies catalogue (March 20, 

2017).31

Results

BP-Related Gene Expression: Identification and Replication

The study characteristics are outlined in Table S1. Differential gene expression in relation to 

BP traits was assessed by a meta-analysis of GHS and MESA monocyte transcriptome data. 

At a false discovery rate <0.01, 91, 35, and 51, unique transcripts differentially expressed in 

relation to BP traits were identified (Table S2).

Validation of monocyte transcript expression findings was performed using whole-blood 

transcriptome data of 2 independent cohort studies: SHIP-TREND and KORA F4 (Table 

S3). Eight unique transcripts fulfilled criteria for an independent validation at a P<0.05, 

including 5 for SBP, 6 for DBP, and 3 for pulse pressure (Table 1), encompassing CRIP1, 

MYADM, TIPARP, TSC22D3, CEBPA, F12, LMNA, and TPPP3. Of these, CEBPA showed 

decreased transcripts levels associated with increased BP, whereas the remaining transcript 

levels were positively associated with BP. Associations between BP traits and expression 

remained significant after excluding individuals receiving antihypertensive treatment (Table 

S4) and when including only white subjects in MESA (Table S5). The BP-related transcripts 

were expressed at comparable levels in monocytes and whole-blood cells (Figure S2).

Variation of BP Traits Attributable to Candidate Transcripts

To assess the variance in BP levels attributable to gene expression, the R2 (percentage of 

phenotypic variance) was calculated (Table S6). In aggregate, the genes identified in the 

transcriptome analyses accounted in total for 2.82% to 11.33% (SBP), 2.11% to 8.31% 

(DBP), and 1.36% to 4.74% (pulse pressure) of the phenotypic variance of the respective BP 

traits. These data indicate that a larger proportion of BP variance is attributable to changes in 

gene expression levels as compared with an explained variance of only 3.5% by common 

genetic variants.13

Changes in BP and Corresponding Changes in Gene Expression

A direct link between changes in BP and candidate transcript expression in monocytes was 

assessed in different settings: (1) long-term BP changes for 5 years in the GHS population, 

and (2) by initiation of BP-lowering therapy for 6 months in a clinical trial.

Long-Term Changes in Transcript Expression in Relation to BP for 5 Years in 
GHS—In individuals with monocyte transcriptome data available at baseline and 5-year 

follow-up, a strong association between changes of BP traits and expression levels of 

CRIP1, MYADM, TIPARP, TSC22D3, CEBPA, LMNA, and TPPP3 was observed (Table 

2). Consistent with the data from the discovery/replication step, a negative association of 

CEBPA to BP changes was found, whereas the remaining transcripts were positively 

associated. These associations were independent of antihypertensive drug therapy. CRIP1 
transcript levels showed the strongest association with changes in BP traits after 5-year 
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follow-up (% mRNA change per 10 mm Hg SBP: 2.93±0.45; P=2.15×10−10; delta mRNA 

DBP: 5.19±0.77; P=8.46×10−11; delta mRNA pulse pressure: 2.2±0.62; P=5.0×10−4). Figure 

S3a–S3g shows the association between BP changes and respective mRNA level according 

to categories of BP changes.

Changes in Transcript Expression in Relation to BP by Antihypertensive 
Medication—BP-lowering medication resulted in a reduction of BP after 6 months (Figure 

S4). It was expected that this BP reduction lead to a decrease of the expression of transcripts 

that positively correlated with BP in the discovery phase and vice versa. Accordingly, the 

reduction of BP associated with a decrease in the expression of 7 of the 8 candidate 

transcripts (Figure). The strongest differential expression was found for CRIP1 (% mRNA 

change: −34.14%±3.55; P=5.6×10−14). Of note, CEBPA (% mRNA change: −51.84%±5.5; 

P=7.5×10−16) was the only transcript with a divergent expression association pattern, 

opposite what was expected.

In addition, we assessed the association between candidate transcripts and measures of 

cardiac hypertrophy. Of all candidate transcripts, CRIP1 was most strongly associated with 

septal thickness end diastolic (log2-fold mRNA change [log2 change] per mm: 0.0198; 

P=1.9×10−3), left ventricular posterior wall thickness end diastolic (log2 change per cm: 

0.003; P=1.0×10−4), left ventricular mass (log2 change per gram: 0.0006; P=5.0×10−4), 

relative wall thickness (log2 change per cm: 0.3697; P=3.5×10−2), and left ventricular 

hypertrophy (log2 difference between subjects with and without left ventricular hypertrophy: 

0.1276; P=5.2×10−3; Table S7).

All BP modulation strategies confirmed the uniform response of candidate transcripts to BP 

changes either over time or by BP-lowering medication. The strongest response in all 

approaches was observed for CRIP1.

Protein Levels of CRIP1 and Incident Cardiovascular Events

For the protein encoded by the most strongly associated transcripts, CRIP1, we investigated 

the potential to serve as biomarker for future cardiovascular events. We assessed the 

predictive value of circulating CRIP1 (cystein-rich protein 1) serum levels for the incidence 

of stroke, heart failure, and coronary artery disease in a population-based sample from the 

Moli-Sani Study. A significant association was found for incident stroke events (Table 3), 

indicating a predictive value of CRIP1 as biomarker for stroke.

Genetic Interplay on BP-Related Transcripts

Because transcript levels might be influenced by genetic variants, eQTL analyses were 

performed in the GHS monocyte transcriptome data set for SNPs related to BP or CVD traits 

following 2 approaches (Figure S5). First, regulatory SNPs around the candidate transcripts 

were examined for CVD-related SNP-trait associations using the Genome-Wide Repository 

of Associations Between SNPs and Phenotypes (GRASP) database. For CRIP1, TPPP3, and 

LMNA, significant cis-eQTLs (n=25, n=191, and n=30, respectively) were identified. Of 

these, 2 SNPs around CRIP1 were related to mitral annular calcium (eg, rs10151805; 
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P=4.55×10−5)32 and 5 SNPs to body mass index (eg, rs1475766; P=6.36×10−5)29 with 

P≤10−4 in the GRASP database (Table S8A).

The aim of the second approach was to investigate whether known BP-associated variants 

have a regulatory effect on candidate transcript expression. A total of 191 previously 

published BP-related SNPs were tested for associations with the 8 BP candidate transcripts 

(Table S8B). Two trans-eQTLs were identified (rs653178-T and rs3184504-C) that increased 

expression of 4 of the candidate genes (CRIP1, MYADM, TPPP2, and TIPARP; Figure S5). 

These SNPs were located on chromosome 12q24.12 and were in high linkage disequilibrium 

(pairwise disequilibrium coefficient=0.99; Table S9). Both SNPs, rs653178 (intronic to 

ATXN2) and rs3184504 (nonsynonymous SNP in SH2B3), have already been described as 

trans-eQTLs in monocytes and whole blood,15,19 indicating the importance of these 

candidate genes for coregulatory mechanisms underlying BP regulation. In our data, CRIP1 
expression was most strongly associated with both SNPs (rs653178: mRNA change per T 

allele±SE: 5.49%±1.05; P=3.59×10−7; rs3184504: mRNA change per C allele±SE: 5.42%

±1.06; P=6.53×10−7). The T-allele of rs3184504 was significantly associated with increased 

DBP (0.8 mm Hg per T-allele; P=0.043) but not to SBP (P=0.342) in the GHS.

Discussion

We demonstrated a direct link between the levels of 8 candidate transcripts and BP at a large 

scale. Our data show that transcript expression changes account for a large proportion of BP 

variance, and for the most relevant transcript—CRIP1— we showed a potential clinical 

application as circulating biomarker.

This study is one of the largest to investigate global gene expression of BP traits at the 

population level including >4500 individuals, harmonized data sets on monocytic and 

whole-blood gene expression and BP phenotypes, as well as data on long-term gene 

expression changes for 5 years from the same individuals.

Several findings from our study contribute to a more detailed understanding to BP genetics. 

First, compared with genetic variants, gene expression changes are associated with a 

considerably larger proportion of phenotypic BP variance. The genetic variants identified to 

date explain 3.5% of the BP variance,10 whereas the expression of the 8 candidate transcripts 

in aggregate accounted for up to 11% in our data. Changes in transcript expression, 

therefore, seem to reflect the biological changes of BP and hypertension in a better way 

compared with genetic variants.

Second, 8 transcripts were identified that associated with BP changes. These transcripts are 

not only expressed in blood cells but also in various human cells and tissues as shown by 

RNA sequencing in the Genotype-Tissue Expression project32 (Figure S6). Among these 

genes, CRIP1, MYADM, TIPARP, F12, and TSC22D3 have been previously implicated in 

hypertension.15,19,33–35 For the other transcripts, a connection to diseases related to BP, such 

as obesity and CVD, as well as important roles in the immune system have been described,36 

but the association with BP traits is novel. These findings seem plausible because numerous 

studies suggest that hypertension represents an inflammatory state and an involvement of the 
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immune system and, in particular, monocytes in the development of hypertension.3,37 For 

instance, selective ablation of lysozyme M-positive myelomonocytic cells attenuated 

angiotensin II–induced hypertension.5 Likewise, Itani et al4 showed that human T cells 

become activated by hypertensive stimuli, such as angiotensin II.

Previous studies identified BP-related signature genes, including MYADM and TIPARP.15 

By using monocytes, an important cell type of the innate immune system and effector in 

inflammation, we identified additional transcripts in relation to BP (CRIP1, TSC22D3, 

CEBPA, LMNA, TPPP3, and F12). We hypothesize that these genes might contribute to BP 

regulation and development via their role in the immune system and provide a starting point 

for further experimental work.

Finally, and clinically most relevant, circulating levels of the protein encoded by the most 

relevant transcript found— CRIP1—are associated with incident stroke, a sequela of 

hypertension, implying a potential role of CRIP1 as biomarker.

CRIP1 is a particular interesting candidate transcript for further investigation. In our data, 

CRIP1 consistently showed the strongest association (1) to BP at the population level, (2) to 

BP reduction mediated by antihypertensive medication, and (3) to longitudinal changes in 

BP during a 5-year time frame. The investigation of the genetic interplay by eQTL analyses 

revealed that the expression of CRIP1 (along with MYADM, TIPARP, and TPPP3) was 

highly associated with variants in the SH2B3/LNK locus. SH2B3 is a negative regulator of 

growth factors and cytokine signaling, and previous data have already implicated this locus 

as a master regulator involved in BP regulation.14,19,38 A Sh2b3−/− knockout leads to 

markedly elevated BP in response to low dose of angiotensin II.16

We speculate that the SH2B3 effect on BP is mediated— at least partly—by CRIP1. CRIP1 

belongs to the LIM/double-zinc finger protein family, and a relationship of CRIP1 to 

hypertension and renal disease has recently been shown. In the renin-expressing 

juxtaglomerular cells, crucial for BP control, CRIP1 expression was highly increased.39,40 

CRIP1 is also strongly expressed in immune cells, again indicating a link between CRIP1 

and BP regulation via the immune system. Along with the results presented here, these data 

highlight CRIP1 a promising BP-related candidate transcript for further examinations.

The main strength of this study is the large size of global and harmonized gene expression 

data that were associated with BP traits at a population level and the analysis of different cell 

types, including monocytes and whole blood providing a broader view. However, by using 

these different cell types, we might have missed additional transcripts that would have been 

discovered when using monocytes only. As we took care to include transcriptomic data 

derived using the same methodology (Illumina HT-12 Array) and standardized procedures,27 

no additional, independent population-based monocyte transcriptome data set is, to the best 

of our knowledge, currently available for replication.

As an additional strength, we were able to include data of longitudinal nature (for 5 years 

and after BP-lowering medication) to provide information on gene expression over time.
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A limitation of our work is that, to date, no independent population-based cohort with 

follow-up expression data is available for replication of our longitudinal data analyses. 

Furthermore, the highest proportion of explained BP variance by transcripts was observed in 

the discovery cohorts, and an independent validation in cohorts with available monocytic 

RNA would be valuable. Moreover, data on the predictive value of circulating CRIP1 levels 

need to be confirmed in further studies including a broad range of cardiovascular end points. 

It needs to be considered that CRIP1 levels were determined in a sample of moderate size 

(n=400), and the coefficient of variation of the ELISA immunoassay was >10%. The lower 

sample size and the moderate precision of the ELISA assay can cause a bias into the results. 

We speculate that by increasing the sample size or using a more valid ELISA assay (which is 

currently not available), the coefficient of variation might improve and increase the precision 

of the results, also for additional cardiovascular end points. Furthermore, the precise 

molecular mechanisms underlying the observed associations still require additional 

experimental follow-up projects.

In conclusion, using large-scale transcriptome data, our analyses highlight 8 transcripts 

significantly associated with BP. In particular, CRIP1 emerged as an attractive candidate to 

further elucidate the pathomechanisms of hypertension and to envisage in the long-term 

therapeutic intervention with respect to BP control.

Perspectives

The results from the present study show that several blood-based gene transcripts are 

associated with BP and long-term changes of BP, directly linking gene expression with BP. 

In addition, circulating levels of the protein encoded by the identified CRIP1 gene strongly 

associated with incident stroke events. These findings suggest that BP-related transcripts 

could serve as marker for diagnosis, monitoring, or treatment of hypertension in clinical 

practice. In particular, CRIP1 might additionally serve as circulating marker for future risk 

of development of CVD and stroke.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty and Significance

What Is New?

• Transcriptomics data from populations were analyzed providing novel 

insights into the genetics of blood pressure (BP). Eight transcripts, measured 

in monocytes and whole blood, were found to be related to BP changes.

What Is Relevant?

• Changes in transcript levels are related to BP changes. Levels of CRIP1, 

cysteine-rich protein 1, associated with future BP-related disease, such as 

incident stroke.

Summary

Using transcriptome data, this study highlights 8 transcripts significantly associated with 

BP. CRIP1 emerged as candidate to further elucidate the pathogenesis and mechanisms of 

hypertension.
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Figure. 
Relationship of blood pressure (BP) reduction and transcript expression by BP-lowering 

medication for 6 mo (n=406). Transcript expression was measured by quantitative 

polymerase chain reaction. Linear mixed models adjusted for age, sex, and body mass index 

were used to calculate differential gene expression. CEBPA indicates CCAAT/enhancer-

binding protein alpha; CRIP1, cysteine-rich protein 1; LMNA, lamin A/C; MYADM, 

myeloid-associated differentiation marker; TIPARP, TCDD-inducible poly(ADP-ribose) 

polymerase; TPPP3, tubulin polymerization-promoting protein family member 3; and 

TSC22D3, TSC22 domain family member 3.

Zeller et al. Page 14

Hypertension. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zeller et al. Page 15

Ta
b

le
 1

D
if

fe
re

nt
ia

lly
 E

xp
re

ss
ed

 T
ra

ns
cr

ip
ts

 A
ss

oc
ia

te
d 

W
ith

 B
P 

T
ra

its

G
en

e
G

en
e 

D
es

cr
ip

ti
on

D
is

co
ve

ry
In

de
pe

nd
en

t 
R

ep
lic

at
io

n
C

om
bi

ne
d 

A
na

ly
si

s

M
et

a 
G

H
S/

M
E

SA
K

O
R

A
 F

4
SH

IP
-T

R
E

N
D

M
et

a 
K

O
R

A
/S

H
IP

D
is

co
ve

ry
+ 

R
ep

lic
at

io
n

P
 V

al
ue

 (
m

R
N

A
 D

if
fe

re
nc

e 
[%

])

Sy
st

ol
ic

 b
lo

od
 p

re
ss

ur
e

 
C

R
IP

1
C

ys
te

in
e-

ri
ch

 p
ro

te
in

 1
7.

36
×

10
−

26
 (

3.
3)

2.
2×

10
−

2  
(1

.1
)

4.
8×

10
−

4  
(2

.1
)

6.
66

×
10

−
5  

(1
.5

)
3.

34
×

10
−

26
 (

2.
5)

 
M

Y
A

D
M

M
ye

lo
id

-a
ss

oc
ia

te
d 

di
ff

er
en

tia
tio

n 
m

ar
ke

r
1.

71
×

10
−

14
 (

1.
9)

8.
8×

10
−

4  
(1

.5
)

8.
1×

10
−

4  
(2

.1
)

2.
90

×
10

−
6  

(1
.7

)
2.

77
×

10
−

19
 (

1.
8)

 
T

IP
A

R
P

T
C

D
D

-i
nd

uc
ib

le
 p

ol
y(

A
D

P-
ri

bo
se

) 
po

ly
m

er
as

e
1.

62
×

10
−

12
 (

1.
5)

1.
9×

10
−

2  
(1

.3
)

5.
6×

10
−

4  
(1

.1
)

6.
60

×
10

−
5  

(0
.8

)
7.

90
×

10
−

15
 (

1.
1)

 
T

SC
22

D
3

T
SC

22
 d

om
ai

n 
fa

m
ily

 m
em

be
r 

3
1.

08
×

10
−

13
 (

2.
3)

2.
0×

10
−

2  
(1

.4
)

2.
0×

10
−

4  
(1

.9
)

1.
35

×
10

−
5  

(1
.7

)
1.

35
×

10
−

17
 (

2.
0)

 
C

E
B

PA
C

C
A

A
T

/e
nh

an
ce

r 
bi

nd
in

g 
pr

ot
ei

n 
al

ph
a

5.
62

×
10

−
5  

(−
0.

8)
4.

1×
10

−
3  

(−
1.

1)
1.

1×
10

−
3  

(−
1.

5)
1.

65
×

10
−

5  
(−

1.
3)

8.
29

×
10

−
9  

(−
0.

96
)

D
ia

st
ol

ic
 b

lo
od

 p
re

ss
ur

e

 
C

R
IP

1
C

ys
te

in
e-

ri
ch

 p
ro

te
in

 1
2.

17
×

10
−

16
 (

4.
7)

2.
1×

10
−

2  
(2

.2
)

1.
2×

10
−

2  
(2

.4
)

6.
41

×
10

−
4  

(2
.3

)
2.

29
×

10
−

17
 (

3.
7)

 
M

Y
A

D
M

M
ye

lo
id

-a
ss

oc
ia

te
d 

di
ff

er
en

tia
tio

n 
m

ar
ke

r
2.

21
×

10
−

6  
(2

.1
)

7.
0×

10
−

4  
(3

.1
)

9.
3×

10
−

3  
(2

.6
)

1.
99

×
10

−
5  

(2
.9

)
3.

08
×

10
−

1t
l  (

2.
3)

 
T

SC
22

D
3

T
SC

22
 d

om
ai

n 
fa

m
ily

 m
em

be
r 

3
9.

18
×

10
−

5  
(2

.1
)

3.
0×

10
−

3  
(3

.6
)

3.
7×

10
−

2  
(1

.7
)

6.
60

×
10

−
4  

(2
.3

)
2.

20
×

10
−

7  
(2

.1
)

 
C

E
B

PA
C

C
A

A
T

/e
nh

an
ce

r 
bi

nd
in

g 
pr

ot
ei

n 
al

ph
a

2.
11

×
10

−
6  

(−
1.

7)
4.

2×
10

−
4  

(−
2.

7)
8.

8×
10

−
4  

(−
2.

4)
1.

21
×

10
−

6  
(−

2.
6)

2.
90

×
10

−
11

 (
−

2.
0)

 
L

M
N

A
L

am
in

 A
/C

9.
11

×
10

−
5  

(2
.8

)
1.

0×
10

−
2  

(1
.9

)
2.

5×
10

−
3  

(1
.9

)
7.

06
×

10
−

5  
(1

.9
)

5.
02

×
10

−
8  

(2
.2

)

 
T

PP
P3

T
ub

ul
in

 p
ol

ym
er

iz
at

io
n-

pr
om

ot
in

g 
pr

ot
ei

n 
fa

m
ily

 m
em

be
r 

3
4.

85
×

10
−

16
 (

5.
4)

1.
9×

10
−

2  
(1

.5
)

4.
0×

10
−

2  
(1

.2
)

1.
87

×
10

−
3  

(1
.4

)
1.

54
×

10
−

12
 (

2.
6)

Pu
ls

e 
pr

es
su

re

 
M

Y
A

D
M

M
ye

lo
id

-a
ss

oc
ia

te
d 

di
ff

er
en

tia
tio

n 
m

ar
ke

r
6.

30
×

10
−

12
 (

2.
3)

2.
3×

10
−

2  
(1

.4
)

2.
1×

10
−

2  
(1

.9
)

1.
31

×
10

−
3  

(1
.6

)
6.

78
×

10
−

14
 (

2.
1)

 
T

IP
A

R
P

T
C

D
D

-i
nd

uc
ib

le
 p

ol
y(

A
D

P-
ri

bo
se

) 
po

ly
m

er
as

e
4.

81
×

10
−

8  
(1

.6
)

1.
3×

10
−

2  
(0

.9
)

2.
6×

10
−

3  
(1

.3
)

1.
22

×
10

−
4  

(1
.0

)
6.

23
×

10
−

11
 (

1.
3)

 
F1

2
C

oa
gu

la
tio

n 
fa

ct
or

 X
II

4.
69

×
10

−
7  

(1
.6

)
1.

4×
10

−
2  

(1
.1

)
1.

0×
10

−
2  

(1
.0

)
3.

91
×

10
−

4  
(1

.1
)

1.
64

×
10

−
9  

(1
.3

)

P 
va

lu
es

 a
nd

 e
ff

ec
t e

st
im

at
es

 w
er

e 
ca

lc
ul

at
ed

 b
y 

lin
ea

r 
re

gr
es

si
on

 m
od

el
s 

an
d 

by
 p

oo
le

d 
an

al
ys

es
 u

si
ng

 in
ve

rs
e-

va
ri

an
ce

 w
ei

gh
tin

g.
 D

if
fe

re
nc

es
 o

f 
m

R
N

A
 (

%
) 

ar
e 

gi
ve

n 
pe

r 
10

 m
m

 H
g 

B
P 

di
ff

er
en

ce
. B

P 
in

di
ca

te
s 

bl
oo

d 
pr

es
su

re
; G

H
S,

 G
ut

en
be

rg
 H

ea
lth

 S
tu

dy
; K

O
R

A
, C

oo
pe

ra
tiv

e 
H

ea
th

 R
es

ea
rc

h 
in

 th
e 

A
ug

sb
ur

g 
R

eg
io

n;
 M

E
SA

, M
ul

ti-
E

th
ni

c 
St

ud
y 

of
 A

th
er

os
cl

er
os

is
; m

et
a,

 m
et

a-
an

al
ys

is
; a

nd
 S

H
IP

-
T

R
E

N
D

, S
tu

dy
 o

f 
H

ea
lth

 in
 P

om
er

an
ia

-T
R

E
N

D
.

Hypertension. Author manuscript; available in PMC 2018 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zeller et al. Page 16

Ta
b

le
 2

A
ss

oc
ia

tio
n 

of
 L

on
g-

Te
rm

 C
ha

ng
es

 o
f 

T
ra

ns
cr

ip
t E

xp
re

ss
io

n 
to

 C
ha

ng
es

 in
 B

P 
D

ur
in

g 
5 

Y
ea

rs
 o

f 
Fo

llo
w

-U
p 

in
 th

e 
G

H
S

G
en

e

A
ll 

In
di

vi
du

al
s

(n
=1

09
2)

In
di

vi
du

al
s 

W
it

ho
ut

A
nt

ih
yp

er
te

ns
iv

e
T

re
at

m
en

t 
(n

=7
03

)

A
ll 

In
di

vi
du

al
s 

(n
=1

09
2)

In
di

vi
du

al
s 

W
it

ho
ut

A
nt

ih
yp

er
te

ns
iv

e
T

re
at

m
en

t 
(n

=7
03

)

A
ll 

In
di

vi
du

al
s

(n
=1

09
2)

In
di

vi
du

al
s 

W
it

ho
ut

A
nt

ih
yp

er
te

ns
iv

e
T

re
at

m
en

t 
(n

=7
03

)

SB
P

 (
*)

D
B

P
 (

†)
P

P
 (

‡)

m
R

N
A

C
ha

ng
e

(%
)*

P
 V

al
ue

m
R

N
A

C
ha

ng
e

(%
)*

P
 V

al
ue

m
R

N
A

C
ha

ng
e

(%
)†

P
 V

al
ue

m
R

N
A

C
ha

ng
e

(%
)‡

P
 V

al
ue

m
R

N
A

C
ha

ng
e

(%
)‡

P
 V

al
ue

m
R

N
A

C
ha

ng
e

(%
)‡

P
 V

al
ue

C
R

IP
1

2.
93

2.
15

×
10

−
10

§
4.

09
9.

51
×

10
−

10
§

5.
19

8.
46

×
10

−
11

§
6.

65
3.

51
×

10
−

9 §
2.

2
5.

02
×

10
−

4 §
2.

92
1.

24
×

10
−

3 §

M
Y

A
D

M
1.

56
1.

81
×

10
−

4 §
2.

39
9.

09
×

10
−

5 §
2.

38
8.

93
×

10
−

4 §
3.

65
3.

53
×

10
−

4 §
1.

4
1.

39
×

10
−

2 §
1.

88
2.

15
×

10
−

2

T
IP

A
R

P
1.

3
4.

09
×

10
−

4 §
1.

57
3.

17
×

10
−

3 §
1.

81
4.

14
×

10
−

3 §
1.

98
2.

61
×

10
−

2
1.

27
1.

12
×

10
−

2 §
1.

58
2.

68
×

10
−

2

T
SC

22
D

3
1.

15
1.

82
×

10
−

2 §
1.

11
1.

18
×

10
−

1
1.

56
6.

08
×

10
−

2
1.

88
1.

12
×

10
−

1
1.

15
8.

37
×

10
−

2
0.

69
4.

65
×

10
−

1

C
E

B
PA

−
0.

82
3.

97
×

10
−

2 §
−

1.
01

8.
62

×
10

−
2

−
1.

74
1.

14
×

10
−

2 §
−

1.
04

2.
90

×
10

−
1

−
0.

43
4.

27
×

10
−

1
−

1.
18

1.
39

×
10

−
1

F1
2

0.
07

8.
29

×
10

−
1

−
0.

49
2.

99
×

10
−

1
−

0.
05

9.
29

×
10

−
1

−
0.

42
5.

92
×

10
−

1
0.

16
7.

14
×

10
−

1
−

0.
63

3.
23

×
10

−
1

L
M

N
A

1.
23

3.
96

×
10

−
3 §

1.
48

1.
85

×
10

−
2 §

1.
85

1.
16

×
10

−
2 §

2.
26

3.
13

×
10

−
2

1.
12

5.
46

×
10

−
2

1.
16

1.
67

×
10

−
1

T
PP

P3
2.

28
7.

36
×

10
−

6 §
2.

32
1.

16
×

10
−

3 §
5.

29
1.

87
×

10
−

9 §
5.

16
1.

62
×

10
−

5 §
0.

93
1.

78
×

10
−

1
0.

73
4.

44
×

10
−

1

L
in

ea
r 

re
gr

es
si

on
 m

od
el

s 
w

er
e 

ad
ju

st
ed

 f
or

 s
ex

, a
ge

, a
nd

 B
P 

tr
ai

t a
t b

as
el

in
e 

an
d 

bo
dy

 m
as

s 
in

de
x 

ch
an

ge
 b

et
w

ee
n 

ba
se

lin
e 

an
d 

fo
llo

w
-u

p.
 C

ha
ng

es
 in

 m
R

N
A

 e
xp

re
ss

io
n 

le
ve

l (
%

) 
ar

e 
gi

ve
n 

pe
r 

10
-m

m
 H

g 
SB

P 
in

cr
ea

se
 (

* )
, 1

0-
m

m
 H

g 
D

B
P 

in
cr

ea
se

 (
† )

, a
nd

 p
er

 1
0-

m
m

 H
g 

PP
 

in
cr

ea
se

 (
‡ )

. S
ig

ni
fi

ca
nt

 a
ss

oc
ia

tio
ns

 w
ith

 a
 f

al
se

 d
is

co
ve

ry
 r

at
e 

≤0
.0

5 
ar

e 
in

di
ca

te
d 

by
 §

. B
P 

in
di

ca
te

s 
bl

oo
d 

pr
es

su
re

; C
E

B
PA

, C
C

A
A

T
/e

nh
an

ce
r-

bi
nd

in
g 

pr
ot

ei
n 

al
ph

a;
 C

R
IP

1,
 c

ys
te

in
e-

ri
ch

 p
ro

te
in

 1
; D

B
P,

 d
ia

st
ol

ic
 b

lo
od

 p
re

ss
ur

e;
 F

12
, c

oa
gu

la
tio

n 
fa

ct
or

 X
II

; G
H

S,
 G

ut
en

be
rg

 
H

ea
lth

 S
tu

dy
; L

M
N

A
, l

am
in

 A
/C

; M
Y

A
D

M
, m

ye
lo

id
-a

ss
oc

ia
te

d 
di

ff
er

en
tia

tio
n 

m
ar

ke
r;

 P
P,

 p
ul

se
 p

re
ss

ur
e;

 S
B

P,
 s

ys
to

lic
 b

lo
od

 p
re

ss
ur

e;
 T

IP
A

R
P,

 T
C

D
D

-i
nd

uc
ib

le
 p

ol
y(

A
D

P-
ri

bo
se

) 
po

ly
m

er
as

e;
 T

PP
P3

, t
ub

ul
in

 p
ol

ym
er

iz
at

io
n-

pr
om

ot
in

g 
pr

ot
ei

n 
fa

m
ily

 m
em

be
r 

3;
 a

nd
 

T
SC

22
D

3,
 T

SC
22

 d
om

ai
n 

fa
m

ily
 m

em
be

r 
3.

Hypertension. Author manuscript; available in PMC 2018 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zeller et al. Page 17

Table 3

Association of Serum CRIP1, CRP, NT-proBNP, and hsTnl Protein Levels to Cardiovascular End Points in the 

Moli- Sani Project

End Point Marker Hazard Ratio (95% CI)* P Value

Stroke (n=50) CRIP1 1.0588
(1.03-1.0884)

4.97×10−5

CRP 1.0606
(0.9965-1.1289)

6.41×10−2

NT-proBNP 1.0001
(0.9988-1.0015)

8.52×10−1

hsTnI 1.0677
(0.9207, 1.2382)

3.86×10−1

Heart failure (n=139) CRIP1 1.0138
(0.9913-1.0368)

2.30×10−1

CRP 1.0677
(1.0131-1.1253)

1.45×10−2

NT-proBNP 1.0005
(0.9996-1.0015)

2.67×10−1

hsTnI 1.1538
(1.0586-1.2577)

1.13×10−3

Coronary heart disease (n=107) CRIP1 1.0158
(0.991-1.0413)

2.14×10−1

CRP 1.0859
(1.0237-1.1519)

6.16×10−3

NT-proBNP 1.0008
(0.9997-1.0019)

1.64×10−1

hsTnI 1.1283
(1.0118-1.2582)

2.99×10−2

Cases included subjects with incident stroke, heart failure, and coronary heart disease. Associations between incident events and protein levels were 
tested by Cox regression adjusted for age, sex, and systolic blood pressure at baseline. CI indicates confidence interval; CRIP1, cystein-rich protein 
1 (ng/mL); CRP, C-reactive protein (mg/L); hsTnI, high sensitive troponin I (pg/mL); and NT-proBNP, N-terminal pro-B-type natriuretic peptide 
(pg/mL).

*
The hazard ratio refers to a 1-unit change of a given biomarker.

Hypertension. Author manuscript; available in PMC 2018 October 01.


	Abstract
	Material and Methods
	Study Workflow
	Gene Expression Profiling Using Microarray Technology
	Statistical Analyses
	Identification of BP-Related Candidate Transcripts
	Analyses of Changes in Candidate Transcript Expression Over Time
	Expression Quantitative Trait Loci (eQTL) Analysis in the GHS


	Results
	BP-Related Gene Expression: Identification and Replication
	Variation of BP Traits Attributable to Candidate Transcripts
	Changes in BP and Corresponding Changes in Gene Expression
	Long-Term Changes in Transcript Expression in Relation to BP for 5 Years in GHS
	Changes in Transcript Expression in Relation to BP by Antihypertensive Medication

	Protein Levels of CRIP1 and Incident Cardiovascular Events
	Genetic Interplay on BP-Related Transcripts

	Discussion
	Perspectives
	References
	Figure
	Table 1
	Table 2
	Table 3

