
Network-Based Coverage of Mutational Profiles Reveals Cancer 
Genes

Borislav H. Hristov1,2 and Mona Singh1,2,3,*

1Department of Computer Science, Princeton University, Princeton, NJ 08544, USA

2Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA

SUMMARY

A central goal in cancer genomics is to identify the somatic alterations that underpin tumor 

initiation and progression. While commonly mutated cancer genes are readily identifiable, those 

that are rarely mutated across samples are difficult to distinguish from the large numbers of other 

infrequently mutated genes. We introduce a method, nCOP, that considers per-individual 

mutational profiles within the context of protein-protein interaction networks in order to identify 

small connected subnetworks of genes that, while not individually frequently mutated, comprise 

pathways that are altered across (i.e., “cover”) a large fraction of individuals. By analyzing 6,038 

samples across 24 different cancer types, we demonstrate that nCOP is highly effective in 

identifying cancer genes, including those with low mutation frequencies. Overall, our work 

demonstrates that combining per-individual mutational information with interaction networks is a 

powerful approach for tackling the mutational heterogeneity observed across cancers.
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Cancer-relevant genes, including those rarely mutated across samples, can be effectively identified 

by considering perindividual mutational profiles in the context of interaction networks and 

uncovering small connected subnetworks of genes, presumably participating in shared processes, 

that together are altered across (i.e., “cover”) a large fraction of individuals.

INTRODUCTION

Cancer genomics initiatives have sequenced the protein-coding regions of thousands of 

tumor samples across tens of different cancer types (TCGA Research Network). Initial 

analyses of these data have revealed that while there may be numerous somatic mutations in 

a tumor that result in altered protein sequences, very few are likely to play a role in cancer 

development (Bozic et al., 2010; Vogelstein et al., 2013; Garraway and Lander, 2013). 

Therefore, a major challenge in cancer genomics is to develop methods that can distinguish 

the so-called “driver” mutations important for cancer initiation and progression from the 

numerous other “passenger” mutations.

Statistical approaches identify cancer-driving genes by highlighting those that are mutated 

more frequently in a cohort of patients than expected according to some background model 

(Youn and Simon, 2011; Dees et al., 2012; Lawrence et al., 2013). However, the genetic 

underpinnings of cancer are highly heterogeneous: even when considering a single cancer 

type, very few genes are found to be somatically mutated across large numbers of 

individuals (Hudson et al., 2010). Furthermore, genes altered only in a few individuals may 

also be important for tumorigenesis and cancer progression (Stratton et al., 2009). Clearly, 

these rarely mutated but cancer-relevant genes cannot be detected by purely frequency-based 

approaches.

A promising alternative viewpoint is to consider somatic mutations in the context of 

pathways instead of genes. It has been proposed that alterations within any of several genes 

comprising the same pathway can have similar consequences with respect to cancer 

Hristov and Singh Page 2

Cell Syst. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



development, and that this contributes to the mutational heterogeneity evident across 

cancers. Consistent with this, numerous analyses have shown that certain known pathways 

are frequently altered across tumor samples of a particular cancer via mutations in different 

genes (The Cancer Genome Atlas Network, 2012; McLendon et al., 2008). Early studies 

have leveraged this observation by analyzing known pathways for enrichment of somatic 

mutations (Jones et al., 2008; Cerami et al., 2010) and pinpointing those that are 

significantly mutated across patients (Wendl et al., 2011; Vaske et al., 2010). However, our 

knowledge of pathways is incomplete and thus unknown but altered pathways cannot be 

identified by these approaches.

De novo discovery of cancer-relevant pathways using large-scale protein interaction 

networks has thus been the focus of several newer methods (Vandin et al., 2011; Cerami et 

al., 2010; Ciriello et al., 2012; Paull et al., 2013; Shrestha et al., 2014; Bertrand et al., 2015; 

Cho et al., 2016), as proteins taking part in the same pathways and processes tend to be 

proximal in networks (Spirin and Mirny, 2003). One prominent class of techniques leverages 

this network structure by propagating mutational information through protein interaction 

networks and deriving pathways from the induced subnetworks (Vandin et al., 2011; 

Leiserson et al., 2015; Jia and Zhao, 2014; Babaei et al., 2013). However, such diffusion 

approaches can be highly influenced by frequently mutated genes (Leiserson et al., 2015) 

and, further, these methods do not consider whether most patients have mutations in any of 

the identified pathways.

Here we present a novel network-based approach to tackle cancer mutational heterogeneity 

by utilizing per-individual mutational profiles. Our method is based on the expectation that if 

a pathway is relevant for cancer, then (1) many individuals will have a somatic mutation 

within one of the genes comprising the pathway and (2) the genes comprising the pathway 

will interact with each other and together form a small connected subcomponent within the 

larger network. Therefore, given a biological network as well as patient sample data 

consisting of somatic point mutations, the goal of our approach is to find a set of candidate 

genes that both “cover” the majority of patients (i.e., individuals have mutations in one or 

more of these genes) and are connected in the network (i.e., these genes are likely to 

participate in the same cellular pathway or process). In contrast to network diffusion 

approaches, our framework focuses on per-individual mutational profiles, and as a result the 

“influence” of frequently mutated genes is not spread through the network. We note that 

network-based coverage approaches have been previously introduced to identify pathways 

that are dysregulated (Ulitsky et al., 2010; Chowdhury and Koyuturk, 2010; Kim et al., 

2011) or mutated (Dand et al., 2013; Kim et al., 2015) across samples. However, either 

patients were required to be covered by these approaches (Ulitsky et al., 2010; Chowdhury 

and Koyuturk, 2010; Kim et al., 2011, 2015), in some cases multiple times (which is 

especially relevant for dysregulated genes, since there are many of them), or these 

approaches were designed for datasets with significantly fewer mutations (Dand et al., 

2013); both cases lead to very different optimizations and algorithms that are not effective 

for the task at hand. Alternatively, other approaches have attempted to find sets of mutated 

genes that cover not patients but instead genes dysregulated in cancers, with coverage 

defined by short paths in interaction networks (Bashashati et al., 2012; Shrestha et al., 2014; 

Bertrand et al., 2015).
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We devise a simple yet intuitive objective function that balances identifying a small subset of 

genes with covering a large fraction of individuals. Our objective has just a single parameter 

that is automatically set using a series of cross-validation tests, thus eliminating the need of 

many previous approaches to manually select values for various thresholds and parameters. 

We develop an integer linear programming formulation to solve this problem and also give a 

fast heuristic algorithm. We apply our method—network-based coverage of patients (nCOP)

—to 24 cancer types from The Cancer Genome Atlas (TCGA) (TCGA Research Network) 

and uncover both well-known and newly predicted cancer genes, including those that are 

rarely mutated. We demonstrate that nCOP is superior to previous methods that do not use 

network information, including a state-of-the-art frequency-based method (Lawrence et al., 

2013) and a “set cover” version of our approach that attempts to find a set of genes that 

covers cancer samples without considering network connectivity. Finally, we compare nCOP 

with recent network-based methods that aggregate mutational information and show that our 

per-patient approach readily outperforms them.

RESULTS

Algorithm Overview

We begin by giving a brief summary of our method (Figure 1). The biological network is 

modeled as an undirected graph where each vertex represents a gene, and there is an edge 

between two vertices if an interaction has been found between the corresponding proteins. 

Each node is annotated with the IDs of the individuals having one or more mutations in the 

corresponding gene (Figure 1A). We aim to find a relatively small connected component 

such that most individuals have mutations in one of the genes within it. A small subgraph is 

more likely to consist of functionally related genes and is less likely to be the result of 

overfitting to the set of individuals whose diseases we are analyzing. However, we would 

also like our model to have the greatest possible explanatory power—that is, to account for, 

or cover, as many individuals as possible by including genes that are mutated within their 

cancers. We formulate our problem to balance these two competing objectives with a 

parameter α that controls the trade-off between keeping the subgraph small and covering 

more patients.

For a fixed value of α, we have developed two approaches to solve the underlying 

optimization problem. One is based on integer linear programming and the other is a fast 

greedy heuristic (see STAR Methods). We use the greedy heuristic in the context of a 

carefully designed cross-validation procedure to select a value for α that results in good 

coverage of patients but avoids overfitting to them (Figure 1B). Once α is selected, this 

value is used within our objective function and we next analyze the entire patient cohort. In 

particular, multiple independent trials using α are run on randomly chosen subsets of the 

patient data (Figure 1C), as we have found that introducing a small amount of randomness 

helps increase performance in comparison with a single run on the full dataset. Each trial 

outputs a subgraph, and our final aggregated output is an ordered list of candidate genes 

ranked by how frequently each has been selected over the trials (Figure 1D).

We run nCOP, using the greedy heuristic algorithm, on somatic point mutation data from 24 

different TCGA cancer types. Results in the main paper use the HPRD network (Prasad et 
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al., 2009) for all analysis and highlight kidney renal clear cell carcinoma (KIRC) with 416 

samples as an exemplar.

Automatic Parameter Selection Reveals Generalizability of Uncovered Subnetworks

Our optimization function for uncovering a subnetwork of mutated genes that covers many 

patients has one parameter, α. Large values of α result in a larger number of selected genes 

that cover more patients, yet may contain more irrelevant genes; this may especially be a 

factor if there are many samples where missense mutations are not the driving event. To 

choose an appropriate value for α on a dataset, we split our cancer samples into training, 

validation, and test sets, run our greedy heuristic using samples in the training set, then 

choose an α where patient coverage deviates between the training and validation sets (see 

STAR Methods). This framework differs from a traditional machine learning cross-

validation setting in that there is no training using a set of trusted examples; instead, our 

intuition is that cancer-relevant genes that are uncovered using the training samples should 

also cover samples outside of this set.

We demonstrate that, across the 24 cancer types, our cross-validation framework is a highly 

effective approach for choosing an α that balances patient coverage with subnetwork size. 

For all cancers, as α increases, the total number of genes in the chosen subnetwork G′ 
increases (as expected), as does the fraction of patients in the training set that are covered by 

these genes (Figures 2A and S1). For smaller values of α, coverage on the validation sets 

closely matches that obtained on the training sets; that is, the sets of genes chosen using 

patients in the training sets are also effective in covering patients in the corresponding 

validation sets. For KIRC, when α = 0.5, genes chosen using the training sets cover on 

average nearly 70% of patients in the corresponding validation sets, with coverage on the 

completely withheld test set within 5% of this. The fact that a small subnetwork can be 

found that covers a large fraction of previously unseen patients is consistent with the 

hypothesis that a shared pathway or process plays a role in most (but not all) of these 

patients’ cancers.

For larger values of α (>0.6 for KIRC), however, coverage on the validation sets lags behind 

that observed on the training sets. For even larger values of α (>0.85 for KIRC), the 

algorithm selects many genes, and eventually increases the coverage for most cancers on the 

training sets to nearly 100%. However, larger values of α do not substantially increase 

coverage of the withheld patients. This difference between the training and validation curves 

captures the overfitting of the model and also illustrates the trade-off between covering more 

patients and keeping the solution parsimonious. We note that the eventual plateau of the 

validation curve is consistent across cancer types (Figure S1). For each cancer type, values 

of α are selected by an automated procedure (see STAR Methods); this value is α = 0.5 for 

the KIRC dataset shown in Figure 2A.

As a control, we repeat the same procedure using only synonymous mutations (Figure 2B). 

Although coverage of course increases as more nodes are added, it never exceeds 50% on 

the validation sets even when α is increased to 1 or when we have nearly perfect coverage 

on the training set, despite adding many more nodes. This poor coverage is consistent with 

the expectation that synonymous mutations do not result in altered protein sequences and do 
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not disturb cellular pathways. Hence, given the differences observed between using missense 

versus silent mutation data and when comparing training and validation sets, our formulation 

appears to be well suited for investigating mutational profiles in the context of interaction 

networks.

nCOP Effectively Uses Network Information to Uncover Known Cancer Genes

Having shown in the previous section how to select a value for the only parameter in the 

model, we next evaluate nCOP’s performance in uncovering known cancer genes (CGCs) 

(Futreal et al., 2004).

We first consider the KIRC dataset, and find that our top predictions include a high fraction 

of CGC genes (Figure 3A). To illustrate the power of our network-based method, we 

compare its performance with those of two approaches that do not consider any network 

information: a “set cover” version of our approach that simply tries to cover patients and the 

commonly used frequency-based method, MutSigCV (Lawrence et al., 2013). For the same 

number of predicted genes, nCOP consistently has a larger fraction of CGCs than either 

approach, demonstrating the advantage of using network information.

We next compare nCOP with these two non-network approaches using the area under the 

precision-recall curve (AUPRC) across all 24 cancer types, and find that it outperforms 

MutSigCV in 22 of the 24 cancers and the set cover approach in all cancers, thus 

demonstrating the clear advantage of using network information. The performance 

improvement of nCOP over the set cover approach is particularly notable, as the main 

difference between these approaches is the additional use of network information by nCOP. 

In several cancers, the performance improvements of nCOP are substantial. For example, 

nCOP shows a 4-fold improvement over MutSigCV in uncovering cancer genes for liver 

hepatocellular carcinoma and an 8-fold improvement over MutSigCV on 

pheochromocytoma and paraganglioma (PCPG). The overall results are consistent across 

different lists of known cancer genes (Figures S2A and S2B), numbers of predictions 

considered (Figure S2C), and networks (Figure S2D).

Having shown that nCOP better identifies cancer-relevant genes than two approaches that do 

not use network information, we next consider whether the specific way in which nCOP uses 

network information is beneficial. First, to confirm the importance of network structure to 

nCOP, we run it on randomized networks and find that (as expected) overall performance 

deteriorates across the cancer types (Figure S2E). Second, we verify that genes are not more 

likely to be picked by nCOP simply because they have higher degree: among all newly 

predicted genes found across all cancer types, we find that most have degree less than 15, 

and there are only a couple with high degree (≥50). Finally, we compare the effectiveness of 

nCOP in uncovering cancer genes with that of Muffinn (Cho et al., 2016), a method that 

considers mutations found in interacting genes, and DriverNet (Bashashati et al., 2012), a 

method that finds driver genes by uncovering sets of somatically mutated genes that are 

linked to dysregulated genes. We find that nCOP outperforms Muffinn on 20 and DriverNet 

on 21 of the 24 cancer types (Figure 3C). We also compare nCOP with Hotnet2 (Leiserson 

et al., 2015), a cutting-edge network diffusion method. As Hotnet2 does not output a ranked 

list of genes, we do not compute an AUPRC. Instead, examining the complete list of genes 
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highlighted by both methods, we observe that nCOP exhibits significantly better precision 

while trailing slightly in recall (Figure S3).

nCOP Newly Predicts Rarely Mutated Cancer Genes

We next demonstrate that nCOP highlights genes with a range of mutation rates. When 

considering genes that are output by nCOP in at least 50% of the trials on the KIRC 

samples, we see many well-known cancer players: some are highly mutated, such as VHL, 
BAP1, and TP53, while others, such as ERBB2 and RUNX1T1, are each mutated only in a 

handful (<1%) of samples. While the former set of genes can be uncovered by any 

frequency-based technique, the latter have missense mutation rates that are similar to those 

of genes not relevant for cancer (Figure 4A) and are thus difficult to uncover by frequency-

based methods. Indeed, of the 4,818 genes that have any missense mutation across the KIRC 

samples, nCOP identifies 47 as cancer relevant, with 24 of those in the bottom 90% of 

mutated genes with respect to their missense mutation rates. Among these 24 genes, 12 are 

CGCs (p < 10−8, hypergeometric test). The statistically significant enrichment of CGC genes 

in the rarely mutated genes found by nCOP is true across all cancers except for uterine 

carcinosarcoma, where nCOP predicts only six genes. Thus, nCOP provides a means for 

pulling out cancer genes from the “long tail” (Garraway and Lander, 2013) of infrequently 

mutated genes.

In addition to ranking known cancer genes highly, nCOP also gives high ranks to several 

non-CGC genes that may or may not be implicated in cancer, as our knowledge of cancer-

related genes is incomplete. Among these novel predictions for KIRC are HIF1A, NR5A2, 

and SALL1, which have all recently been suggested to play a role in cancers (Schwab et al., 

2012; Wolf et al., 2014; Lin et al., 2014) and are each mutated in less than 3% of the 

samples. SALL1 is a zinc-finger transcription factor that plays a role in kidney development 

(Chai et al., 2006), and mutations within it have been linked to Townes-Brocks syndrome, a 

rare genetic disease associated with kidney abnormalities and malformation (Kohlhase et al., 

1998). Among the individuals in the KIRC dataset covered by the SALL1 gene, one has no 

mutations affecting protein coding in any known cancer gene. Thus, while this particular 

individual’s tumor is not driven by mutations in known cancer genes, nCOP pinpoints a role 

for SALL1.

Several of the genes uncovered by nCOP with low missense mutation rates in KIRC are part 

of the PI3K-AKT signaling pathway, a prominent cancer pathway that promotes cell survival 

and growth. When considering the 28 genes output by nCOP with missense mutation rates 

lower than that of AKT2, a key component of this pathway, we find that 18 of them form a 

small connected component (Figure 4B) and together are mutated in ~14% of the samples. 

Three of our novel predictions, STAT1, CDKN1A, and HSP90AA1, interact with AKT1. 

Existing literature (Pensa et al., 2013; Koromilas and Sexl, 2013; Cazier et al., 2014; Chu et 

al., 2013) supports a possible role of these genes in tumor progression. Notably, STAT1, a 

gene that modulates diverse cellular processes, such as proliferation, differentiation, and cell 

death, also covers an individual with no variants in any known cancer gene. When we 

consider the full ranked list of genes output for KIRC and perform a rank-based gene set 

enrichment analysis using the GSEA tool (Subramanian et al., 2005), four pathways from 
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the KEGG database, all cancer relevant, are enriched at p < 0.05 (microRNAs in cancer, 

pathways in cancer, jak stat signaling pathway, and choline metabolism in cancer).

When run individually on all 24 cancer types, nCOP newly implicates 32 genes as relevant 

in at least three cancer types (Figure 4C). These genes typically are infrequently mutated, 

with 93% of them mutated in fewer than 5% of the samples in each of the cancers in which 

they are predicted to play a functional role. Several of the novel genes unveiled by nCOP are 

found in individuals whose cancers do not harbor somatic mutations in any known cancer 

gene; thus, somatic mutations within these novel genes are promising as candidate driver 

events within these cancers. Across all cancer types, there are 285 patients who do not have 

mutations affecting protein coding in any known cancer gene, and nCOP covers 114 of them 

(40%) by selecting 100 genes. The selection of these novel genes is not driven by samples 

with large numbers of mutations (Figure S4A), and 13 appear in more than 3 cancers (Figure 

4C). While some newly uncovered genes may be false positives, others (such as SALL1 and 

STAT1) are strong candidate genes for further investigation. This analysis illustrates the 

power of nCOP to zoom in on rarely mutated genes and to help uncover the genetic 

underpinnings of the studied tumor samples.

DISCUSSION

We have shown that nCOP, a method that incorporates individual mutational profiles with 

interaction networks, is a powerful approach for uncovering cancer genes. Our method is 

based on an intuitive mathematical formulation, is more effective than other recent methods 

in identifying known cancer genes, and is particularly well suited to highlight infrequently 

mutated genes that are nevertheless relevant for cancer. Our approach therefore complements 

existing frequency-based methods that generally rely on comparisons with background 

mutational models and lack the statistical power to detect genes mutated in fewer 

individuals.

In the future, nCOP can be extended in a number of natural ways. First, while nCOP 

currently analyzes only mutations within genes, other alterations are also commonly 

observed in cancers. For example, copy-number variations (CNVs) are found frequently in 

cancers and can play critical functional roles (Zack et al., 2013). Indeed, as the numbers of 

CNVs and point mutations found within each cancer genome appear to be inversely related 

(Ciriello et al., 2013), considering both types of alterations will increase the power of our 

approach. Second, nCOP may also benefit from incorporating gene weights that reflect 

likelihood to play a role in cancer. While we currently consider weights based on gene 

length, alternative gene weights may be derived from existing approaches to detect 

significantly mutated genes or to assess the functional impact of mutations. Finally, while 

nCOP can output groups of genes that are not part of a single connected component due to 

our randomized aggregation procedure, extending nCOP’s core algorithms to explicitly 

consider multiple subnetworks corresponding to distinct pathways may be a particularly 

promising avenue for future work.

We have applied nCOP across 24 different cancer types and have shown that it is broadly 

effective in identifying cancer genes in each of them. However, cancers affecting the same 
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tissue can often be grouped into distinct subtypes based on molecular features (e.g., see 

Perou et al., 2000). In future applications, nCOP could be used to study how different known 

subtypes of a given type of cancer yield overlapping or differing perturbed pathways. Even 

more interesting, and with immediate clinical relevance, would be to extend nCOP to stratify 

patients into different cancer subtypes (e.g., see the network method of Hofree et al. [2013]) 

based upon the differently perturbed modules uncovered by nCOP.

We conclude by noting that researchers can use our framework to rapidly and easily 

prioritize cancer genes, as nCOP requires only straightforward inputs and runs on a desktop 

machine. Indeed, nCOP’s efficiency, robustness, and ease of use make it an excellent choice 

to investigate cancer as well as possibly other complex diseases. As sequencing costs 

plummet and cancer and other disease sequencing mutational data become more abundant, 

the predictive power of our method should only increase (Figure S4B). In sum, we expect 

that our method nCOP will be of broad utility and will represent a valuable resource for the 

cancer community.

STAR*METHODS

Detailed methods are provided in the online version of this paper and include the following:

• KEY RESOURCES TABLE

• CONTACT FOR REAGENT AND RESOURCE SHARING

• METHOD DETAILS

– General Formulation

– Integer Linear Programming Formulation

– Greedy Heuristic

– Parameter Selection and Solution Aggregation

– Data Sources and Pre-processing

• QUANTIFICATION AND STATISTICAL ANALYSIS

– Performance Evaluation

• DATA AND SOFTWARE AVAILABILITY

STAR*METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Mona Singh (mona@cs.princeton.edu).

METHOD DETAILS

General Formulation—We model the biological network, as usual, as an undirected 

graph G = (V,E) where each vertex represents a gene, and there is an edge between two 

vertices if an interaction has been found between the corresponding protein products. Each 
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vertex vj is associated with a set Cj containing the IDs of the individuals who have somatic 

mutations in the corresponding gene. We formulate our problem as that of finding a 

connected subgraph G’ of G so as to minimize

αX + (1 − α) Size(G′),

where X is the fraction of patients that do not have an alteration in a gene included in G’ 

(i.e., they are uncovered), Size(G’) is the size of the subgraph, and 0 ≤ α ≤ 1 is a fixed 

parameter controlling the trade-off between keeping the subgraph G’ small and covering 

more patients. A patient with ID i is covered if i ∈ ∪
v j ∈ G′

C j, and uncovered otherwise. We 

note that our problem is similar, though not identical, to the Minimum Connected Set Cover 

Problem (Shuai and Hu, 2006), a NP-hard problem.

A simple and natural measure for the size of a subnetwork is its number of nodes (i.e., 

Size(G′)=|G′|). However, longer genes may tend to acquire more mutations simply by 

chance. We correct for that by associating with each node vj a weight wj that is equal to the 

ratio of the length of the gene to the total number of mutations it has. The size of the 

subcomponent is then defined as Size(G′) = ∑
v j ∈ G′

w j. This way, genes having longer length 

will be weighted more, correcting for a possible bias towards selecting longer genes. We 

note that since our objective function balances the fraction of uncovered patients with the 

size of the graph, we would like the size of the graph to be between 0 and 1; thus, we 

normalize each node weight by dividing by the unnormalized size of what we call a fully 

covering subgraph Gf—a connected subgraph of G that covers all patients. (In practice, we 

compute Gf using the greedy heuristic described below, with α = 1).

Integer Linear Programming Formulation—The problem of finding a minimum 

connected subgraph that covers as many patients as possible can be solved using constraint 

optimization. Let n be the number of patients in our sample. For each patient i, we define a 

binary variable pi that is set to 1 if patient i is covered by the chosen subgraph G’, and 0 

otherwise. For each vertex (or gene) vj, we define a binary variable xj that is set to 1 if the 

vertex is included in the chosen subgraph G’, and 0 otherwise. It is straightforward to set up 

constraints to ensure that a patient is considered uncovered if none of its mutated genes are 

part of G’, and covered if at least one of its mutated genes is selected as part of G’ (see 

Equations 1 and 2 below).

The challenging part of the ILP is setting up constraints to ensure that the chosen nodes form 

a connected subgraph G’. For this task, we employ a flow of commodity technique (Even 

and Tarjan, 1975), which we now briefly describe. We inject |G′| units of flow into G’ (i.e., 

we inject ΣXi units of “flow” into a vertex that is included in the chosen subnetwork). Flow 

can move from one vertex to any of its neighbors in the network, and each vertex removes 

exactly one unit of flow as the flow passes through it. All flow must be removed from the 

subnetwork, and we set the constraints so that this is possible only if the subnetwork G’ is 

connected. For the source of the flow we use an artificial external node vextr. The main issue 

is that we do not know which node vextr should be connected to, as we do not know the 
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nodes of G’ in advance. To resolve this, we decide that vextr connects to the node that covers 

the largest number of patients vmax; this is equivalent to determining in advance that vmax∈ 

G’, though as an alternate approach we could also decide to choose this node 

probabilistically and run the ILP several times. Finally, to handle the flow constraints, for 

each edge (i,j)∈ E, we introduce integer variables yi,j and yj,i to represent the amount of flow 

from node i to node j and from node j to node i, respectively. The full integer linear program 

is:

Minimize

α(n − ∑
i

pi)/n + (1 − α)∑
j

x jw j

Subject to

pi ≥ x j ∀i, js . t . i ∈ C j (Equation 1)

pi ≤ ∑
j: i ∈ C j

x j   for each patient i (Equation 2)

∑i: (i, j) ∈ Eyi, j = x j + ∑i: (i, j) ∈ Ey j, i   for each vertex v j (Equation 3)

∑
j: (i, j) ∈ E

yi, j ≤ V xi   for each vertex vi (Equation 4)

∑
i

xi = yextr,max (Equation 5)

pi, xi, yi, j ∈ {0, 1} for all such variables (Equation 6)

Equation 1 ensures that a patient is considered covered if one of his or her somatically 

mutated genes is included in G’. Equation 2 ensures that a patient is not considered covered 

if none of his or her somatically mutated genes is chosen to be part of the subgraph. 

Equations 3, 4, and 5 enforce the connectivity requirement. Equation 3 requires that the flow 

going out of each vertex in the chosen subnetwork is 1 less than the flow coming in. 

Equation 4 requires that if a vertex is not part of the chosen subgraph, the flow going 
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through it is 0. Equation 5 sets the amount of flow injected into the subgraph to be equal to 

the number of chosen nodes.

Greedy Heuristic—Solving the ILP yields an exact solution but is computationally 

difficult. Thus, we have also developed an efficient greedy heuristic. Our heuristic procedure 

initializes G’ by randomly choosing the first gene from among the five most mutated genes, 

with probability proportional to the number of patients it is found mutated in. It then 

expands the subgraph G’ iteratively as follows. At each iteration, all vertices that are at most 

distance 2 from a vertex in G’ are examined and the one that improves the objective function 

the most is chosen; any ties are broken uniformly at random. If this vertex is not directly 

adjacent to the nodes in the subnetwork, the intermediary node is also added. The heuristic 

terminates when no improvement to the objective is possible. We repeat this heuristic 

multiple times, as it is probabilistic.

In practice, the greedy heuristic finds a solution that is on average ~90% of the best value for 

the objective function as determined by the ILP formulation using CPLEX (ILO, 2016). For 

example, on the glioblastoma dataset of 277 individuals, the ILP finds 61 genes covering 

90% of the patients when using α=0.5. In comparison, for this value of α, the greedy 

heuristic finds on average 66 genes covering 88% of the patients with 39 genes in common. 

In the rest of the paper, we use the greedy optimization as it has comparable performance to 

the ILP, while being much faster.

Parameter Selection and Solution Aggregation—We split our samples into training, 

validation and test sets. A test set of 10% of the patients is completely withheld. While 

varying α in small increments in the interval (0;1), the remaining data is repeatedly split 

(100 times for each value of α) into training (80%) and validation (20%) sets. For each split, 

the greedy heuristic algorithm is run on the training set to find G’. The fractions of patients 

covered (by the selected G’) in the training and validation sets are compared. The parameter 

α is selected where performance on the validation sets deviates as compared to the training 

sets. While this can be done visually, for all results reported here we do this automatically 

using a simple two-rule procedure that selects the smallest α for which the difference in 

average coverage between the training and validation set exceeds 5% and for which average 

performance on the validation set is within 10% from the maximum observed one for any α. 

Finally, the coverage of patients on the (completely withheld) test set is computed to ensure 

it is similar to the one on the validation set.

Once α is chosen for a set of cancer samples, we repeatedly (1000 times) run the algorithm 

on this set, each time withholding a fraction (15%) of the patients in order to introduce some 

randomness in the process. Genes are then ranked by the number of times they appear in G’. 

In practice, we have found that this improves performance as compared to running the 

algorithm once on the full data set.

Data Sources and Pre-processing—We downloaded all level 3 cancer somatic 

mutation data from The Cancer Genome Atlas (TCGA Research Network) that was 

available as of October 1, 2014, and processed it as in Przytycki and Singh (2017). This data 

consists of a total of 19,460 genes with somatic point mutations across 24 cancer types. For 
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each cancer, samples that are obvious outliers with respect to their total number of mutated 

genes are excluded. See Table S1 for a list of the cancer types, the cancer-specific thresholds 

to determine outlier samples, the number of patient samples considered for each cancer type, 

and other statistics about the TCGA somatic mutation dataset.

We use two different biological networks in our analysis: HPRD (Prasad et al., 2009) 

(Release 9_041310) and BioGrid (Stark et al., 2006) (Release 3.2.99, physical interactions 

only). Biological networks can exhibit several nodes with very high connectivity, often due 

to study bias. As such high connectivity destroys the usefulness of network information, we 

remove all nodes whose degrees are clear outliers with unusually high degree (degree > 900 

and more than 10 standard deviations away from the mean). For BioGrid, this removes 

UBC, APP, ELAVL1, SUMO2, CUL3. For HPRD, we remove no nodes. For both networks, 

we exclude the nine longest genes (TTN, MUC16, SYNE1, NEB, MUC19, CCDC168, 
FSIP2, OBSCN, GPR98) as they tend to acquire numerous mutations by chance while 

covering many patients.

To further handle the connectivity arising within the networks due to high-degree nodes, we 

filter edges using the diffusion state distance (DSD) metric introduced in Cao et al. (2013); 

the DSD metric captures the intuition that edges between nodes that also share interactions 

with low degree nodes are more likely to be functionally meaningful than edges that do not 

(and thus are assigned closer distances). For each edge, the DSD scores (as computed by the 

software of Cao et al. (2013)) between the corresponding nodes are Z-score normalized, and 

edges with Z-scores >0.3 are removed. We note that the overall performance of our approach 

improves when performing this filtering (data not shown), supporting the claim of Cao et al. 

(2013) that preprocessing a biological network in this manner is an important step. The final 

number of nodes and edges, respectively, for the filtered networks are 9,379 and 36,638 for 

HPRD, and 14,326 and 102,552 for BioGrid.

QUANTIFICATION AND STATISTICAL ANALYSIS

Performance Evaluation—To evaluate the gene rankings of all the tested methods, we 

use the curated list of 517 cancer census genes (CGCs) available from COSMIC (Futreal et 

al., 2004). All genes in this list are considered as positives, and all other genes are 

considered as negatives. Though we expect that there are genes other than those already in 

the CGC list that play a role in cancer, this is a standard approach to judge performance 

(e.g., see Jia and Zhao (2014)) and gives us an idea of how methods are performing as 

cancer genes should be highly ranked by methods that perform well. To avoid potential 

biases due to using a single list of positives, we additionally tested using two different sets of 

cancer genes (Figure S2). Since only the top predictions by any method are relevant for 

cancer gene discovery, we judge performance by computing the area under the precision-

recall curve (AUPRC) using the top 100 genes predicted by each method (without 

thresholding the output of any method by score or level of significance). If a method returns 

less than 100 genes total, we extend the precision-recall curve to 100 genes assuming that it 

performs as a random classifier. We note that reasonable changes to the number of 

predictions considered does not change our overall conclusions (Figure S2).
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Other Approaches—To ascertain the contribution of network information, we compare 

nCOP to two approaches that do not use network information: (1) MutSigCV (Lawrence et 

al., 2013), a method that identifies genes that are mutated more frequently than expected 

according to a background model, and (2) a set cover approach that tries to find mutated 

genes that simply cover as many patients as possible. We formulate the set cover approach as 

an ILP that tries to find a good cover consisting of k vertices. Using the same notation as for 

nCOP, the set cover objective is to maximize ∑
i

pi, subject to Equations 1 and 2 of nCOP, and 

with the additional constraints that ∑
j

x j ≤ k and ∑
j

x j ≥ k. We also compare nCOP to 

HOTNET2 (Leiserson et al., 2015), Muffinn (Cho et al., 2016), and DriverNet (Bashashati et 

al., 2012), three recent network-based approaches. To ensure fair comparisons, all methods 

are run on exactly the same cancer mutation data. Similarly, Hotnet2, Muffinn and nCOP are 

run on the same network. DriverNet instead uses an influence (i.e., functional interaction) 

graph and transcriptomic data; we use their default influence graph and provide as input 

TCGA normalized expression data. MutSigCV, Hotnet2, Muffinn, and DriverNet are run 

with default parameters (for Hotnet2, this is 100 permuted networks, and β = 0.2 for the 

restart probability for the insulated heat diffusion process).

DATA AND SOFTWARE AVAILABILITY

Description: https://github.com/Singh-Lab/nCOP.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Network method for discovering cancer genes using perpatient mutational 

profiles

• Finds small subnetworks where many patients have a mutation in ≥1 

component gene

• Comprehensive analysis across 24 cancer types demonstrates the method’s 

power

• Pinpoints cancer-relevant genes, even those that are rarely mutated across 

samples
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Figure 1. Overview of Our Approach
(A) Somatic mutations are mapped onto a protein-protein interaction network. Each node is 

associated with the set of individuals whose cancers have mutations in the corresponding 

gene. The overall goal is to select a small connected subnetwork such that most individuals 

in the cohort have mutations in at least one of the corresponding genes (i.e., are “covered”).

(B) nCOP automatically selects a value for the parameter α by performing a series of cross-

validation tests. First, 10% of the individuals are withheld as a test set. Next, the remaining 

individuals are repeatedly and randomly split into two groups, a training set (80%) and a 

validation set (20%). For each split, the nCOP search heuristic is run for 0 < α < 1 using the 

individuals comprising the training set. An α is selected to obtain high coverage of the 

individuals in the validation sets while maintaining similar coverage on the training sets (i.e., 

not overfitting to the training sets). Coverage of individuals in the initially withheld test set 

is also calculated and confirmed to be similar to the validation sets.

(C) Once α is selected, to avoid overfitting on the entire dataset, nCOP is run 1,000 times 

using random subsets of 85% of the individuals.

(D) Finally, the subnetworks output across the runs are aggregated and candidate genes are 

ranked by the number of the times they appear across these subnetworks.
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Figure 2. Automatic Parameter Selection
For each random split of individuals, we run our algorithmon the training set for different 

values of α, and next plot the fraction of covered individuals in the training (blue) and 

validation (red) sets. We also give the number of proteins in the uncovered subgraphs 

(orange). For each plotted value, the mean and SD over 100 random splits are shown. The 

approach is illustrated using the KIRC dataset and the HPRD network.

(A) When using somatic missense mutations, at higher values of α, overfitting occurs as the 

coverage on the validation set levels while coverage on the training set continues to increase. 

An automated heuristic procedure selects α (green rhombus) so that coverage on the 

validation set is good while overfitting on the training set is not extreme.

(B) When using somatic synonymous mutations, there is poor coverage on the validation set 

regardless of coverage on the training set. Furthermore, compared with using missense 

mutation data, significantly more genes are required to cover the same fraction of 

individuals.
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Figure 3. nCOP Is More Successful than Other Methods in Identifying Known Cancer Genes
(A) Our network-based algorithm nCOP, a set cover version of our algorithm that ignores 

network information, and MutSigCV, a frequency-based approach, are compared on the 

KIRC dataset. nCOP ranks genes based on how frequently they are output, and MutSigCV 

ranks genes by q values. The set cover approach is run for increasing values of k until all 

patients are covered. For each method, as an increasing number of genes are considered, we 

compute the fraction that correspond to CGCs. Over a range of thresholds, our algorithm 

nCOP outputs a larger fraction of CGC genes than the other two approaches.

(B) Comparison of nCOP to two network-agnostic methods across 24 cancer types. For each 

cancer type, we compute AUPRCs for nCOP, the set cover approach, and MutSigCV, using 

their top 100 predictions. We give the log2 ratios of nCOP’s AUPRCs to the other methods’ 

AUPRCs. Our approach nCOP outperforms the set cover approach on all 24 cancers, and 

MutSigCV on 22 of the 24 cancer types.

(C) Comparison of nCOP with two network-based methods, Muffinn and DriverNet, across 

24 cancer types. Our approach nCOP outperforms Muffinn and DriverNet on 20 and 21, 

respectively, of the 24 cancer types.
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Figure 4. nCOP Identifies Rarely Mutated Genes
(A) The missense mutation rates, computed for each gene as the total number of missense 

mutations observed within it divided by the product of the number the samples and the 

length of the gene in nucleotides per 103 bases, are sorted from high to low and are shown 

for all mutated genes in the KIRC dataset. Genes that are output by nCOP in at least half the 

trials are shown in red for known cancer genes and in blue for new predictions. All other 

genes are shown in gray. Well-known cancer genes output by nCOP, such as VHL and TP53, 

are at the peak of the distribution. nCOP is also able to uncover known cancer genes with 

very low mutational rates lying at the tail of the distribution.
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(B) Several of the infrequently mutated genes selected by nCOP form a module with five 

genes that belong to the prominent cancer PI3K-AKT signaling pathway. Red nodes denote 

CGC genes and blue nodes denote novel predictions.

(C) Shown are all newly predicted, non-CGC genes that are uncovered by nCOP in more 

than three cancer types. The majority of these predictions are mutated in less than 5% of the 

samples in the corresponding cancers in which they are implicated. A star indicates that the 

gene covers an individual of a particular cancer type who does not have any protein coding 

affecting variant in any CGC gene.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

DriverNet Bashashati et al., (2012) https://www.bioconductor.org/packages/release/bioc/html/DriverNet.html

DSD Cao et al. (2013) http://dsd.cs.tufts.edu/server/

GSEA Subramanian et al. (2005) http://www.ilog.com/products/cplex/

ILOG CPLEX ILO (2016) http://www.ilog.com/products/cplex/

Hotnet2 Leiserson et al. (2015) https://github.com/raphael-group/hotnet2

Muffinn Cho et al. (2016) http://www.inetbio.org/muffinn/

MutSigCV Lawrence et al. (2013) http://archive.broadinstitute.org/cancer/cga/mutsig

nCOP this paper https://github.com/Singh-Lab/nCOP

Other

Biogrid Stark et al. (2006) https://thebiogrid.org/

HPRD Prasad et al. (2009) http://www.hprd.org/

TCGA TCGA Research Network https://cancergenome.nih.gov/
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