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Abstract

Personality is associated with variation in all kinds of mental faculties, including affective, social, 

executive, and memory functioning. The intrinsic dynamics of neural networks underlying these 

mental functions are reflected in their functional connectivity at rest (RSFC). We, therefore, aimed 

to probe whether connectivity in functional networks allows predicting individual scores of the 

five-factor personality model and potential gender differences thereof. We assessed nine meta-

analytically derived functional networks, representing social, affective, executive, and mnemonic 

systems. RSFC of all networks was computed in a sample of 210 males and 210 well-matched 

females and in a replication sample of 155 males and 155 females. Personality scores were 

predicted using relevance vector machine in both samples. Cross-validation prediction accuracy 

was defined as the correlation between true and predicted scores. RSFC within networks 

representing social, affective, mnemonic, and executive systems significantly predicted self-

reported levels of Extraversion, Neuroticism, Agreeableness, and Openness. RSFC patterns of 

most networks, however, predicted personality traits only either in males or in females. Personality 

traits can be predicted by patterns of RSFC in specific functional brain networks, providing new 

insights into the neurobiology of personality. However, as most associations were gender-specific, 

RSFC–personality relations should not be considered independently of gender.
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Introduction

Inter-individual differences in personality permeate all aspects of life, from affective and 

cognitive functioning to social relationships. One of the most comprehensive and most 

widely recognized models of personality is the Five-Factor Model (FFM; Costa and McCrae 

1992), consisting of five broad dimensions: Openness to experience/Intellect, Extraversion, 

Neuroticism, Agreeableness, and Conscientiousness. Openness to experience/Intellect 

reflects the engagement with aesthetic/sensory and abstract/intellectual information, as well 

as the degree of appreciation and toleration for the unfamiliar (Nicholson et al. 2002; 

Fleischhauer et al. 2010; Fayn et al. 2015). Extraversion relates to approach behaviour of 

driving toward a goal that contains cues for reward, and tendency to experience positive 

emotions given by the actual attainment of that goal (Depue and Collins 1999; DeYoung 

2015). Neuroticism relates to a person’s emotional life and reflects the tendency to 

heightened emotional reactivity to negative emotions (Goldberg and Rosolack 1994; Rusting 

and Larsen 1997; Gray and Mcnaughton 2000). Agreeableness relates to interpersonal 

behaviour and reflects the degree of avoidance of interpersonal conflicts (stability between 

individuals) (Graziano et al. 2007; Butrus and Witenberg 2013). Conscientiousness reflects 

the degree to which individuals perform tasks and organize their lives, exhibiting a tendency 

to show self-discipline, act dutifully, and aim for achievement (stability within individuals) 

(Ozer and Benet Martínez 2006; Roberts et al. 2009) (cf. for more details McCrae and Costa 

2004; DeYoung and Gray 2009).

Since the FFM of personality is based on language descriptors of adjectives applied to 

human and human behaviour in English lexicon, rather than neurobiological features, many 

attempts have been made to explore the neural bases of these five factors. At first, each trait 

has been associated with its most crucial and characterizing psychological functions (e.g., 

Neuroticism and Extraversion to sensitivity to punishment and reward, respectively, 

Agreeableness to social processes, Conscientiousness to top–down control of behaviour and 

Openness cognitive flexibility), and hypotheses have been developed about the associations 

between brain systems supporting those psychological functions, and the respective trait, 

paving the way for a biology of personality traits (c.f. DeYoung and Gray 2009). It has, 

therefore, been suggested that Neuroticism is associated (functionally or structurally) to 

affective regions that had been linked to respond to threat and punishment like amygdala, 

hippocampus, cingulate cortex, and medial prefrontal cortex (Kumari 2004; Cremers et al. 

2010; DeYoung et al. 2010; Tzschoppe et al. 2014; Madsen et al. 2015; Pang et al. 2016). 

Extraversion has been linked to regions responding to reward-related stimuli like nucleus 

accumbens, striatum, amygdala, and orbitofrontal cortex (DeYoung et al. 2010b; Adelstein 

et al. 2011; Pang et al. 2016, c.f.; Lei et al. 2015). Conscientiousness has been related to the 

lateral prefrontal cortex (Asahi et al. 2004; Passamonti et al. 2006; DeYoung et al. 2010; 

Kunisato et al. 2011), deputed to the planning, following complex rule and voluntarily 
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control of behaviour. Similarly, Openness has also been associated with the functions of the 

lateral PFC (DeYoung et al. 2005; Kunisato et al. 2011), but, in contrast to 

Conscientiousness, more because of its role in attention, working memory, and cognitive 

flexibility. Finally, Agreeableness has been associated with regions involved in the 

processing of social information, such as temporo-parietal junction, superior temporal gyrus 

and posterior cingulate cortex (Hooker et al. 2008; DeYoung et al. 2010; Adelstein et al. 

2011). However, the associations between brain systems underlying specific mental 

functions and personality traits might be more complex than such one-to-one mapping; 

instead, it is much more plausible that the mapping between traits and brain systems is rather 

many-to-many (c.f. Yarkoni 2015; Allen and DeYoung 2016). One example is provided by 

Neuroticism, which has not only been associated to affective regions, but also to regions 

exerting cognitive functions, e.g., dlPFC (Kunisato et al. 2011; Pang et al. 2016), or 

behavioural performances probing attention (MacLean and Arnell 2010), working memory 

(Studer-Luethi et al. 2012), verbal fluency (Sutin et al. 2011), and explicit memory (Pearman 

2009; Denkova et al. 2012). It is, therefore, possible that these systems (affective and 

executive) both contribute in explaining variance in Neuroticism. The potential contribution 

of other regions rather than the ones originally suggested also holds for other traits. For 

example, increasing evidence points to a link between Openness and the functional 

organization and global efficiency of the default mode network (DeYoung 2014; Sampaio et 

al. 2014; Beaty et al. 2016). Similarly, even if not directly investigating the trait of 

Agreeableness, there is evidence (Gazzola et al. 2006; c.f.; Iacoboni 2009) showing a 

possible association between one of its facet, empathy, with the mirror neuron system.

Furthermore, one of the major challenges of using functional studies for the association 

between personality traits and brain systems is the fact that the latter can only be based on 

specific implementations such as behavioural tests or paradigms used in experimental 

research. Moreover, there is a general consensus that mental functions arise from the 

coordinated activity within distributed networks rather than any individual brain region 

(Eickhoff and Grefkes 2011). Therefore, relating a personality trait to a particular function 

only because a brain region correlates with both is problematic. These considerations have 

prompted a network-centered perspective of brain organization (c.f. De Vico Fallani et al. 

2014), highlighting the importance of functional integration for mental processes and their 

inter-individual differences. However, this approach, which requires a priori defined seeds, 

suffers from an important methodological limitation. That is, by choosing pre-defined nodes 

from a single task-based fMRI study, the findings might be biased toward that particular 

paradigm operationalization. Furthermore, task-based fMRI literature often suffers from low 

statistical power and low reproducibility, due to the small sample sizes typically used and 

considerable heterogeneity in the analysis pipeline (cf. Samartsidis et al. 2017). To solve the 

problem of a more objective definition of relevant nodes in a given functional network, 

quantitative meta-analyses of task-based neuroimaging studies aggregate the findings of 

many individual task-activation studies into a core network representing those locations that 

are reliably recruited by engaging in a given kind of mental process (cf. Fox et al. 2014). 

The investigation of RSFC in meta-analytically defined networks representing specific 

social, affective, executive, or memory functions, therefore, provides a viable approach to 
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capturing the complex intrinsic neural architecture underlying personality (Adelstein et al. 

2011; Sampaio et al. 2014).

Given that network connectivity data are almost inevitably high-dimensional, consisting of 

many correlated features, univariate analyses of associations between connectivity measures 

and phenotypical traits such as personality may not represent an optimal strategy (Orrù et al. 

2012). Moreover, univariate analyses will likely fail to elucidate associations that depend on 

the pattern of connectivity within a network rather than any specific individual connection. 

On the other hand, machine learning and multivariate pattern analysis (MVPA), suitable for 

analysing neuroimaging data (cf. Oktar and Oktar 2015; Gael; Varoquaux and Thirion 

2014), provides an approach that overcomes these limitations by searching for patterns in the 

connectivity matrix that allow the prediction of a continuous target variable (Doyle et al. 

2015). In this article, the term “prediction” refers to the out-of-sample evaluation of a 

statistical model’s ability to predict the personality score for previously unseen individuals 

based on their RSFC. The potential of such approaches to predict behavioural scores from 

resting-state connectivity data has already been demonstrated with respect to sustained 

attention (Rosenberg et al. 2016), autistic traits (Plitt et al. 2015), and impulsivity in 

economic decision-making (Li et al. 2013). Conversely, personality traits have been 

predicted from cyber records such as personal websites (Marcus et al. 2006) or social 

networks (Golbeck 2011; Golbeck et al. 2011; Bachrach et al. 2012) but not yet from 

neuroimaging data.

Bringing together the different aspects outlined above, the current study explored whether 

individual levels of five major personality traits can be predicted from RSFC profiles in a 

priori defined brain networks representing specific cognitive functions. The selection of the 

networks used a priori knowledge based on the associations reported in the literature 

between psychological functions (and deputed networks) with personality. Accordingly, we 

chose functional networks associated with affective (emotion processing, reward, and pain) 

functions given their main associations with both Extraversion and Neuroticism, social 

(empathy and face processing) functions in relation to Agreeableness, executive functions as 

linked to Conscientiousness and Openness (vigilant attention and working memory to 

represent, respectively, rigid control and flexibility), and memory (autobiographic and 

semantic) functions as many traits were also found to be associated with them. However, it is 

important to note that we refrained from having hypotheses about network—predicted traits 

associations, since we believe that multiple brain systems, among the selected ones, can 

contribute to explaining inter-individual variance in one trait (e.g., Openness being predicted 

from networks outside the executive domain). We additionally used a network with whole-

brain coverage consisting of 264 nodes (we here refer to it as Connectome; Power et al. 

2011) to predict the five personality traits to test if personality can be better predicted by 

specific functional networks or a rather unspecific whole-brain network. In addition, in light 

of the previous findings of sexual dimorphism in the relationships between brain structure 

and personality traits (Nostro et al. 2016) as well as gender differences in RSFC (Allen et al. 

2011; Filippi et al. 2013; Hjelmervik et al. 2014; Weis et al. 2017) and personality (Yang et 

al. 2015), these analyses were performed in a gender-mixed sample as well as separately in 

male and female subsamples.
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Materials and methods

Participants

All data were obtained from the Human Connectome Project (HCP) WU-Minn Consortium 

as provided in the current “S1200” release (http://www.humanconnectome.org, Van Essen et 

al. 2013). The HCP was funded by the 16 NIH Institutes and Centers that support the NIH 

Blueprint for Neuroscience Research; and by the McDonnell Center for Systems 

Neuroscience at Washington University. Our analyses of the HCP data were approved by the 

ethics committee of the Heinrich Heine University Düsseldorf.

The HCP sample is composed of monozygotic and dizygotic twins as well as not-twins, the 

latter including siblings of twins, just siblings, and only-children (including those that have 

an as-yet not scanned sibling but not twin). Given this structure of related and unrelated 

subjects, we paid particular attention to select a well-matched sample of males and females 

that was as large as possible, while, at the same time, controlling for possible effects of 

heritability by creating a sample of only unrelated subjects. Evidently, we first selected all 

participants from the HCP sample for whom resting-state fMRI volumes and personality 

data were available. Out of this sample, we then selected groups of unrelated males and 

females (i.e., only one representative of a given family), matched for age, years of education, 

and twin status. This last match (twin or not twin) was preferred over the match for zygosity 

(not twin, dizygotic or monozygotic) as it enabled us to select a higher number of 

participants while not introducing dependencies in the sample. In fact, Kolmogorov–

Smirnov test showed that zygosity does not lead to any significant difference in the five 

scores distribution, cf. supplementary Table S1. Importantly, we created a first main sample 

(Sample 1), where we aimed for the highest number of participants according to the 

inclusion criteria, but, since a considerable number of individuals were left out from the first 

selection, we additionally created a “replication” sample, (Sample 2). Sample 2 was thus 

created by removing the subjects belonging to the Sample 1 from the main release (S1200) 

and re-applying the selection criteria on the remaining participants.

The final selection procedure of Sample 1 resulted in a total of 420 subjects: 205 males (119 

non-twins, 91 twin subjects; aged 22–37 years, mean: 28.3 ± 3.5; years of education: 14.9 

± 1.8) and 205 females (117 non-twins, 93 twin subjects; aged 22–36 years, mean: 28.8 

± 3.5; years of education: 15.0 ± 1.8).

From the remaining subjects not selected for Sample 1, Sample 2 was obtained resulting in 

a sample of 302 subjects: 151 males (75 non-twins, 76 twins subjects; aged 22–36 years, 

mean: 28.2 ± 3.4; years of education: 14.8 ± 1.8) and 151 females (76 non-twins, 75 twin 

subjects; aged 22–35 years, mean: 28.9 ± 3.5; years of education: 15.0 ± 1.8). For an 

overview on the samples selection, see Fig. 1.

In addition, Sample 1 and Sample 2 were combined to form the largest group of subjects 

available from the HCP data that are gender-balanced and matched for age and education 

(Sample 3). This allowed us to investigate the stability of the results discovered in the two 

unrelated samples (i.e., that did not contain related individuals) and screen for additional 

relationships. The latter, however, need to be taken with caution, as the pooled sample does 
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systematically contain closely related individuals (siblings and twins). Please refer to the 

supplementary material for a more detailed overview of the sample and the results of this 

analysis.

Self-report data

Personality was assessed using the English-language version of the NEO Five-Factor 

Inventory (NEO-FFI; McCrae and Costa 2004). The NEO-FFI consists of 60 items in the 

form of statements describing behaviours that are characteristic for a given trait, 12 for each 

of the five factors (Openness, Conscientiousness, Extraversion, Agreeableness, and 

Neuroticism). Each factor is assessed by aggregating individual responses given on five-

point Likert-type ratings scales, yielding sum scores between 0 and 60 for each factor. Data 

were analyzed using SPSS 20 (IBM Corp. Released 2011); scores of males and females 

were compared via t tests (p< 0.05, Bonferroni-corrected for multiple comparisons) for each 

personality trait. In case of significant group differences, we estimated effect sizes using 

Cohen’s d measure (Cohen 1988). Furthermore, correlations among factors were calculated 

and tested for significance (Bonferroni-corrected) separately for males and females (for 

details, see supplementary material). Importantly, as reported on the HCP listserv (https://

www.mail-archive.com/hcp-users@humanconnectome.org/msg05266.html), the 

Agreeableness factor score in the HCP database was erroneously calculated due to item 59 

not reversed. We addressed this issue by reversing it and using the correct score of 

Agreeableness.

Meta-analytically derived networks

Selection of networks—We selected nine meta-analytic networks representing regions 

consistently activated by various social, affective, executive, and memory functions. 

Specifically, we used two networks related to social cognition: empathy (Emp; Bzdok et al. 

2012) and static face perception (Face; Grosbras et al. 2012); three networks related to 

affective processing: reward (Rew; Liu et al. 2011), physiological stress/pain (Pain; Kogler 

et al. 2015), and perception of emotional scenes and faces (Emo; Sabatinelli et al. 2011); 

two networks related to executive functions: working memory (WM; Rottschy et al. 2012) 

and vigilant attention (VA; Langner and Eickhoff 2013); two networks related to long-term 

memory: autobiographic memory (AM; Spreng et al. 2008) and semantic processing (SM; 

Binder et al. 2009).

Selection of coordinates—From each meta-analysis, we selected the reported 

coordinates of the networks to include in our analyses and modelled a 6-mm sphere around 

each coordinate. This ensured that all nodes were represented by region of interest of equal 

size (ROIs) within and across networks. Within each single network, we only selected peaks 

that either represented different anatomical regions, preventing multiple representations of a 

single region, or were at least 15 mm apart from each other [according to the SPM anatomy 

tool-box 2.1; (Eickhoff et al. 2005, 2007)]. In cases of multiple peaks within an anatomical 

region that were closer to each other, we included the peak showing the highest Z-score. 

Please note that these criteria were only applied for multiple regions within a single network, 

while we did not exclude any regions that were found also in another network. That is, even 

if different networks featured peaks at the same location, these presumably shared nodes 
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were retained. Given that little is yet known about the effect of the networks’ sizes on the 

outcome predictability, we also had to consider the size of the networks (i.e., number of 

nodes) to make sure that possible differences in their predictive power were not due to the 

number of nodes included. As a result, the size of the networks ranged between 16 (VA) and 

24 (Emo) nodes. Further details on the meta-analytic networks can be found in Table 1, 

supplementary Table S3 and supplement Fig S1.

Connectome analysis

In addition, we employed a brain-wide network of 264 functional areas from Power and 

colleagues (Connectome; Power et al. 2011) to compare the predictive power of RSFC from 

the whole-brain and from meta-analytic networks. For the coordinates of this Connectome, 

please refer to the supplementary Table S2 of Power et al.

Resting-state fMRI data: acquisition, preprocessing, and functional connectivity analyses

As part of the HCP protocol (Glasser et al. 2013), images were acquired on a Siemens Skyra 

3T Human Connec-tome scanner (http://www.humanconnectome.org/about/project/MR-

hardware.html) using a 32-channel head coil. Resting-state (RS)-BOLD data (voxel size = 2 

× 2 × 2 mm3, FoV = 208 × 180 mm2, matrix = 104 × 90, 72 slices in a single slab, TR = 720 

ms; TE = 33.1 ms, flip angle = 52°) were collected using a novel multi-band echo planar 

imaging pulse sequence that allows for the simultaneous acquisition of multiple slices (Xu et 

al. 2013). RS-fMRI data were then cleaned of structured noise through the Multivariate 

Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) 

part of FSL toolbox (http://www.fmrib.ox.ac.uk/fsl). This process pairs independent 

component analysis with a more complex automated component classifier referred to as FIX 

(FMRIB’s ICA-based X-noisifier) to automatically remove artefactual components (Salimi-

Khorshidi et al. 2014).

The FIX-denoised RS-fMRI data were further preprocessed using SPM12 (Statistical 

Parametric Mapping, Well-come Department of Imaging Neuroscience, London, UK, http://

www.fil.ion.ucl.ac.uk/spm/), running under Matlab R2016a (Mathworks, Natick, MA). For 

each participant, the first four EPI images were discarded prior to further analyses. Then, 

EPI images were corrected for head movement by affine registration using a two-pass 

procedure: in the first step, images were aligned to the first image, and in the second step to 

the mean of all volumes. Next, the mean EPI image was spatially normalized to the non-

linear MNI152 template (Holmes et al. 1998) using the “unified segmentation” approach to 

account for inter-individual differences in brain morphology (Ashburner and Friston 2005). 

Finally, images were smoothed with an isotropic Gaussian kernel (full-width at half-

maximum = 5 mm).

The activity time series of each voxel was further cleaned by excluding variance that could 

be explained by mean white-matter and cerebrospinal-fluid signal (Satterthwaite et al. 2013). 

Data were then band-pass filtered with cut-off frequencies of 0.01 and 0.08 Hz.

To identify participants with aberrant RSFC patterns, we computed each subject’s entire 

connectome sampled on a 1-cm grid. We then computed the pairwise Euclidean distance 
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between the subjects and identified the nearest neighbour for each subject. We excluded the 

subjects whose distance to their nearest neighbour was in the highest 2.5% and at least 3 SD 

away from the average distance. This procedure was done separately for men and women 

(Sample 1: 5 males, 5 females; Sample 2: 4 males, 4 females). No subjects were excluded 

due to outlier motion parameters (DVARS and FD both displaying zero-centered values) 

(Salimi-Khorshidi et al. 2014; Varikuti et al. 2016; Ciric et al. 2017). For RSFC analyses, the 

subject-specific time series for each node of each network were computed as the first 

eigenvariate of the activity time courses of all gray-matter voxels within 6 mm of the 

respective peak coordinate. We then computed pairwise Pearson correlations between the 

eigenvariates of all nodes in each network, which then were transformed using the Fischer’s 

Z scores and adjusted (via linear regression) for the effects of age and movement.

RSFC-based prediction of personality traits by relevance vector machine learning

We examined if the RSFC patterns within each network predicted personality scores by 

means of statistical learning via the Relevance Vector Machine (RVM; Tipping 2001) as 

implemented in the SparseBayes package (http://www.miketipping.com/index.htm). The 

RVM is a machine learning technique that can learn to predict a continuous target value 

given explanatory variables (also called features). In our case, the features were the RSFC 

values between all nodes of a meta-analytic network, while the score of a specific 

personality factor scale was the target value.

Briefly, RVM is a multivariate approach that was developed from the Support Vector 

Machine (SVM) to induce sparseness in the model’s parameters. The RVM, in contrast to 

SVM, implements a fully probabilistic Bayesian framework: for each possible value of the 

input vector (e.g., set of FC values), the RVM algorithm provides a probability distribution 

of the predicted target value (e.g., FFM personality score), unlike a point estimate obtained 

by the SVM:

y(x, w) = w0 0; σ0 + ∑
i = 1

n
wi 0; σi Kσ xi, x .

In the RVM formulation above, the kernel K is a multivariate zero-centered Gaussian with 

standard deviation σ (estimated by the algorithm) and every parameter wi, assigned to each 

subject xi in the training set, is assumed to follow a Gaussian with mean zero and standard 

deviation σi. The standard deviations σi that describe the probability distribution of the 

parameters wi are iteratively estimated from the training data to maximize the likelihood of 

the model. Sparseness is achieved by discharging parameters wi converged to zero. Once σ0 

and σi have been estimated, the trained model can be used to predict the target value (e.g., 

FFM personality score) from a previously unseen input vector (RSFC data from participants 

that were not part of the training data) by computing the predictive distribution (for a more 

detailed description, see Tipping 2001).

In our study, we implemented the RVM algorithm with a 10-fold cross-validation. That is, 

the sample was randomly split into 10 equally sized groups of which 9 were used for 

training, while one was held back and used for assessing the performance of the prediction 
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in previously unseen data. Holding out each of the 10 groups in turn then allowed computing 

the prediction performance across the entire data set. Importantly, this procedure was 

repeated 250 times using random initial splits of the data to obtain robust estimates of the 

RVM performance for predicting a given NEO-FFI score from a particular network’s RSFC 

pattern. For each subject, the predicted values resulting from each cross-validation (i.e., one 

replication) were averaged over the 250 replications and ultimately correlated with the real 

score.

As we performed 250 replications of a 10-fold cross-validation, in total 2500 models were 

computed to predict each trait. We thus quantified the contribution of each connection by the 

fraction of these 2500 models in which the weight for the respective connection was non-

zero. The connections that had a non-zero weight in at least 80% of all models were 

identified as the connections that were most robustly part of the predictive model. The brain 

networks were visualized with the BrainNet Viewer (http://www.nitrc.org/projects/bnv/) 

(Xia et al. 2013).

For both the “main” (Sample 1) and “replication” (Sample 2) samples, predictions were 

first carried out for all subjects with males and females combined (AllSample1: n= 410 

AllSample2: n = 302), and then separately for the male (MenSample1: n= 210; MenSample2: n = 

151) and female groups (WomenSample1: n= 210; WomenSample2: n= 151) to assess gender 

differences in predictability. Predictive power was assessed by computing Pearson 

correlations between real and predicted NEO-FFI scores and mean absolute error (MAE). 

Importantly, results were only regarded as significant when they were significant at a 

threshold of p< 0.05 in both samples (Sample 1 and Sample 2). The p value was computed 

via permutation testing between real and predicted values with 10,000 runs. For each run, 

we shuffled the predicted scores across subjects in either the entire sample (for “All”) or in 

the gender groups (for “Men” and “Women”) without replacement. From here, the definition 

of the p value as the fraction of runs when the correlation between real and the shuffled 

predicted score was higher than the one obtained between the real and the original predicted 

value.

For all significant results in either “All”, “Men” or “Women”, we further tested for 

significant differences in prediction performance (i.e., correlation between real and predicted 

value) between males and females in the main sample. Pearson correlation coefficients (r) 
were transformed into Fisher’s Z and the difference between ZMen and ZWomen calculated 

and then 95% confidence intervals (CI) were computed based on these difference scores. 

The difference in correlation coefficients between males and females were regarded as 

significant if the 95% confidence interval did not contain zero (Lane 2013).

Results

NEO-FFI scores

Subjects scored in the same range as reported by McCrae and Costa (McCrae and Costa 

2004) in both the samples.
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Correlations between factors were calculated separately for males and females and in the 

entire sample (see Supplementary Table S2 for more detailed information). Most of them 

were significant at p< 0.05 (Bonferroni-corrected) in both males and females and the entire 

sample. Openness, however, was found to be independent of most of the other factors, 

except for Agreeableness (in Sample 1 for All, Men, and Women), and Conscientiousness 

(in All for both Sample 1 and Sample 2). Furthermore, Neuroticism was the only factor 

correlating negatively with almost all the others (except for Openness in Men of Sample 1 
and in All, Men, and Women of Sample 2).

Comparison of the scores for the five personality traits between Men and Women revealed a 

significant difference for Agreeableness in both samples (Sample 1: t407= − 4.95; p< 0.05, d 
= − 0.49; Sample 2: t299= − 2.2; p< 0.05, d = − 0.27), with females scoring higher than 

males. For Neuroticism, Women significantly scored higher than Men in Sample 1 (t407= 

− 2.8; p< 0.05, d = − 0.28), while in Sample 2, this difference only showed a trend (t299 = 

− 1.93; p = 0.055, d = − 0.2). For Openness (Sample 1: t407= 0.1; p= 0.9; Sample 2: t299= 

1.64; p = 0.1) and Extraversion (Sample 1: t407= 1.1; p = 0.3; Sample 2: t299 = − 0.68; p= 

0.5) no significant gender differences were found. For Conscientiousness, Women 

significantly scored higher than Men in Sample 2 (t299= − 2.11; p< 0.05, d = − 0.245), while 

in Sample 1 Women scored higher than Men, but not significantly (t407 = − 0.41; p= 0.15).

RVM: predicting personality traits based on RSFC

Results are only be reported if they were significant both in the main (Sample 1) and in the 

replication sample (Sample 2).

Predictions in the entire sample (balanced males and females)—In the entire 

sample, the RSFC pattern of four networks significantly predicted personality factors: Pain 
and VA predicted Openness, AM predicted Agreeableness and Connectome predicted 

Neuroticism (see Table 2; Fig. 2 for an overview of the results and Fig. 3 for the correlation 

plots).

Predictions of personality traits in the gender-split groups—In the gender-split 

groups, we also found a significant prediction of Openness scores based on FC patterns 

within the Pain network in Women as well as prediction of Neuroticism based on the 

Connectome FC in Men. In contrast, the VA- and AM-related networks did not significantly 

predict Openness and Agreeableness in either sub-group. However, in the gender-specific 

groups, additional significant predictions were observed: in males, Extraversion was 

predicted by the RSFC patterns of Face and Neuroticism by Emo networks (Table 2; Figs. 2, 

3). In females, Openness was predicted by Rew network. Furthermore, in females, 

Extraversion was predicted by Rew network and the Connectome (Table 2; Figs. 2, 3).

Gender differences in personality predictability

For all the predictions that were significant in at least one group (All/Males/Females), we 

tested if prediction performance was significantly different between the male and female 

sub-groups. Significantly better predictability in Men than Women was found for 

Neuroticism predicted from Emo network (Table 3, supplementary Fig S2). In Women 
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compared with Men, Openness was significantly better predicted from Rew network and 

Extraversion from the entire Connectome (Table 3, supplementary Fig S2).

Notably, not all associations that were only found predictive in one sub-group showed 

significant differences in predictability between males and females. In particular, no gender 

differences were found in predicting Openness from Pain, and VA networks, Neuroticism 

from Connectome, Agreeableness from AM, and Extraversion from Face and Rew networks 

(Table 3, supplementary Fig S2).

Discussion

Here, we report associations between major dimensions of personality and RSFC in 

functional brain networks. In particular, individual scores of various personality traits of the 

Five-Factor Model (McCrae and Costa 2004) could be predicted from patterns of RSFC in 

specific meta-analytically defined networks as well as from the whole-brain FC pattern. In 

assessing the generalizability of our findings, we focused on the predictions that replicated 

in two different samples within the HCP data set.

These results capitalize on the as-yet largely untapped potential (though cf. Schilbach et al. 

2016; Varikuti et al. 2016) of neuroimaging meta-analyses to provide robust, functionally 

specific ROIs to investigate individual task-free data (Lee et al. 2012). These can help to 

constrain the otherwise vast feature space for statistical learning on resting-state data in a 

functionally meaningful and anatomically specific manner (Wang et al. 2010). As we 

demonstrate here, combining meta-analytic network definitions with statistical learning 

approaches allows, at a moderate level, not only predicting complex individual 

characteristics such as personality traits, but also the characterization of functional brain 

networks by their capability to do so. Nonetheless, our results of prediction of personality 

based on whole-brain FC pattern highlight that, for some traits, it might be crucial to 

consider the global connectivity as well.

In the overall (gender-mixed) sample, RSFC within networks representing affective and 

executive brain systems predicted Openness, RSFC within mnemonic network predicted 

Agreeableness, while RSFC from the whole brain predicted Neuroticism. In the gender-split 

samples, however, the prediction of Openness from the executive network VA and that of 

Agreeableness from the mnemonic network AM were not replicated in any of the two sub-

groups, an effect likely related to the moderate effect present in the overall sample not 

specifically driven by a particular sex. In contrast, the prediction from the affective network 

Pain was also predicted in the female-only subsample, indicating that more information on 

the respective phenotypes can be gained from RSFC data in one gender. The gender-specific 

analyses revealed further constellations in which personality traits could be predicted from 

particular networks (see Fig. 2). In fact, none of the network–trait combination was 

predictive in both female and male subsamples, but several functional networks were found 

to differentially predict personality traits in females vs. males. In addition, Connectome 
successfully predicted Extraversion (in Women) and Neuroticism (in the entire sample, but 

then also in Men only). This underlines the notion that gender is a fundamental factor with 

regard to brain–personality relationships.
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Methodological considerations and limitations

In our analysis, we combined a priori selection of networks of interest, built upon the 

existing literature (cf. Kennis et al. 2013; Hu et al. 2011; DeYoung 2010), together with a 

data-driven approach for learning of the predictive models. The benefits of this approach 

were twofolds: on one hand, with the a priori selection of networks, we could narrow down 

the networks of interest, which allowed us for a better functional interpretation of the results 

as the nodes represent brain regions robustly associated with the respective mental functions; 

on the other hand, the data-driven predictive models allowed for an explanatory analysis 

investigating which networks were informative in predicting a single trait, assuming, 

therefore, that many biological systems could contribute in explaining its inter-individual 

variance (Yarkoni 2015). Given that if only meta-analytically defined functional networks 

were employed, less consistently linked yet potentially critical regions might have been left 

out, we included also a purely explorative analysis employing the whole-brain FC.

In addition, as noted above, using a sparsity inducing method (RVM) which yielded compact 

regional modes has the advantage of providing regionally specific prediction models. As 

outlined above, our procedure provided a biologically informed feature reduction, as only 

the most relevant connections were taken in account in the prediction models. This has the 

advantage of reducing the complexity of the models avoiding overfitting (Hastie et al. 2009).

With respect to the prediction model, we here employed Relevance Vector Machine (RVM), 

which, in contrast to support vector regression or ridge regression, yields considerably 

sparser solutions (Tipping 2001). This allowed for identifying the most used connections and 

nodes (Fig. 4) that mainly drove the prediction and hence enabled a more specific 

interpretation of its neurobiological underpinnings. In this context, it is important to note 

that, for any given model, the entire set of connections with non-zero coefficients provides 

information about the personality trait (Orrù et al. 2012). For interpretation, however, we 

focused on the most consistently utilized connections (over 250 replications) as key 

components of the given prediction.

In accordance with recent recommendations, the current study used 10-fold cross-validation, 

which has been showed to be less susceptible to overly optimistic estimates as compared 

with a leave-one-out approach (LOO-CV) (Varoquaux et al. 2016). Moreover, we repeated 

the cross-validation procedure 250 times, averaging the prediction performance over all 

replications to obtain robust and generalizable estimates of the capability of different brain 

networks to predict personality scores in new individuals.

A last important methodological reflection is that, although it might be tempting to make use 

of the entire HCP sample (which, if requiring an equal number of males and females, and if 

considered the matching factors of age, education and twin status, would yield about 800 

individuals), it systematically consists of related subjects (siblings and twins). In addition, 

there is considerable evidence for genetic influence on both personality (Jang et al. 1996; 

Bouchard and McGue 2003; Verweij et al. 2012; Power and Pluess 2015) and brain function 

(van den Heuvel et al. 2013; Colclough et al. 2017; Ge et al. 2017; Ktena et al. 2017). 

Consequently, the relationship structure in the HCP data is a critical aspect to this work, as 

the inclusion of related subjects would potentially hurt the model fitting but even more 
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importantly would introduce an (optimistic) bias into the cross-validation. As a result, we 

thus performed our analyses primarily in the largest possible set of matched, unrelated 

subjects, replicate it in the then largest possible independent set of matched, unrelated 

subjects and only in a supplementary analysis pooled both of these sets for the analysis of 

around 750 subject.

Our approach, by building upon these methodological considerations, yielded insights into 

the relationships between brain, behaviour, and personality. However, there are some 

limitations which are worth consideration in the future studies. First, gender-stratified sub-

analyses may reduce statistical power because of the smaller sample sizes. Further studies 

with a larger sample size, designed to separately analyze men and women, are required, 

especially monitoring their hormonal levels (Arélin et al. 2015; Weis et al. 2017). Second, 

even though meta-analytic networks are among the most reliable ways to infer a mental 

function given a set of brain regions, we acknowledge that some regions of different 

functional networks can overlap. As a matter of fact, the employment of meta-analytically 

derived networks does not necessarily ensure a stringent and univocal relationship between 

the mental function supported by a particular network and a personality trait. Nonetheless, 

this approach can at least provide some confidence for the implication that a specific trait is 

related to a particular mental function in terms of the network that subserves them. A third 

consideration relates to the measurement of personality, i.e., the use of self-reported 

questionnaires. Self-reported questionnaire might have, indeed, contributed in increasing the 

noise in the data, as perception and report of own personality traits can be affected by many 

factors, e.g., men usually scoring low on Neuroticism as socialization effect (Viken et al. 

1994).

Predicting Openness to experience

Our results indicated that self-reported Openness to experience can be linked to RSFC 

patterns in the networks subserving reward (Rew) and pain (Pain) processing in Women, 

while, in the overall sample, Openness was significantly predicted by RSFC in the vigilant 

attention (VA) network and, again, from Pain. Openness to experience has been linked to 

“need for cognition,” that is, an individual’s tendency to engage in effortful cognitive 

processing (Fleischhauer et al. 2010): high levels of Openness were found to positively 

affect work outcomes for highly complex jobs while increasing dissatisfaction when jobs 

become mechanical and unchallenging (Mohan and Mulla 2013). Such monotonous and 

intellectually unchallenging tasks were exactly the tasks investigated in the VA meta-analysis 

of Langner and Eickhoff (2013), which revealed the brain network involved in dealing with 

sustained attentional demands in boring situations. Thus, the predictability of Openness from 

FC in the VA network may reflect a neural substrate of the challenge experienced by 

individuals scoring high on Openness when faced with repetitive tasks and standardized 

routines. High-Openness participants might, therefore, need to recruit this network 

differently than low-Openness individuals to keep focused on a tedious, repetitive task over 

time. Indeed, connections used throughout all prediction models from the VA network of 

Openness in both samples is between pre-supplementary motor cortex and medial prefrontal 

cortex (both involved in task-set re-energizing and outcome monitoring), between left 

inferior occipital gyrus (IOG) and right temporo-parietal junction (crucial for re-orienting 
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the signalling), and left IOG and inferior frontal junction (known for its contribution in the 

input/output transformation) (see Fig. 4 for the most informative connections and Langner 

and Eickhoff 2013 for more details on the regions’ functions).

Behaviours associated with the trait of Openness, such as cognitive exploration, have been 

attributed to high dopamine (DA) functioning (DeYoung et al. 2005). This, indeed, led to the 

inclusion of Openness in the meta-trait “β” (or plasticity, c.f. DeYoung 2010), a higher order 

factor representing the shared variance between Openness and Extraversion, which are 

suggested to be both modulated by the dopaminergic system. DA is the main 

neurotransmitter modulating the reward network (cf. Berridge and Robinson 1998), and, in 

line with this, RSFC within the Rew network could predict both Openness and Extraversion 

(in Women and in Men, respectively), possibly via affecting the reactivity of the 

dopaminergic system. Interestingly, in predicting Openness, the weights of the nodes (i.e., 

number of incident edges) most used across the predictive models showed a stronger 

involvement of the dlPFC, corroborating previous findings that showed an association 

between Openness and the dopaminergic mesocortical branch, which projects directly onto 

the dlPFC (DeYoung 2013; Passamonti et al. 2015). On the other hand, regions like 

amygdala, nucleus accumbens (NAc), and orbitofrontal cortex (OFC), which constitute the 

other main dopaminergic branch, the mesolimbic pathway, were significantly less recruited. 

We would thus suggest that DA neurons populating the mesocortical branch, by encoding 

specifically the saliency of the stimulus (i.e., reward value of information, cf. Bromberg-

Martin et al. 2010), can be potentially more informative for high-Open individuals, 

characterized by the automatic tendency to perceive salient information in everyday 

experience (DeYoung 2013). Interestingly, we found that Openness could be predicted by 

FC of the Rew network significantly better in Women, compared to Men (r = 0.17 in Women 

and r = − 0.06 in Men of Sample 1). This might be explained by the fact that Rew 
functioning is highly influenced by the ovarian hormones estrogen and progesterone during 

the menstrual cycle (Dreher et al. 2007). In addition, estrogens have been related to dlPFC 

functioning, going along with cognitive decline which follows the drop of estrogens in 

menopause (Shanmugan and Epperson 2014). Despite the lack of studies exploring a direct 

relationship between females’ hormonal cycling and the trait of Openness, there is evidence 

for its indirect modulation by estrogen. That is, the catechol-O-methyltransferase gene, 

which is associated with the trait of Openness (Konishi et al. 2014), is influenced by 

estrogen (Harrison and Tunbridge 2008). We thus suggest that the influence of ovarian 

hormones on RSFC in the Rew network as well as on perceived Openness induces joint 

intra-individual variation (i.e., shared variance), which in turn increases the strength of the 

neural and phenotypical association across women. This should then result in the observed 

higher predictability of Openness in female participants.

Across the entire sample, but then also in the female subgroup only, Openness could 

additionally be predicted in both samples based on FC within the pain network (Pain). 

Relationships between pain and Openness have been demonstrated in terms of a higher 

threshold for pain tolerance (Yadollahi et al. 2014) and as protective factor in migraine 

occurrence (Magyar et al. 2017) in individuals reporting higher levels of Openness. 

However, very little is known about the association between this trait and the neural 
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correlates of pain. Indirect evidence, however, comes from research in avoidance learning, 

which suggests that the successful avoiding of an aversive stimulus is experienced as an 

“intrinsic” reward (Kim et al. 2006). Endogenous opioid peptides, which are highly dense in 

the pain network (Baumgartner et al. 2006), were, indeed, found to modulate the 

dopaminergic system in response to aversive stimuli, resulting in the enhancement of a 

pleasure feeling boosted by DA (Sprouse-Blum et al. 2010). We thus suggest that high- and 

low-Open individuals differ in their ability to detect possible aversive stimuli (via diverse 

reactivity of the Pain network) and, by avoiding them, differently experience “intrinsic” 

reward.

In summary, the predictions from the Rew, VA, and Pain networks of Openness might, 

therefore, jointly point to the importance of saliency processing of stimuli, which can be 

rewarding (Rew), monotonous (VA), or aversive (Pain), turning high Open individuals as 

highly receptive and permeable to relevant information. Ultimately, connections between 

regions specially targeted by ovarian hormones (e.g., dlPFC) might underlie the significant 

gender difference in the predictability of Openness from FC in Rew network (Fig. 4).

Predicting Extraversion

Extraversion was predicted by the RSFC patterns within the networks of reward (Rew) in 

Women and face perception (Face) in Men. Moreover, in Women, this trait was also 

significantly predicted by the whole-brain (Connectome) RSFC. Extraversion is generally 

described as behavioural exploration and sensitivity to specific rewards. Importantly, a 

distinction has been also made between “Agentic Extraversion”, reflected in assertiveness, 

dominance, and ambition aspects, and a “Affiliative Extraversion” which is more related to 

sociability and affiliative social bonding (DeYoung et al. 2007; c.f. Allen and DeYoung 

2016).

As discussed previously in the paragraph “Predicting Openness to experience”, the traits of 

Extraversion and Openness exhibit a shared variance, known as “β” factor, and are 

genetically influenced by the dopaminergic system (c.f. Allen and DeYoung 2016). Notably, 

while for Openness, Rew’s most used nodes encompassed the mesocortical pathway (see 

above), for Extraversion, it was regions along the mesolimbic branch that were mostly used 

(amygdala, NAc and OFC). Thus, we suggest that even though FC of Rew predicts both 

Openness and Extraversion, the functional connectivity of two different subsystems of the 

Rew network is informative for the two different traits, namely the mesocortical and 

mesolimbic pathway, respectively. In favour of this distinction, extraverts were shown to be 

more sensitive toward the motivational content of the reward stimulus, encoded by DA 

neurons along the mesolimbic pathway (Bromberg-Martin et al. 2010; DeYoung 2013). We 

thus believe that the prediction of Extraversion from the FC within Rew might well-capture 

the “Agentic” dimension of Extraversion, given the motivational value of the rewarding 

stimuli and drive toward a goal prompted by the dopaminergic mesolimbic system.

While extraversion in Women was found to be associated with FC of Rew, relationships of 

this trait, in Men, were found with FC in Face network. Faces are arguably the most 

important social stimuli for humans and it has been shown that extraverts compared to 

introvert, by spending more time on people, are significantly better at recognizing faces (Li 
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and Liu 2010). Extraversion’s hedonic experience of goal achievement is enclosed in the 

“Affiliative” component (DeYoung et al. 2007; c.f.; Allen and DeYoung 2016) and its 

genetic variation has been also pointed to the opiate system, due to its involvement in the 

hedonic response to the stimulus (Peciña et al. 2006). It is, therefore, possible that the 

endogenous opioid system via modulation of amygdala and medial prefrontal cortex (Tejeda 

et al. 2015; Selleck and Baldo 2017), most used regions in the connections of Face, mediate 

both the perception of faces (Martin et al. 2006) and the social bonding (Pasternak and Pan 

2013). We thus suggest that functional connectivity within the Face network in Men is 

mostly related to the “Affiliative” aspect of Extraversion.

The last prediction of Extraversion is based on whole-brain FC in Women (Sample 1: r= 

0.29; Sample 2: r= 0.23, both p < 0.05; for gender comparison in Sample 1, Cohen’s q= 

0.323, p < 0.05). However, a major issue using whole-brain connectivity patter might be the 

lack of anatomical localization for the most informative features, as none of them resulted to 

be used more than 40% of the predictive models, indicating a heterogeneous mosaic of 

connections which contribute to the prediction of Extraversion. The only theory in 

personality neuroscience which relates the functioning of entire cortex to Extraversion (and 

Neuroticism, see below “Predicting Neuroticism”) is Eysenck’s biological theory of 

personality (Eysenck 1967). Here, Extraversion is thought to depend on the variability in 

cortical arousal, with introverted individuals having lower response thresholds consequently 

more cortical arousal compared to extraverts. In favour of this hypothesis, the topological 

properties of whole-brain RSFC have shown that brains of more extraverted individuals 

behave more similarly to a “small-world” compared to a “random” network, with higher 

clustering coefficient compared to introverts (Gao et al. 2013). A “small-world” clustered 

configuration, which supports a more modularized information processing and fault 

tolerance, can, therefore, be associated with higher arousal threshold in extraverts’ cortex. 

We also observed that this prediction performance was significantly stronger in Women 

compared to Men (r = 0.29 in Women and r = − 0.03 in Men of Sample 1). Again, a possible 

cause might be the involvement of ovarian hormones, targeting specifically the most densely 

interconnected hub structures of the connectome (Alawieh et al. 2015) as well as influencing 

level of Extraversion (Jokela et al. 2009; Ziomkiewicz et al. 2012). However, more studies 

are needed to prove this interaction between Extraversion, estrogen, and the topographical 

properties of whole-brain functional connectivity.

To sum up, connectivity of regions encoding the motivational value and the drive toward a 

goal (Rew) and the hedonic processing of the goal itself (Face) were informative to predict 

inter-individual variability in the trait of Extraversion possibly capturing the “Agentic” and 

“Affiliative” aspects of the trait, respectively (Fig. 4). Importantly, given the modulation of 

ovarian hormones on both the trait of Extraversion and on the topological properties of the 

Connectome, we would suggest that sex hormones might be a possible mediator of this 

trait–network relationship, resulting in better prediction performance in Women.

Predicting Agreeableness

RSFC patterns in the AM network could predict the individual level of perceived 

Agreeableness while grouping men and women in both samples. This trait reflects a high 
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desire to avoid interpersonal conflicts (Jensen-Campbell and Graziano 2001) and strong 

affect regulation (Ryan et al. 2011). In line with this, positive correlations have been 

demonstrated between Agreeableness and regions supporting social functioning (Hooker et 

al. 2008; DeYoung et al. 2010; Hassabis et al. 2014) and midline regions of the default mode 

network (DMN), as deputed to self-referential process (Adelstein et al. 2011; Sampaio et al. 

2014). Our prediction of Agreeableness from the AM network supports a crucial role of self-

reference, strongly linked to autobiographical memory (Molnar-Szakacs and Arzy 2009), in 

how high agreeable individuals deal with social demands. Self-related cognition has been 

often discussed at the neural level as the product of interaction between the DMN and the 

mirror neuron system (MNS), the first responsible for high-level mentalizing function and 

the second for embodied simulation-based representation (Keysers and Gazzola 2007; Qin 

and Northoff 2011; c.f.; Molnar-Szakacs and Uddin 2013). As a result, the privileged access 

to the own physical and mental states would allow a better insight into others’ physical and 

mental states, and consequent appropriate social responses.

Interestingly, within the AM network, most used connections that informed about the trait in 

both samples reflected the interaction between the DMN and MNS systems: nodes with 

highest weights belonged, indeed, to DMN subsystem, such as medial PFC, posterior 

cingulate cortex, medial temporal lobe (amygdala and hippocampus) and lateral parietal 

cortex (temporo-parietal junction). The remaining nodes with the highest weights belonged 

to the MNS, such as inferior frontal gyrus, precentral gyrus, inferior parietal cortex, and 

superior temporal sulcus. Our result, hence, supports the interplay of these two subsystems 

in the context of self-processing (here expressed via memory recollection about past 

experiences, AM) and that this knowledge about the self can significantly predict 

Agreeableness, the trait most reflecting enhanced social skills.

Predicting Neuroticism

In Men, self-reported Neuroticism was predicted by RSFC within the emotional processing 

network (Emo). In addition, the RSFC from the whole brain (Connectome) significantly 

predicted this trait across the entire sample and then specifically in Men only. Neuroticism 

represents a broad dimension of individual differences in the tendency to experience 

negative, distressing emotions. High-Neuroticism scores entail the experience of fear, anger, 

sadness, embarrassment, the incapacity to control cravings and urges, and to cope with stress 

(Costa and McCrae 1987). Within this trait, it is possible to delineate two major divisions: 

one related to the experience of anxiety, fear and passive avoidance, and referred in literature 

as the aspect Withdrawal, and the other related to irritability, anger and active defensive 

responses, or Volatility (DeYoung et al. 2007). Neuroticism is arguably the most studied 

personality trait and is an important predictor of many different mental and physical 

disorders (Lahey 2009). Furthermore, the two aspects of Neuroticism (Withdrawal and 

Volatility) highly reflect the dimension of Behavioural Inhibition System (BIS) and Fight-

Flight-Freeing System (FFFS) from the Gray’s Reinforcement Theory (Gray and 

Mcnaughton 2000), conceptualized in term of their neurobiology. Interestingly, this 

distinction between the Volatility/FFFS and Withdrawal/BIS seems to be captured by the 

two networks showing predictability power for Neuroticism, Emo and Pain. Even though 

this last prediction (Pain) was found significant in Sample 1 (with r= 0.15, p < 0.05 in Men) 
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but not fully replicated in the Sample 2 (with r= 0.2, p = 0.05 in Men) (Fig. 4), we would 

still suggest that recruitment of this network in association to Neuroticism might indicate 

that perception of the aversive stimulus via the Pain network (Iannetti and Mouraux 2010; 

Hayes and Northoff 2012) could lead high-Neuroticism men to inhibit their behaviours such 

to avoid potential threats and punishments (Withdrawal). Conversely, Emo network would 

trigger emotional responses for either escaping or eliminating the threat, but in both cases 

showing a strong emotional lability (Volatility). Beyond associations with specific networks, 

Neuroticism could also be predicted from the whole-brain RSFC (Connectome) in Men and 

across genders. This is nicely in line with graph analysis studies (Gao et al. 2013; Servaas et 

al. 2015), showing that the neurotic brain displays topological properties of a “random 

network” and overall weaker FC. Here, cortisol might play a specific role, the hormone that 

is most closely associated with a biological reaction to stress and found to correlate with 

Neuroticism. However, the directionality of correlation seems to depend on gender: many 

studies converged in discovering that Neuroticism was positively correlated with baseline 

cortisol in men, but the opposite was true in women (Zobel et al. 2004; Oswald et al. 2006; 

DeSoto and Salinas 2015). Thus, especially in men, the overabundance of cortisol by 

potentiating neuronal degeneration (Sapolsky 1994) might be responsible for the overall 

smaller brain volume (Liu et al. 2013), white-matter (Bjørnebekk et al. 2013), and gray-

matter (Servaas et al. 2015) functional disconnectivity found in high-Neuroticism 

individuals compared to the more emotional stable. Given that all the three networks (Emo, 
Pain, Connectome) showed a stronger predictability in Men compared to Women 

(statistically significant for the first two, and a strong trend for the third, see Table 3), we 

suggest that gender may moderate Neuroticism’s relationship to cortisol. However, more 

(direct) studies are needed to better understand this intricate relationship between RSFC, 

cortisol, Neuroticism, and gender, and to shed light on the neural mechanisms that make 

women’s brain more susceptible to Neuroticism-related mental disorders (Jorm 1987).

Implications for the neurobiology of FFM

Contrary to other important theories of personality, such as Cloninger’s Tridimensional 

Personality Questionnaire (TPQ) or Gray’s Reinforcement Sensitivity Theory (RST), the 

FFM is not based on biological grounds. However, variability in its personality factors had 

been associated with the brain, given that personality traits are the product of our actions, 

emotions and, more generally, cognitive processes. In this way, the cognitive mechanisms 

work as intermediate bridge between the psychometric constructs of personality and 

plausible biological substrates. However, the relationships among these factors (brain, 

behaviour, and personality) can be misleading in the context of personality predictions, 

which, in fact, were significant only to a moderate level, compared to other findings: 

contrary to predictions of sustain attention (Rosenberg et al. 2016) or reading 

comprehension (Cui et al. 2017) which tap predictability of cognitive process itself, 

personality traits are mostly modulators of these cognitive processes. This may make it more 

difficult to find brain correlates of personality in specific networks associated with those 

functions.

In addition, the hierarchy of the FFM model might have contributed in enlarging the gap: in 

our findings, we highlighted the possibility that the predictions of one trait from different 
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networks could reflect different components within this trait, also known as aspects and 

facet (cf. DeYoung et al. 2007; Koelsch et al. 2013; Haas et al. 2015). For example, we 

discussed the prediction of Extraversion from Rew and Face as potentially capturing the 

“Agentic” and “Affiliative” aspects, respectively, or the prediction of Neuroticism from Pain 
and Emo as linked to Withdrawal and Volatility. Conversely, when the same network was 

predicting two different traits (e.g., Rew predicting Openness and Extraversion, discussed in 

light of the saliency and motivational contribution for the two traits), the prediction might 

have, indeed, boosted if investigating the meta-trait “β”, which reflects their shared variance 

within the dopaminergic system and thus more prone to be predicted by the network of 

reward processing (DeYoung 2013). Therefore, the level of abstraction of the five traits 

might not mapped well to particular brain systems, and more studies are encouraged for 

testing both more specific and homogeneous sub-dimensions as well as more heterogeneous 

higher order factor structure. Finally, many biological mechanisms participate in evoking the 

same cognitive process, e.g., changes in brain structure, function, or genetic, which are then 

intrinsically connected with personality. We here used RSFC as “marker” for the individual 

expression of personality traits, enduring across time and situations. However, a downside of 

FC in resting conditions might be that it has not so much to do with how personality factors 

come together to “produce” stable modulations of a whole range of cognitive processes. 

Therefore, other brain measurements (as structural connectivity, task-based functional 

activation, or molecular genetics) might be also useful in gaining more knowledge on the 

biology of personality and its relationship with specific mental functions. Keeping in mind 

that we cannot expect biological mechanisms to show clear-cut as the respective 

psychometric dimensions (Yarkoni 2015), but, conversely, many biological mechanisms 

(function, structure, neurotransmitters) as well as many mental functions can be informative 

for a given personality trait, we, therefore, support the need for a multi-level approach in 

future studies as proposed by Yarkoni to achieve a unified description of the biological bases 

of personality traits.

However, even though all these aspects might affect the relationship between brain function 

(and structure) and personality, we here do provide insights on the relation between brain 

and personality: when analysing the entire sample while adjusting for gender effects, only 

two predictions (VA predicting Openness and AM predicting Agreeableness) can be found 

not specifically driven by one gender-group. However, when looking at men and women 

separately, we observed much more and larger effects, evidence which highly remarks the 

importance of gender while investigating the neural correlates of personality. Specifically, 

the current findings propose a link between Openness and executive and affective domain. 

Agreeableness with memory domain. Extraversion with social and affective networks and 

lastly Neuroticism with the affective system. Interestingly, these last two traits could be 

predicted as well from the entire Connectome. An interesting consideration is that Openness 

could be significantly predicted by three different, barely overlapping networks (Pain, Rew, 
VA), but could not be predicted from the whole-brain, which was covering the nodes of all 

the three at the same time. We thus argue for a better predictability of Openness from 

specific and separate functional networks. Contrarily, Extraversion and Neuroticism could be 

significantly predicted by both meta-analytic networks and the whole brain, pointing to the 

importance of also global effects, besides specific functions. This is particularly true for 
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Extraversion, which showed significantly higher prediction performance from global RSFC 

(Connectome) with a very vast nodes contribution, rather than from the specific networks of 

Rew and Face, thus favouring the global effects over the specific functions for this trait.

Conclusions

Using multivariate machine learning, we showed that personality traits can be predicted 

from RSFC patterns in affective, social, executive, and memory networks of the brain, as 

well as from the whole-brain. Our observation that for most of these networks predictive 

power was gender-specific complements previous morphometric findings (Nostro et al. 

2016) in highlighting the crucial role of gender when trying to understand the neurobiology 

of personality. In addition, the many-to-many associations between mental functions and 

personality traits indicate the complexity of the biological substrates of personality, as many 

functional systems may contribute to the observable differences in each trait (for a critical 

review see Yarkoni 2015). Maybe, even more fundamental are the implications for the 

concept of personality, given that even a trait as complex and broad as, for instance, 

Openness, seems to have a neurobiological underpinning in pre-defined functional networks 

that enables estimation of the individual level of that trait in a new subject.
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Fig. 1. 
Samples selection overview: first Sample 1 (or “main” sample) was created aiming for the 

largest number of participants. Once 430 subjects were selected for this sample, the same 

procedure was applied on the remaing subjects of the HCP to generate Sample 2 (or 

“replication” sample). The two samples result in this was related to each other (as siblings of 

the subjects in Sample 1 are present in Sample 2), but, within each sample, there are no 

subjects related to each other
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Fig. 2. 
Emp: empathy; AM: Autobiographic memory; WM: working memory; Emo: emotional 

processing; Face: face processing; Rew: reward; SM: semantic memory; VA: vigilant 

attention; Pain: pain processing. Summary of the networks for which FC patterns 

significantly predicted the five personality traits. For each network-trait combination in 

either Men or Women, and here, it is reported the conjunction between the correlation 

coefficients (i.e., minimum r value). Only predictions with r > 0.1 are displayed. While the 

nine meta-analytic networks are represented as slices (triangles) of the five personality 

circles, the connectome is represented as well as a circle. Triangles and circles are scaled 

based on the r values of the predicting networks (r values reported in the axis). Meta-analytic 

networks are underlined if a significant prediction is detected in either Men or Women. 

Asterisks mark significant gender differences in Sample 1
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Fig. 3. 
Scatter plots of the predictions of personality scores significant at p < 0.05 in both samples. 

Continuous regression lines, dashed lines, representing the standard deviation, and mean 

absolute errors (MAE) are displayed
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Fig. 4. 
Summary of the most used nodes (i.e., above 80% of the models) between regions from a 
the reward (Rew), vigilant attention (VA), and pain processing (Pain) networks in the 

prediction of Openness; b the Rew and face processing (Face) networks in the prediction of 

Extraversion. Summary of the most used connections between regions from c the 

autobiographic memory (AM) network in the prediction of Agreeableness, d the Pain and 

emotional processing (Emo) networks in the prediction of Neuroticism
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