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Abstract

Meaningful efforts in computer-aided drug design (CADD) need accurate molecular mechanical 

force fields to quantitatively characterize protein-ligand interactions, ligand hydration free energies 

and other ligand physical properties. Atomic models of new compounds are commonly generated 

by analogy from the pre-defined tabulated parameters of a given force field. Two widely used 

approaches following this strategy are the General Amber Force Field, GAFF, and the CHARMM 

General Force Field (CGenFF). An important limitation of using pre-tabulated parameter values is 

that they may be inadequate in the context of a specific molecule. To resolve this issue, we 

previously introduced the General Automated Atomic Model Parameterization (GAAMP) for 

automatically generating the parameters of atomic models of small molecules using the results 

from ab initio quantum mechanical (QM) calculations as target data. The GAAMP protocol uses 

QM data to optimize the bond, valence angle, and dihedral angle internal parameters, and atomic 

partial charges. However, because the treatment of van der Waals interactions based on QM is 

challenging and may often be unreliable, the Lennard-Jones 6-12 parameters are kept unchanged 

from the initial atom types assignments (GAFF or CGenFF), which limits the accuracy that can be 

achieved by these models. To address this issue, a new set of van der Waals Lennard-Jones 6-12 

parameters was systematically optimized to reproduce experimental neat liquid densities and 

enthalpies of vaporization for a large set of 430 compounds covering a wide range of chemical 

functionalities. Calculations of the hydration free energy indicate that optimal accuracy for these 

models is achieved when the molecule-water van der Waals dispersion is rescaled by a factor of 

1.115. The final optimized model yields an average unsigned error in the hydration free energies 

of 0.79 kcal/mol.
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Supporting information: The final computed enthalpies and volumes of neat liquids and hydration free energy using GAFF/AM1-BCC 
and the force field GAAMP/GAFF-LJ*-γwith optimized LJ parameters are provided together with all experimental values in the files 
“gaamp_gaff_name_vol_hvap.xlsx”, and “solvation_free_enrgy.xlsx”, respectively. All experimental data used in the present work 
were taken from ref. 52 and the National Institute For Standards and Technology (NIST) Chemistry WebBook (https://
webbook.nist.gov/chemistry). The weights for the empirical similarity fitness score of a compound are given in 
“training_atom_types_weights.xls”. The complete optimized GAAMP force fields for the small molecules (in the form of a RTF and 
PRM files in CHARMM format) can be downloaded from the github linkhttps://github.com/gaamp/Optimized-Additive-Force-Files-
For-Large-Collection-of-Small-Molecules-/blob/master/optimized_ff.tar.gz
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Introduction

Molecular dynamics (MD) simulations based on classical molecular mechanical (MM) force 

fields are increasingly used to provide atomic-level insights in studies of biological 

phenomena.1 Force fields aim to represent the quantum-mechanical (QM) Born-

Oppenheimer (BO) potential energy surface of molecular systems in terms of physically 

meaningful components that are modeled via a combination of simple analytic functions 

with multiple parameters. While force fields that explicitly treat induced polarization are 

progressing rapidly,2-3 non-polarizable additive potential functions that represent 

polarization in an average manner with effective fixed partial charges achieve a reasonably 

accurate representation of the condensed phase. To date, the most widely used additive force 

fields for MD simulations of biomolecular systems are CHARMM,4-8 AMBER,9 OPLS,10 

and GROMOS.11 These force fields were empirically optimized to reproduce a number of 

calculated QM and experimental properties for basic biological constituents, including 

proteins, nucleic acids, carbohydrates and lipids.12 As a result, they cover only a fairly 

restricted set of chemical functionalities and models of additional compounds are typically 

generated by chemical similarity. One of the challenges encountered in computer-aided drug 

design (CADD) occurs when compounds that have no close analogs within the existing 

biomolecular force fields are needed. Meaningful efforts in computer-aided drug design 

(CADD) required accurate molecular mechanical force fields to quantitatively characterize 

protein-ligand interactions.13-17 The best way to address this issue is to have an objective 

algorithmic procedure to automatically parameterize an arbitrary molecule from pre-defined 

tabulated values in a manner that is consistent with a given force field.13, 18-20

Currently two of the most widely used are the general Amber force field (GAFF);13, 21 and 

the CHARMM general force field (CGenFF).14, 20 The program Antechamber22 in 

AmberTools automatically parameterizes small compounds in accord with GAFF;13, 21 atom 

types and internal parameters (bonds, angles, dihedrals and improper dihedrals) of a given 
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compound are assigned automatically from tabulated values according to an AMBER-

consistent classification while atomic charges are fitted to match the results of quantum 

mechanical (QM) or semi-empirical calculations.23 CGenFF generates CHARMM-

consistent force field parameters for small compounds and drug-like molecules according to 

knowledge-based rules.14, 20, 24 These computational tools represent important advances that 

greatly broaden the range of chemical systems that can be studied with simulations by 

enabling an objective and automatic parametrization of novel molecules. More importantly, 

such procedures avoid the subjective manual adjustments of force field parameters, which 

ultimately undermine the predictive value of computations based on atomic models. As an 

extension of these methods aimed at achieving an automatic parametrization for small 

molecules, we introduced the General Automated Atomic Model Parameterization 

(GAAMP),25 which was designed to determine force field parameters using ab initio QM 

calculations as the primary target data. The method has been implemented in a web server 

(GAAMP, http://gaamp.lcrc.anl.gov/) and can also be setup locally as a script (https://

github.com/gaamp). The overall algorithm comprises four main steps. First, GAAMP 

generates starting atomic models consistent with the atom-type assignments from either 

GAFF,13, 21 or from CGenFF.14, 20 Second, GAAMP optimizes the geometry using QM and 

then refines the internal structural parameters (bonds and angles). Third, GAAMP optimizes 

the atomic partial charges by simultaneously seeking to match the QM electrostatic potential 

(ESP) as well as compound-water interactions determined from QM calculations. Fourth, 

GAAMP automatically identifies the “soft” dihedrals (i.e., those with low energy barriers 

that are most likely to undergo conformational change), and then iteratively refines the 

associated dihedral parameters on the basis of QM data.25

The resulting GAAMP models retain the internal topology and the van der Waals (i.e. 

Lennard-Jones (LJ)) parameters from the initial force field (GAFF or CGenFF), but with 

bond, angle, dihedral, and atomic partial charge parameters re-optimized on the basis of QM 

data. The bond, angle and dihedral parameters are optimized from QM data with high 

confidence, and avoid the context-dependent limitations that necessarily arise from tabulated 

standard values. Similarly, the electrostatic charges of the model can be determined with 

high confidence by combing ESP9, 26 and water interactions,4 which yields more accurate 

models.25 The GAAMP protocol makes the best use of QM data to determine all the needed 

parameters, free from the constraint of tabulated parameters that may be inadequate in the 

context of a specific molecule. It is important to note, however, that the LJ parameters are 

directly transferred from the initial atom type assignments of GAFF or CGenFF. By choice, 

the LJ parameters are not modified by the GAAMP algorithm because an automated 

treatment of van der Waals interactions based on QM is challenging and may often be 

unreliable. Although GAFF and CGenFF were certainly developed with great care, this 

remains one aspect of the final GAAMP model that may be a concern because the properties 

of solvated systems can be highly sensitive to very small changes in the LJ parameters. The 

situation severely limits the accuracy that can be achieved by automated parametrization 

procedures to model arbitrary small drug-like molecules.

The goal of the present work is to derive a set of optimal LJ parameters, which dominate the 

thermodynamics properties of pure liquids,27 adjusted to reproduce experimental neat liquid 

densities and enthalpies of vaporization27 and hydration free energies for a large set of more 
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than 400 compounds covering a wide range of chemical functionalities. To date, empirical 

optimization of LJ parameters targeting experimental data has yielded models that 

accurately reproduce the targeted set of data though may be limited in their ability to 

satisfactorily reproduce a wider range of experimental data. There have been a number of 

attempts to improve the ability of force fields to describe experimental observables, 

especially in the context of biomolecules. Head-Gordon and coworkers optimized solvent-

water van der Waals interactions to reproduce experimental hydration free energies for a set 

of 47 small molecules that incorporated all of the chemical functionalities of standard 

protein side chains and backbone groups.28 In the present effort we extend that approach by 

starting with the known GAFF or CGenFF LJ parameters, which act as a high quality initial 

guess, and optimize the parameters in a redundant fashion (i.e. multiple molecules contain 

the same LJ atom type) targeting an extended set of experimental data. This effort involved 

MD simulations of neat liquids conducted to calculate densities and enthalpies of 

vaporization for more than 400 compounds with known experimental values. Subsequently, 

free energy perturbation simulations were carried out to calculate the hydration free energies 

for a set of 426 compounds.

Method

The functional form of the potential function used in the parametrization is,29

U = ∑
bonds

Kb(b − b0)2 + ∑
angles

Kθ(θ − θ0)2 + ∑
dihedrals

Kφ(1 + cos(nφ − φ0))

+ ∑non−bonded pairs
qiq j

4π ∈0 ri j
+ 4Emin

(i, j) Rmin
(i, j)

ri j

12

− 2
Rmin

(i, j)

ri j

6

,

(1)

With some small variances regarding the internal energy terms, this functional form is 

essentially the same as that used in the non-polarizable AMBER30 and CHARMM4 force 

fields, e.g., CHARMM includes Urey-Bradley that are absent from AMBER. The most 

important difference concerns the 1-4 non-bonded charge-charge interactions, which are 

scaled by a factor of 0.833 in the AMBER force field and scaled by a factor of 1.0 in the 

CHARMM force field. The choice of 1-4 non-bonded scaling factor affects potential 

energies about dihedral angles, such that the associated dihedral parameters must be 

optimized in a fashion that is consistent with this choice. Unless specified otherwise, the LJ 

parameters for pairs of atoms i and j are constructed using the Lorentz-Berthelot 

combination rule,31 Emin
(i, j) = Emin

(i, i)Emin
( j, j) 1/2

 and Rmin
(i, j) = Rmin

(i, i)Rmin
( j, j) /2.

The GAAMP algorithm25 was used to generate initial molecular mechanics models based on 

the Generalized Amber Force field GAFF13, 21 for all the small compounds. Starting from a 

structure file in protein data bank (pdb) or mol2 formats comprising all atoms, GAAMP 

parametrization proceeded in three mains steps: (1) verification and adjustment of 

equilibrium bond length and angle parameters, (2) charge fitting using QM target data 
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including ESP and specific interaction with water molecules, and (3) dihedral parameter 

fitting using QM target data. Previous results suggest that including compound-water 

interactions as target data can substantially improve the quality of partial charges derived 

from RESP when a compound has hydrogen-bond donors/acceptors.25 All the ab initio 
calculations required by GAAMP were performed with the program Gaussian 09,32 though 

other QM codes could be utilized. AM1 was used for the pre-optimization for the initial 

structure before calling Antechamber21 to generate an initial force field based on GAFF13, 21 

with AM1-BCC charges.23 In the following, this initial model is referred as “GAFF/AM1-

BCC”. For GAAMP models, calculations at the HF/6-31G* level were used for geometry 

optimization as well as ESP calculation. The interactions between water and the target 

molecule to parametrize were calculated at the HF/6-31G* level without BSSE, following 

the recommended prescription as developed in the context of the CHARMM additive force 

field.5, 14, 20, 24 This involves scaling the target HF/6-31G* interaction energies by 1.16 in 

the case of neutral species while no scaling (scale factor = 1.0) is used for charged species. 

Calculation at the HF/6-31G* or MP2/6-31G* level were used to perform adiabatic 1D 

dihedral potential energy scans (PES), in which a single dihedral angles was constrained 

with geometry optimization of the remaining degrees of freedom at each step in the PES. 

The gradient-based optimizer L-BFGS33-34 was used for charge and dihedral parameter 

optimization. Augmented Lagrangian algorithm35-36 conjugated with L-BFGS33-34 was used 

for the geometry optimization with constraints on selected soft dihedrals for GAAMP.

To optimize the complete set of LJ well-depth and radii parameters (p1, p2, …, pn) 

associated with all the atom types, we construct an objective function,

F(p1, p2, …, pn) = ∑mWV
Vm

calc

Vm
exp − 1

2

+ WΔH
ΔHm

calc

ΔHm
exp − 1

2

, (2)

where the sum runs over all the molecules m in the training set, Vm
calc and Vm

exp are the 

calculated and experimental pure solvent molecular (specific) volume for molecule m, 

respectively, ΔHm
calc and ΔHm

exp are the calculated and experimental enthalpy of vaporization 

for molecule m, respectively, and WV and WΔH are the statistical weight ascribed to these 

two properties in the objective function. Equal weights were used in the present 

optimization. The molecular volume is calculated from MD simulations as the average total 

volume of the liquid box divided by the number of molecules in the system, V = 〈Vbox〉/N, 

and the enthalpy of vaporization is calculated as,

ΔHm
calc = kBT + ugas − uliquid , (3)

where 〈ugas〉 is the average potential energy of one isolated molecule in the gas phase and 

〈uliquid〉 is the average potential energy per molecule in the liquid box. The derivative of the 

objective function with respect to an arbitrary LJ parameter, pi can be expressed as,
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∂F
∂ pi

= 2∑mWV
Vm

calc

Vm
exp − 1 1

Vm
exp

∂Vm
calc

∂ pi
+ WΔHvap

ΔHm
calc

ΔHm
exp − 1 1

ΔHm
exp

∂ΔHm
calc

∂ pi
, (4)

where the derivative of a property Q (molecular volume or the potential energy) with respect 

to the parameter pi can be expressed as,

∂ Q
∂ pi

= 〈 ∂Q
∂ pi

〉 − 1
kBT 〈Q ∂U

∂ pi
〉 − 〈Q〉〈 dU

∂ pi
〉 . (5)

It should be noted that the first term 〈∂Q/∂pi〉 is non-zero only if Q depends explicitly on the 

parameter pi (i.e., this term is absent for the molecular volume for not for the enthalpy of 

evaporation).

The optimization of the LJ parameters aims at better reproducing the experimental densities 

and enthalpies for a large training set of 430 neutral model compounds. The gradient-based 

optimizer L-BFGS33-34 was used for charge and dihedral parameter optimization while in-

house programs to drive the LJ optimization were written in C++, bash shell script and 

Python. Analytical gradients were used for the L-BFGS optimizer. To determine the average 

properties of the neat liquid of each compound, a box of comprising roughly 200-300 

molecules (volume is roughly 35 × 35 × 35 Å3) was constructed and simulated for 2 ns with 

MD under periodic boundary condition (PBC). The simulation length was progressively 

increased to 5 ns in the final stages of optimization to reduce the statistical uncertainty. At 

every cycle of optimization, the MD simulations were started from the previously 

equilibrated systems with new LJ parameters. The systems were simulated at constant 

pressure and temperature using Langevin thermostat and Langevin piston.37 Long-range 

electrostatic interactions were computed using particle mesh Ewald (PME) summation38-39 

with a Ewald splitting parameter 0.34 Å-1, a grid spacing of ∼0.6 Å, and a sixth-order 

interpolation of the charge to the grid. Non-bonded van der Waals interactions were 

smoothly switched to zero between 10 and 12 Å and a long-range correction for missing van 

der Waals dispersion interactions was applied.40 The RATTLE algorithm42 was used to fix 

the length of those bonds connecting heavy atoms and hydrogen atoms in the compound. All 

MD simulations were carried out using the program NAMD.43

The initial LJ parameters for all the compounds in the training set were based on GAFF13, 21 

while the atomic charges and dihedral parameters were determined using GAAMP25. These 

initial LJ parameters were then optimized in two distinct stages. In the first stage, the liquid 

properties for all the compounds of the training set were recalculated at each optimization 

step using the new set of LJ parameters while the charges and dihedral parameters 

determined from the initial GAAMP parametrization were kept unchanged. In the second 

stage, the parameters were further optimized according to the same procedure but the 

charges and dihedral parameters were periodically re-generated using GAAMP to insure full 
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consistency of the models. A total of 3 full cycle of optimization was carried out on all the 

atom types in this second stage.

The LJ parameters of almost all the GAFF atom types were optimized, including H, C, N, O, 

S, F, Cl, and Br;I was not included due to lack of experimental data. A small number of new 

atom types were added for C, Cl, H, and O when deemed necessary. The parameters of 

hydrogen atoms were normally optimized together with the heavy atoms to which they are 

bonded, with the exception of the polar hydroxyl H, which was assigned a zero LJ well 

depth and radius by convention. A progressive strategy was adopted in which seven main 

groups of compounds with different chemical functionalities were considered. Group 1 

comprises H and C atoms (9 atom types) from nonpolar alkanes (24 compounds), group 2 

comprises H and C atoms (2 atom types) in aromatic rings (14 compounds), group 3 

comprises additional H and C atoms (6 atom types) in other compounds with only CH 

elements (32 compounds), group 4 comprises carbon, oxygen and associated polar H atoms 

(9 atom types) in other compounds with only CHO elements including alcohols, phenols, 

ketones, aldehydes, and carboxylic acids (148 compounds), group 5 and 6 comprises N and 

associated polar H atoms (4 atom types) in compounds with only CHN elements (71 

compounds), and finally, group 7 comprises S, F, Cl, Br and associated H atoms (4 atom 

types) in sulfurs and halogen containing compounds (93 compounds). A total of 382 

compounds were considered for stage 1 of the optimization. In stage 1, about 10 to 20 

iterations of LJ optimization were carried out for each group. No noticeable improvement of 

the objective function could be achieved with additional iterations beyond 10-20 iterations 

because the gradients are noisy. An additional subset of about 78 compounds that were not 

included in the training set was also considered periodically to check the overall consistency 

and the correctness of the experimental data. Creation of new atom types from the initial 

GAFF set was deemed necessary when large disparities were observed. The LJ parameters 

were further optimized according to the same progressive strategy in the second stage, 

carrying out about 5-10 steps before regenerating the charges and dihedrals via GAAMP. 

The complete optimization resulted in new LJ parameters for a total of 41 atom types (See 

file in Supp. Information).

To provide an additional test of set of optimized LJ parameters, we calculated the hydration 

free energy of 426 compounds using the new GAAMP models with optimized LJ. The 

absolute solvation free energy of the compounds was calculated and decomposed into three 

components (repulsive, dispersive and charge term) following an alchemical free energy 

perturbation (FEP) replica-exchange molecular dynamics (REMD) simulation protocol 

developed in our group.44-46 The systems were simulated with PBC under conditions of 

constant pressure and constant temperature with PME summation.38-39 A replica-exchange 

method45, 47 was used to enhance the sampling to achieve better convergence. The 

implementation of the alchemical FEP/REMD45 into NAMD48 was utilized for these 

calculations. The compounds were solvated in a cubic water box of TIP3P water 

molecules49 with an edge of 20 Å. The CHARMM version of the TIP3P water model was 

used, in which small LJ potentials are ascribed to the two hydrogens.4 For each value of the 

thermodynamic coupling parameter, λ, equilibrium properties were averaged over a 500 ps 

MD simulation after an initial equilibration of 300 ps. Exchanges of neighboring replica 

were attempted every 200 fs. Weighted histogram analysis method (WHAM)50 was used in 
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data processing. A long-range correction for missing dispersion interactions40 was added to 

the calculated solvation free energy. The hydration free energies calculated using the 

standard GAFF/AM1-BCC parameters13, 21, 23 are also included for comparison, relying 

principally on the values previously reported by Mobley and co-workers51-52. Those 

hydration free energies calculated using the standard GAFF/AM1-BCC also include a long-

range correction for missing dispersion40. All the information about the model compounds 

and the set of optimized LJ parameters is provided in the Supplementary Information.

Although the current set of LJ parameters shows high accuracy and transferability in 

reproducing experimental properties of 430 diverse compounds, it is important to consider 

the performance of the model for compounds independent from the training set. Intuitively, 

the overall performance of the model ought to be better, on average, for compounds that are 

similar to the members of the training set. Inaccuracies and uncertainty should increase for 

compounds that differ markedly from the training set. Atom types that appear frequently in 

the training are more globally constrained by experimental data than atom types that appear 

only infrequently. Accordingly, we define a simple empirical similarity fitness score of a 

compound as,

S = 1
N ∑

i = 1

N
W(αi) (6)

where N is the number of atoms in the compound,αi is the atom type ascribed to the atom i, 
and W(α) is the normalized statistical frequency the atom type α in the entire training set of 

430 compounds. The set of statistical weights W(α) extracted from the training set is shown 

in Supplementary Figure S1 and also given in Supplementary Information 

(training_atom_types_weights.xls). The atom types occurring with the highest frequency are 

hydrogen atom attached to carbon with 3 (HC33) or 2 (HC32) hydrogens, sp2 aromatic 

carbon (CA), hydrogen on aromatic carbon (HA), sp3 carbon atoms with 2 (C32) or 3 (C33) 

hydrogens, hydrogen atom attached to carbon in a closed ring (HC3), sp3 carbon in a closed 

ring (C3R), carbonyl oxygen (O) and carbon (C), ether and ester oxygen (OS), chloride not 

on aromatic cycle (CL). As expected, the model yields more accurate results when the 

empirical similarity fitness score S is larger (Supplementary Figure S2). Typically, the error 

on the molecular volume is generally less than 2-3% for the majority of compounds, but 

errors larger than 5% are more frequent when the empirical similarity fitness score is S 
smaller 0.11. The error on the enthalpy of evaporation is generally less than 5% for the 

majority of compounds when S is larger than 0.11, but errors larger than 10% are 

considerably more frequent when S is smaller than 0.11. On the basis of this analysis, we 

now consider the performance of the model for compounds from a validation set 

independent from the training set. To better illustrate the performance of the model, we 

deliberately selected 12 compounds with a high value of S and 12 compounds with a low 

value of S (Supplementary Tables S1-S3). The validation set enables us to compare 10 

computed neat liquid densities, 9 computed neat liquid enthalpies of vaporization, and 10 

computed hydration free energies with experimental data. Again, the results from this 
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validation set show that the model is reliably more accurate for compounds that display a 

high degree of similarity to the set of atom types found in the training set. The average error 

on the molecular volume is 3% for the 5 compounds with S>0.092 but 8% for the 5 

compounds with S<0.057 (Supplementary Table S1). The average error on the enthalpy of 

evaporation is 5% for the 5 compounds with S>0.1 but 11% for the 4 compounds with 

S<0.062 (Supplementary Table S2). However, the average unsigned error on the hydration 

free energy is 0.74 kcal/mol for the 5 compounds with S>0.1 and 0.68 kcal/mol for the 5 

compounds with S<0.035 (Supplementary Table S3), which suggests that the model is 

apparently more robust with respect to this property. This is encouraging since the free 

energy is critical to determine the binding affinity of drugs.

Results and Discussion

The GAAMP25 algorithm was used to generate initial models based on GAFF.13, 21 The 

dihedral parameters, which are indirectly affected by the 1-4 non-bonded interactions, were 

kept constant during most of the optimization and re-calculated at each cycle toward the end 

of the global optimization. However, as these parameters are affected by the 1-4 LJ 

interactions, they should be re-optimized to match the QM torsion PES every time the LJ 

parameters are changed. In practice, the impact of the dihedral re-parametrization on the 

liquid properties is minor. To ensure complete consistency, the dihedral parameters were re-

generated in the last iteration of the optimization. A gradient-based optimizer (L-BFGS) was 

used to systematically optimize the LJ parameters, starting from the GAFF parameters for 

41 atom types. The optimization aims at better reproducing the experimental densities and 

enthalpies for a large training set of 430 model compounds by seeking to minimize the 

objective function F(p1, p2, …, pn), as expressed in Eq. (2). The target experimental data for 

the training set of model compounds is given in Supp. Info. As shown in Figure 1, the set of 

compounds in the training set covers the chemical functionalities and atom types present in 

drug molecules found in DrugBank.

Global optimization of the LJ parameters was carried out in stages, progressively increasing 

the chemical complexity of the compounds. For the different groups of compounds 

described above, about 10-20 iterations were performed, yielding a total of ∼40 iterations. 

During the optimization, the total error associated with the different atom types was 

monitored, and new atom types were introduced to better represent specific chemical 

contexts. In the following we refer to the resulting molecular mechanical force field model 

as GAAMP/GAFF-LJ*. Moreover, 4 atom types for carbon, hydrogen, oxygen, and chloride 

from the initial GAFF model were expanded into 11 new atom types, yielding a total of 52 

atom types in the final model. One notable example is the carbon atoms C3 of GAFF, which 

was expanded to 5 different carbon types: C30 (sp3 carbon atoms with 0 bonded hydrogen 

atom), C31 (sp3 carbon atoms with 1 bonded hydrogen atom), C32 (sp3 carbon atoms with 2 

bonded hydrogen atom), C33 (sp3 carbon atoms with 3 bonded hydrogen atom), and C3R 

(sp3 carbon in cyclic aliphatic molecules such as cyclohexane). The original C3 atom is 

removed from the final force field. In addition, the GAFF hydrogen atom type HC has been 

expanded to HC31 (hydrogen atom attached to carbon with 1 hydrogen), HC32 (hydrogen 

atom attached to carbon with 2 hydrogens), HC33 (hydrogen atom attached to carbon with 3 

hydrogens), and HC3R (hydrogen atom attached to carbon in a cyclic aliphatic system); the 
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GAFF atom type OH has been expanded to OH for general hydroxyl, and OHP for hydroxyl 

on aromatic ring (e.g., phenol); and the GAFF atom type Cl has been expanded to CL as a 

general chloride, and CLA for chloride on an aromatic ring.

The fitted liquid properties for the 430 compounds are compared with experiment in Figure 

2. The average unsigned relative errors for the molecular volume are 2.8% and 1.8% using 

the parameters from the standard GAFF/AM1-BCC and GAAMP/GAFF-LJ*, respectively. 

Least-square linear regression for the experimental/simulation molecular volume displays a 

slope close to unity for GAFF/AM1-BCC (0.9828x+3.532) and GAAMP/GAFF-LJ* 

(0.9937x+ 0.5142), indicating that both models provide a reasonable picture of packing, 

though the slightly larger intercept at the origin is indicative of a small systematic mismatch 

with GAFF/AM1-BCC (about 3.5 Å3). The average unsigned relative error on the enthalpy 

of vaporization is 17.9% and is 5.9% using the parameters from GAFF/AM1-BCC and 

GAAMP/GAFF-LJ*, respectively. The experimental-simulation Pearson correlation 

coefficient is improved from 0.86 with GAFF/AM1-BCC to 0.96 with GAAMP/GAFF-LJ*. 

Least-square linear regression for the experimental/simulation enthalpy of vaporization is 

1.290x–1.968 for GAFF/AM1-BCC, and 1.032x–0.26281 for GAAMP/GAFF-LJ*. 

GAFF/AM-BCC displays a slope that is considerably larger than unity (1.290) and a large 

intercept at the origin (1.968), indicative of a systematic bias in the model. In this regard, it 

is important to note that the GAFF/AM1-BCC neat liquid models were simulated without a 

long-range correction to account for the missing dispersion interactions. If such a long-range 

correction were included, the enthalpy of vaporization in Figure 2 would shift up, yielding 

an even worse agreement with experimental values. In contrast, there is a significant 

improvement with the GAAMP/GAFF-LJ* model, both with respect to the slope close to 

unity and the small intercept at the origin. The evolution of the LJ parameters from their 

initial GAFF values to their final optimized values is displayed in Figure 3. Overall, the LJ 

parameters resulting from the global optimization remained fairly close to their initial 

values, with maximum changes on the order of 0.1 kcal/mol and 0.1 Å in Emin and Rmin, 

respectively. Thus, it was possible to improve the accuracy of the initial model with 

relatively small changes to the LJ parameters, which highlights the great sensitivity of the 

results to the non-bonded interactions. Of importance, it can be observed that the specific 

atom types that were introduced diverged in opposite direction from their initial GAFF value 

to produce the final LJ parameters (e.g., OH and OHP, CL and CLA).

To provide an additional test of the optimized set of LJ parameters, free energy perturbation 

simulations were carried out to calculate the hydration free energies for 426 compounds. 

There have been a number of studies aimed at examining the accuracy of MM force fields by 

computing the solvation free energy for a large set of compounds 46, 52-55. What 

distinguishes the present effort with these previous studies is that the calculated solvation 

free energy here are based on the GAAMP charges and dihedral potentials combined with a 

set of LJ parameters specifically optimized to fit the properties of the neat liquids. The 

Pearson correlation coefficients between the calculated hydration free energies and 

experiments is 0.94 for both GAFF/AM1-BCC and GAMMP/GAFF-LJ* models. The 

average unsigned error is 1.04 and is 1.47 kcal/mol using the parameters from GAFF/AM1-

BCC and GAAMP/GAFF-LJ*, respectively. Least-square linear regression yields 

0.8972x-0.9273 for GAFF/AM1-BCC, and 0.9016x+1.158 for GAAMP/GAFF-LJ*. The 
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distribution of deviations of the calculated hydration free energy relative to the experimental 

values is shown in Figure 4. The GAAMP/GAFF-LJ* calculated hydration free energies are 

systematically overestimated by about +1.8 kcal/mol relative to the experimental target 

values. In comparison, the hydration free energies from the GAFF/AM1-BCC model are 

underestimated by about -1.5 kcal/mol compared to experiment, although the deviations are 

broader. Thus, while significant improvement with GAAMP/GAFF-LJ* occurs with the neat 

liquids, there is a small degradation relative to the GAFF/AM1-BCC for the hydration free 

energies.

Given the substantial improvement of the neat liquid properties with the optimized LJ 

parameters, this result is somewhat disconcerting. After all, as observed in Figure 3, the 

agreement of the average properties of the neat liquids with experiment is significantly better 

with the GAAMP/GAFF-LJ* model compared to the original GAFF/AM1-BCC model. One 

consideration is that the GAAMP/GAFF-LJ* models are treated with a long-range 

correction for missing van der Waals dispersion. However, the long-range dispersion 

correction should make the calculated hydration free energies systematically more favorable, 

whereas the GAAMP/GAFF-LJ* are not sufficiently favorable. Consistent with this is a 

recent study that examined the hydration free energy of more than 500 compounds modeled 

from GAFF/AM1-BCC. That study, which employed a long-range dispersion correction, 

reported an average error of 0.31 kcal/mol, unsigned error of 1.12 kcal/mol, and a Pearson R 

value of 0.933. The smaller average error in that study, as compared to the value of 1.5 

kcal/mol determined in this work, is consistent with the inclusion of the long-range 

dispersion correction. However, including a long-range LJ correction would significantly 

increase the deviation of the enthalpies of evaporation calculated from the GAFF/AM1-BCC 

model with respect with experiment, as the values are already too favorable (see Figure 2). 

These results indicate the challenge of obtaining a nonbond model that accurately treats both 

the neat liquid and aqueous solvation thermodynamic properties, though it is critical to 

employ a force field model that matches both the properties of neat liquids and solvation free 

energies. This is particular important because the binding of drug molecules correspond to a 

transfer from an aqueous environment to the interior of a protein that is more akin to an 

organic solvent.

Further considerations suggested that the systematic overestimation of the hydration free 

energies might be due to the underestimation of van der Waals dispersive interactions arising 

from the water model used in the simulation.56-58 In a study of unfolded and disordered 

states of proteins, Best et al59 concluded that protein conformations were too collapsed 

because the nonspecific protein-water dispersion interactions in the context of the TIP3P 

model were not sufficiently strong. Simply rescaling the Lennard-Jones well depth resulting 

from the Lorentz-Berthelot combination rule, Emin
(i, j) = γ Emin

(i, i)Emin
(i, j) 1/2

 by a factor of γ=1.10 

was found to produce more realistic dimensions of unfolded and intrinsically disordered 

proteins. Such a mild perturbation is not expected to affect the overall behavior of folded 

proteins in MD simulations. Similarly, Piana et al57 re-designed the dispersion interactions 

of the TIP4P water model to producing disordered protein states that more closely agree 

with experimental measurements and a correction to the CHARMM TIP3P water model on 

the context of the additive CHARMM36 force field has been presented.58 Following up with 
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these ideas, we determined the optimal rescaling of the van der Waals dispersion interactions 

between the compounds and water to shift the calculated hydration free energies toward the 

experimental values. The change in free energy produced by the scaling could be evaluated 

using free energy perturbation theory based on the unperturbed simulations. As observed in 

Figure 4, a modest strengthening of the small molecule-water interactions van der Waals 

interactions by a scaling factor of γ=1.115 is sufficient to remove the systematic deviation 

between the calculated and measured hydration free energy. Let us denote this model as 

GAAMP/GAFF-LJ*-γ. Using the latter, the mean error on the solvation free energy of 426 

compounds is 0.12 kcal/mol, the average unsigned error is 0.79 kcal/mol, the least-square 

linear regression is 0.876x-0.202, and the Pearson correlation coefficient with the 

experimental values is 0.93. Using a similar scaling factor with GAFF/AM1-BCC, the mean 

error on the solvation free energy of 426 compounds is -0.73 kcal/mol, and the average 

unsigned error is 1.04 kcal/mol. The smaller impact of the scaling factor on GAFF/AM1-

BCC is due to the truncation of the LJ interactions. With the scaled GAAMP/GAFF-LJ*-

γmodel, the absolute error on the solvation free energy is less than 1 kcal/mol for 75% of the 

compounds in the training set. In contrast, only 49% of the compounds satisfy this criterion 

for the original GAFF model. Interestingly, the errors on the solvation free energy from 

GAFF/AM1-BCC and GAAMP/GAFF-LJ*-γrelative to the experimental values are fairly 

uncorrelated (Pearson correlation coefficient of 0.28). This suggests there is no systematic 

source of inaccuracy common to both model.

The value of the solute-solvent scaling factor of γ=1.115 is remarkably similar to the scaling 

factor of 1.10 previously proposed by Best et al59 in the context of unfolded proteins. It is 

noteworthy that both studies represented the solvent water with the TIP3P model49 in its 

CHARMM version, with small LJ potentials ascribed to the two hydrogens.4 The main 

rational for rescaling the solute-water dispersion is that this avoids perturbing the properties 

of the neat liquid. In the present study water oxygen atom LJ well depth was scaled to shift 

the hydration free energy. It should be noted, however, that this procedure also affects its 

effective radius based on the LJ repulsive contribution. Consequently, while the scaling 

makes the overall dispersive energy of a solute-solvent more favorable, it also reduces the 

hydrogen bonding energy with water very slightly. For example, the hydrogen bonding 

interaction between a hydroxyl group donor and a water molecule acceptor decreases by 

0.15 kcal/mol and the donor-acceptor distance increases by 0.02 Å in the case of a water 

molecule (acceptor) and a hydroxyl group (donor). Alternatively, one might rebalance the 

dispersive interaction of a solute with water by scaling up the LJ well depth of the TIP3P 

hydrogen HT as the radii of the hydrogen is small (Rmin/2 = 0.2245 Å) such that alteration 

of the well depth is less expected to significantly impact hydrogen bonding.58 For the sake 

of simplicity, only a scaling of the LJ well depth of the TIP3P oxygen OT was considered 

here. In practice, scaling of the LJ well depth is easily implemented within the CHARMM 

parameter file by changing the LJ well depth of the TIP3P oxygen OT from its normal value 

of -0.1521 to the value of -0.18909, which will affect all interactions of the solutes with 

water, and then restoring the correct water-water LJ interactions (OT-OT, OT-HT, and HT-

HT) via the pair-specific NBFIX option to make them consistent with the CHARMM 

version of theTIP3P water model. While the solute-solvent scaling factor would yield a more 
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accurate solvation free energy for small compounds, the mild perturbation would not affect 

the overall behavior of folded proteins in MD simulations.

The present results reflect the inherent limitations of additive non-polarizable force fields 

with respect to the treatment of nonbond interactions. While optimization of the density and 

enthalpy of vaporization of neat liquids as well as the hydration free energies could be 

performed simultaneously, the present results with both GAAMP and GAFF indicate that the 

quality of the fit to the individual properties (neat vs. aqueous condensed phases) would be 

significantly sacrificed. This limitation is, in part, due to the additive nature of the force field 

such that the nonbond model, which includes overestimation of the charges to treat to 

omission of explicit polarization in the model, cannot satisfy both the neat and aqueous 

environments. From the present study, the GAAMP optimization of the electrostatic 

parameters combined with the subsequent LJ optimization yields excellent enthalpies of 

vaporization for the neat liquids from a large collection of compounds. Assuming that the 

interior of a protein is akin to an organic liquid, the set of optimized LJ parameters shall 

yield a more accurate representation of ligand-protein interactions. However, despite the 

improvement with the neat liquid properties, it was observed that the calculated hydration 

free energies were not favorable enough. This issue was addressed here by scaling the 

solute-water dispersion interactions by a factor γ=1.115, though an alternative would be to 

further overestimate the partial atomic charges (i.e. make the solutes intrinsically more 

polarized) thereby making the interactions with water more favorable leading to better 

agreement with the hydration free energies. However, a strategy based on charge rescaling 

would be challenging because it would require a global optimization of the neat liquid 

properties together with the hydration free energies. Furthermore, it is unclear if charge 

rescaling could improve the hydration free energy of nonpolar compounds. Ultimately, 

extension of force fields to explicitly include electronic polarization may help to overcome 

this limitation, though efforts in our laboratories with the polarizable Drude force field 

indicate that limitations in treating the full range of condensed phase environments at a high 

level of accuracy is still challenging.3, 60

Conclusion

Molecular mechanical force fields are constructed from a combination of simple analytic 

functions with multiple parameters for the purpose of accurately representing the potential 

energy surface of the system. Relying on pre-tabulated parameters optimized for a large 

training set of molecules,14, 20, 24 or determining those parameters from ab initio QM 

calculations61-63 correspond to two extreme approaches for producing a final molecular 

mechanical model. Both have advantages and disadvantages. Force fields relying on 

empirical parameters trained on a very large set of representative compounds display internal 

robustness, while force fields with parameters determined from ab initio calculations provide 

the most relevant representation of the specific properties of a given molecule.64-65 In 

practice, however, both the empirical and the ab initio approaches have their limitations. For 

instance, transferability can be an issue with a data-driven approaches relying on pre-

tabulated parameters when the training set does not fully cover all the relevant chemical 

space, causing a failure of the force field to accurately represent the Born-Oppenheimer 

potential energy surface in the context of specific chemical functionalities. On the other 
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hand, the accuracy of QM approaches can vary widely depending on the ab initio level 

especially in the context of dispersive interactions, which is typically limited by the 

necessity to remain computationally affordable.

The force field designed here by combining the GAAMP algorithm with optimized LJ 

parameters represents a compromise between these two extremes. Whenever accurate 

parameters can be determined consistently and with high confidence from moderate-level 

QM calculations, then this advantage ought to be exploited as much as possible. For 

example, the electrostatic charges of the model are determined by combining ESP9, 26 and 

water interactions.4 A previous investigation indicate that this procedure yields reliably 

accurate models.25 Similarly, internal energy terms such as the bond, angle and dihedral 

parameters can be optimized from QM data. Determination of the dihedral parameters from 

QM is particularly important because it avoids the context-dependent limitations that 

necessarily arise from tabulated standard dihedral values. In this regards, it is important to 

understand that the effective torsion potential for a given molecule is affected by both the 

dihedral parameters ascribed to this torsion but also by the 1-4 van der Waals and 

electrostatic interactions. Consistency between 1-4 nonbonded interactions and torsion 

potential may be achieved if all the parameters of a force field model are determined from 

pre-tabulated values, as in CGenFF. However, internal inconsistencies may arise when the 

charges are determined via QM but dihedral parameters rely on pre-tabulated values, as in 

GAFF.13, 21 Generally, it is difficult to achieve sufficient coverage of the chemical space 

with a training set and pre-tabulated values ultimately become limited. The LJ parameters 

stand as an exception to this rule. An accurate treatment of van der Waals interactions from 

ab initio QM calculations, while feasible, requires high-level approaches to be consistently 

reliable. However, a treatment of van der Waals interactions based on moderate-level QM 

calculations can be extremely unreliable. While freeing the LJ parameters from the 

constraint of pre-tabulated values would be useful, this does not seem to be practical at this 

point. For this reason, it seems more advantageous to use a set of empirically LJ parameters 

assigned from the chemical context and optimized for a large series of compounds. The 

atom types assignments could be obtained either from GAFF13, 21 or CGenFF.14, 20 In the 

present effort, the initial atom types from GAFF were used. To achieve better accuracy, the 

set of 41 atom types of the GAFF model was expanded to a total of 52 atom types. This 

remains a relative small number of empirical LJ parameters. Hydration free energy of a large 

set of compounds did not markedly improve the performance of the GAFF/AM1-BCC 

model, but a modest strengthening of the solute-water interactions van der Waals 

interactions by a factor of 1.115 considerably improved the results, with an average unsigned 

error of 0.79 kcal/mol. This improved GAAMP/GAFF-LJ* force field, which can be fully 

general and automatized, will enable us to carry out free energy computations of chemical 

accuracy in a wide range of applications. While the accuracy of the hydration free energy 

from the final set of optimized LJ parameters (with the solute-solvent re-scaling) is good but 

imperfect, it is also important to keep in mind that the accuracy of the liquid properties was 

improved considerably compared to the GAFF/AM1-BCC. As the binding free energy of a 

compound depend on its free energy in the protein site relative to its free energy in bulk 

water, the improved liquid properties of a wide range of liquids should hopefully yield a 

better representation of the interactions of small molecules in a protein environment as well. 
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A similar strategy is currently being used to optimize the LJ parameters for the Drude 

polarizable force field.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mapping the atom types from 6,207 molecules taken from DrugBank compared with the set 

of 430 compounds used to optimize the LJ parameters.
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Figure 2. 
Liquid properties calculated for 430 small molecules. (a) Correlation plot for molecular 

volume of the neat liquid from 430 small molecules modeled from GAFF (blue) and from 

GAAMP with optimized LJ parameters (red). (b) Correlation plot for the enthalpy of the 

neat liquid for 430 small molecules modeled from GAFF (blue) and from GAAMP with 

optimized LJ parameters (red).
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Figure 3. 
Evolution of the LJ parameters during the optimization process from the starting point of the 

original GAFF parameters.
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Figure 4. 
Distribution of the deviation relative to the experimental value for the hydration free energy 

of 426 small molecules modeled from GAFF/AM1-BCC (blue),52 and GAAMP with 

optimized LJ parameters (red), and with a pair-specific scaling of the solute-water van der 

Waals dispersion by γ=1.115(black).
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