Skip to main content
. 2017 Aug 23;27(7):1745–1755. doi: 10.1007/s11136-017-1680-8

Table 4.

Parameter estimates of the 9-item graded response modela

Item λ (SE) τ 1 (SE) τ 2 (SE) τ 3 (SE) τ 4 (SE)
Q100 4.49 (0.48) 3.92 (0.45) 5.55 (0.54) 7.56 (0.67) 9.76 (0.88)
Q105 4.68 (0.62) 5.45 (0.66) 7.57 (0.75) 9.99 (1.01) 14.85 (1.77)
Q109 3.77 (0.64) 5.34 (0.92) 7.04 (0.88) 8.98 (1.06) 10.62 (1.11)
Q112 5.31 (0.66) 4.90 (0.60) 7.40 (0.77) 9.13 (0.90) 11.97 (1.24)
Q123 4.65 (0.80) 6.10 (1.08) 7.55 (1.07) 8.87 (1.20) 9.75 (1.25)
Q124 6.96 (1.30) 9.51 (2.00) 12.13 (2.13) 14.70 (2.64) 16.37 (2.52)
Q128 4.10 (0.94) 9.23 (1.70) 10.02 (1.78) 10.76 (1.92) 11.70 (2.01)
Q130 2.90 (0.37) 5.46 (0.50) 6.48 (0.54) 7.56 (0.64) 8.15 (0.72)
Q137 5.58 (1.19) 9.10 (1.78) 13.39 (2.55)

aThe parameters are of a mixture graded response model as specified in the MPlus [47] software where the cumulative probability Ρ ij of an item i response at or above category j is expressed as follows: PijYj|θ=exp(-τij+λiθ)1+exp(-τij+λiθ), where τ ij denotes the thresholds between the categories of item i, and λ i denotes the factor loading for item i. The following transformation can be applied to convert the Mplus thresholds (τ) and factor loadings (λ) into the difficulty (β) and discrimination (α) parameters of the graded response model: βij=τijλi, and αi=λi