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Using co-occurrence information 
and trait composition to 
understand individual plant 
performance in grassland 
communities
Eva Breitschwerdt1, Ute Jandt1,2 & Helge Bruelheide   1,2

Depending on the strength of environmental filtering and competitive exclusion, successful colonizers 
of plant communities show varying degrees of similarity to resident species with respect to functional 
traits. For the present study, colonizer’s performance was assessed in relation to the degree of fit 
with the resident community, and in addition, in relation to the community’s trait profile and the 
environmental factors at the study locations. The two-year field experiment investigated the relative 
growth rates of 130 species that had been transplanted into German grassland communities varying 
in intensities of land-use. The transplanted species were selected in accordance with the following 
scenarios: species with highly similar or dissimilar traits to residents, species with highest degree of 
co-occurrence with resident species and species chosen randomly from the local species pool. The 
performance of transplanted phytometers depended on the scenario according to which the species 
were selected, on community trait diversity, and in addition, often on the interaction of both and 
on land use intensity. The total amount of explained variance in performance was low, but increased 
considerably when species identity was taken into account. In general, individuals in the co-occurrence 
scenario performed better than those selected based on trait information or those selected randomly. 
Different predictors were important in different seasons, demonstrating a limited temporal validity of 
performance models.

The assessment of trait dispersion patterns of species within communities is commonly used as a tool to under-
stand community assembly mechanisms1, with trait requisites being determined by a set of filters constraining 
colonization, establishment and persistence in a given habitat2. While filters are assumed to be mechanistically 
linked to performance of the individual in the community3, few studies have measured the performance of indi-
vidual plants of a larger number of species along environmental gradients. However, there is also strong evi-
dence that traits affect growth directly and indirectly through biotic interactions. For example, in a transplant 
experiment conducted in subalpine grasslands hosting five grass species, Gross et al. found individual growth 
to be strongly driven by specific leaf area (SLA)4. Similarly, the relative growth rates of 20 common grassland 
species transplanted into the German biodiversity Exploratory grasslands were best described by the traits of the 
phytometers5.

In grassland communities the strongest filter is often land-use6,7. High-intensity land-use in grasslands seeks 
to increase productivity, involving the extensive application of fertilizer8. As a consequence, competition intensity 
increases with increasing land-use intensity9, resulting in a decline in the growth rates of competitively inferior 
species and increased competitive exclusion10. However, such intensive land-use also involves more frequent 
biomass extraction, either by more frequent mowing or increased stocking densities11,12. In consequence, species 
that are able to regrow after disturbance may be favored13, because competition intensity is alleviated9,14. Such 
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opposing effects of more intensive land-use make it difficult to predict how any specific plant species responds 
to simultaneously increased levels of disturbance and nutrient supply. In addition to land-use, species growth 
strongly depends on climatic conditions. For example, biomass production has been shown to be limited by cold 
temperatures in spring and high temperatures in combination with low water availability in summer15.

Under strong abiotic filtering conditions, species that co-occur in a community are expected to show a high 
degree of similarity in their functional trait values16. In contrast, under competition conditions, those species 
with less similar traits are more likely to avoid competitive exclusion10. In principle, this rule of limiting similar-
ity ensures trait divergence in communities17. There is also growing evidence that negative interactions brought 
about by competition can turn into positive interactions, i.e. facilitation, if the species display trait dissimilarity in 
certain shared traits. For example, in an experiment on Tibetan grasslands pairwise species interactions became 
increasingly positive with increasing dissimilarity in maximum height18. Similarly, in dry alkali grasslands in 
Hungary, dissimilarity in canopy height of subordinate species was positively related to the biomass of the dom-
inant species19. There are however also limits to trait divergence, as species with extremely diverging trait values 
might also be excluded as a consequence of strong competition20,21, resulting in trait convergence22. Furthermore, 
Gross et al. demonstrated that in the same community some traits can show convergence while others exhibit 
divergence23. In consequence, it is not clear whether species that are more similar to a resident community per-
form better than dissimilar species, or vice versa. In grasslands, this question also depends on land-use intensity. 
Under heavy land-use intensity, and the associated strong abiotic filtering regime combined with higher com-
petition intensity, newcomers with a higher trait similarity to the extant community should perform better and 
species with more divergent trait values should perform worse. Recently, we suggested that the optimal degree of 
trait similarity a new species should have to enter a community can be derived empirically from the probability 
of co-occurrence with the resident species24. These probabilities can be extracted from large vegetation databases 
(such as the German Vegetation Reference Database, GVRD)25 without making any assumptions on trait similar-
ities or dissimilarities between a new species and the receiving community. In our previous paper we found that 
species that commonly co-occur with the resident species in a community survived best24, and accordingly, we 
also expected them to also perform best.

Finally, under a given level of land-use intensity and filtering conditions, a community itself might deter-
mine plant growth. It has convincingly been demonstrated that productivity in grassland communities is posi-
tively affected by producer diversity26. In particular, biomass production was shown to be higher in communities 
with higher functional diversity (FD)27–29. Such relationships have mostly been based on community responses 
and rarely tested for individual plant species30–33. As the community response is the sum of all individual plant 
responses, one would expect that, on average, individual plant performance might increase with commu-
nity FD. In addition to FD, the potential to integrate new species into a community might also depend on the 
abundance-weighted mean values of certain traits34, expressed as community-weighted means (CWM)35. For 
example, a community with taller plants on average might also force new species to grow taller to access enough 
light. Similarly, plants in a community with low leaf dry matter content (LDMC) tended to show higher growth 
rates than in those with high LDMC36. Such functional attributes of the community are not independent of each 
other, as FD and CWM can also be the result of external environmental filtering processes, such as land-use 
intensity and, in turn, may indirectly contribute to environmental filtering themselves. For example, CWMs of 
SLA have been found to increase with increasing fertilization or disturbance intensity37–39, which should result 
in a high photosynthetic capacity and overall improved growth conditions, thereby intensifying the competition 
intensity for light.

For the present study, we set out to disentangle the impact of land-use and community trait composition in 
a large transplant experiment in mesic grasslands differing in land-use intensity and community trait composi-
tion. We used extant grassland communities and made use of the given land-use but manipulated the degree of 
how well a species new to the community might fit into that community. This putative fit was varied by selecting 
species according to four different scenarios24. Two of the scenarios were trait-based, selecting the species most 
similar and dissimilar to the resident species (“Sim” and “Dissim”). In the third scenario, species were introduced 
to the community that had the highest degree of co-occurrence with the resident species (“Beals”), while in 
the fourth scenario species were chosen randomly (“Random”). The objective of our study was to identify the 
predictors (land-use intensity, CWM or FD of key traits) that determined growth rates and biomass production 
as well as the actual traits of the colonizing species within the respective grassland communities. We monitored 
transplants over two years and tested whether the species’ performance differed between seasons. In particular, we 
hypothesized, (i) that the species with highest probability of occurring in the resident community (i.e. those in the 
Beals scenario) perform better than those of the other scenarios with respect to growth rates and biomass produc-
tion under all conditions of land-use intensity and community trait composition. (ii) Furthermore, we expected 
species similar to the resident species to perform better with increasing land-use intensity. (iii) Moreover, of all 
drivers of plant performance investigated we hypothesized land-use intensity to have a higher explanatory power 
on species growth and biomass production than FDs and CWMs. (iv) Finally, we tested whether in addition to the 
selection scenario, land-use intensity and community trait composition, climate (including air and soil tempera-
ture, relative air humidity and soil moisture) had additional impact on the phytometers’ responses.

Results
Before the six phytometer species were planted into the plots, mean multi-trait distance did not differ among 
the resident species that grew in the respective subplots, which had been randomly assigned to the four different 
scenarios (Fig. 1). While the colonizer species in the Sim scenario displayed exactly the same trait dissimilarity to 
residents as the residents did among themselves, (with a multi-trait dissimilarity of 0.45), the species in all other 
scenarios were more dissimilar to the resident species in the respective subplots, with 0.47, 0.54 and 0.64 in the 
Beals, Random and Dissim scenarios, respectively.
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The design variables in our study - i.e. the identity of the species planted into the plots, the identity of the 
plot and the scenario of how the species were selected - explained a varying overall amount of variation in the 
responses (Table 1). Variation explained by plot ranged from 4% for RGR of leaf number in the first monitoring 
interval to 39% for RGR height in the 3rd interval, between 0% and 0.4% explained by scenario (for RGR leaf 
length 1st interval) and between 9% (for RGR leaf length 3rd interval) and 38% (for RGR height 1st interval) 
explained by species identity. As an example, Fig. 2 shows the variances in RGR of height of the first monitoring 
interval exclusively and jointly explained by plot, scenario, species and trait variable (SLA FD). In the variance 
partitioning analysis, community traits explained maximally 6.5% (CWM of SLA for aboveground biomass at 
harvest, SI Table S4). Whenever trait variables explained variance, this fraction was also jointly explained by plot 
and species but not by scenario (column n in SI Table S4 compared to columns i, k, o, m, see also Fig. 2), which 
indicate that community trait variables did not vary much with environmental differences among subplots.

The different responses of RGR in the different monitoring periods as well as aboveground biomass, SLA 
and LDMC at the final harvest were explained to varying degrees by the final mixed linear regression models 
(Table 2). The conditional R² captured by these models explained between 33% and 68% variation, while the 
models’ marginal R² accounted for only 0.4% to 7% variation (Table 2). The difference between conditional and 
marginal R² showed that random factors significantly contributed to explaining variance, with species identity 
explaining most (between 9% and 38%), followed by Exploratory (0% to 38%), plot (5% to 17%), and subplot (0% 
to 4%, SI Table S5).

The best single-predictor mixed models revealed different predictors for the different observation intervals, 
with LUI occurring in most of the best models, and with positive and negative estimates on growth variables in 
the winter and second summer intervals, respectively (Fig. 3). CWMs of SLA and height affected RGRs only in 
the second summer intervals, while FD measures were only the best predictors in the first vegetation period, with 
FD of SLA, FD of height and multi-trait FD positively affecting RGR in height, leaf length and plant projection 
area, respectively (Fig. 3).

In many cases, the optimized multi-predictor models identified the same predictors as shown in the single 
predictor models of Fig. 3. For example, in the vegetation period in 2012 multi-trait FD was the sole predictor for 
RGR in plant projection area and FD of height predicted RGR of leaf length (Table 2). Similarly, the best models 
for RGR in height in winter and early spring (2012/2013) contained LUI as a predictor (Table 2). In the same 
monitoring intervals, the different growth variables were best explained by different predictors. For example, the 
best predictors for RGR in height and projection area in the first monitoring interval were multi-trait FD (Fig. 4, 
Table 2), while leaf length and leaf number were best predicted by FD of height or SLA in combination with sce-
nario (Table 2). In the winter monitoring interval, plant performance depended strongly on FD (Fig. 5). In the 
same period, LUI was a predictor in all significant models (Table 2) and remained important the following sum-
mer and at the final harvest (Table 2, Fig. 6). In general, growth rates increased with LUI in winter, but decreased 
with LUI in the subsequent summer (Figs. 3, 6, Table 2). At the final harvest, aboveground biomass was again pos-
itively related to LUI (Table 2). Across all models, scenario was a more frequent predictor than LUI and occurred 
in nine of the 15 models. Seven of these nine models predicted performance, of which five models displayed 
highest growth rates of phytometers in the Beals scenario, followed by Sim, while Dissim and Random ranked 
lowest (Table 2). Plants in the Beals scenario also performed better in combination with trait measures, such as 
with FD of height (Fig. 5, increasing RGR of plant projection area in the Beals scenario in winter). Growth of 

Figure 1.  Mean pairwise trait distances between the six introduced species in the four scenarios (Beals, Dissim, 
Random and Sim) and all resident species. Values are multi-trait distances and based on eight traits. Boxes show 
quartiles and medians across all 54 plots and two subplots per plot (n = 108 per scenario). Whiskers show 1.5 
times the interquartile ranges. Small letters indicate statistically significant differences among the scenarios 
according to a Tukey post-hoc test. As a reference, the red lines show the mean pairwise trait distances among 
the resident species before six phytometer species were planted into every subplot.



www.nature.com/scientificreports/

4SCIentIfIC REPOrTs |  (2018) 8:9076  | DOI:10.1038/s41598-018-27017-9

plants in the Beals scenario also depended differently on traits. At the final harvest, in contrast to the other three 
scenarios aboveground biomass decreased with increasing CWM of SLA (Fig. 7). Similarly, interactions with sce-
nario were encountered in the explaining of SLA (Fig. 8) and LDMC (Table 2) at the final harvest. In general, the 
responses of transplants in the Beals scenario often differed from those in the other scenarios, particularly when 
compared to those in the Random and Dissim scenarios (Figs. 5, 7 and 8). In contrast, the patterns in the Sim 
scenario were sometimes closer to the Beals scenario (Fig. 8) or the Random and Dissim scenarios (Figs. 7 and 5). 
Among the remaining predictors, FD explained growth in more of the models than CWM. FD was retained in 13 
of the 15 models across all monitoring intervals, while CWM was only retained in eight of them (Table 2). Among 
all FD measures, multi-trait FD, on which the species selection for the scenarios was based, FD of SLA and FD of 
height were the most frequent predictors for plant performance and were included in four, five and five models, 
respectively (Table 2). In contrast, CWM was more important in explaining the community mean SLA (Fig. 8) 
and LDMC (Table 2) at the time of harvest.

The climatic conditions differed significantly between the two summer periods and the winter with respect 
to relative air humidity and soil moisture (SI Fig. S2). The second vegetation period in 2013 was also warmer, as 
demonstrated by higher air and soil temperatures. Adding each one of these four climate variables to the final 

Response variable

Exclusively explained by Jointly explained by

Plot Scenario Species
Plot & 
Scenario

Scenario 
& Species

Plot & 
Species

Species, Plot 
& Scenario

Residual 
Variance

RGR height 1–4 0.127 0 0.376 0 0.05 0 0.002 0.452

RGR p. proj. area 1–4 0.121 0 0.203 0 0 0.006 0 0.67

RGR leaf length 1–4 0.127 0.003 0.206 0 0.004 0.002 0.002 0.658

RGR leaf number 1–4 0.043 0.002 0.202 0 0.009 0.014 0 0.731

RGR height 4–5 0.356 0.001 0.146 0.001 0.033 0 0 0.478

RGR p. proj. area 4–5 0.204 0 0.134 0 0.049 0.012 0 0.611

RGR leaf length 4–5 0.275 0 0.106 0 0.025 0.037 0 0.565

RGR leaf number 4–5 0.092 0 0.202 0.001 0.019 0.053 0 0.642

RGR height 5–7 0.391 0.002 0.16 0.004 0.016 0.015 0 0.422

RGR p. proj. area 5–7 0.188 0 0.159 0.001 0.002 0 0 0.657

RGR leaf length 5–7 0.312 0 0.097 0 0.002 0.051 0.002 0.537

RGR leaf number 5–7 0.083 0 0.193 0 0.007 0.012 0 0.71

Biomass 0.121 0 0.222 0.001 0.001 0.061 0.001 0.594

LDMC 0.134 0.002 0.299 0 0.014 0.043 0.017 0.492

SLA 0.191 0 0.224 0 0.024 0.015 0.026 0.522

Table 1.  Proportional variance of RGR of all variables at all observation intervals (1–4 = vegetation period 
2012; 4–5 = winter 2012/2013; and 5–7 = vegetation period 2013) and aboveground biomass, LDMC and SLA at 
the final harvest in September 2013), exclusively explained by plot, scenario and species, jointly by two of these 
factors or all of them as well as residual variance. All components add up to 1. p. proj. area = plant projection 
area.

Figure 2.  Variance partitioning for RGR height of the first vegetation period 2012 (interval 1–4) correlated with 
FD of SLA. Results for all other response variables are given in SI Table S4. Variance components <0.001 not 
shown.
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Responses Predictors Estimate p-value Marginal R² Conditional R²

Veg. period 2012

RGR height
Intercept 0.150 0.424 0.004 0.536

Multi-trait FD 0.058 0.038

RGR p. proj. area
Intercept −0.018 0.865 0.008 0.419

Multi-trait FD 0.097 0.004

RGR leaf length

Intercept (Scen Beals) 0.085 0.551 0.011 0.384

Height FD 0.068 0.024

Scen Dissim −0.094 0.411

Scen Random −0.225 0.005

Scen Sim −0.028 0.704

RGR leaf number

Intercept (Scen Beals) 0.129 0.216 0.013 0.328

SLA FD (Scen Beals) 0.097 0.050

Scen Dissim −0.154 0.202

Scen Random −0.262 0.002

Scen Sim −0.154 0.052

SLA FD:Scen Dissim −0.102 0.126

SLA FD:Scen Random −0.236 0.002

SLA FD:Scen Sim −0.069 0.318

Winter 2012/2013

RGR height

Intercept (Scen Beals) −0.039 0.918 0.069 0.634

LUI 0.250 0.000

Height FD (Scen Beals) 0.137 0.006

Height CWM (Scen Beals) −0.142 0.025

Scen Dissim −0.163 0.107

Scen Random −0.194 0.009

Scen Sim 0.065 0.340

Height FD:Scen Dissim −0.178 0.013

Height FD:Scen Random −0.070 0.345

Height FD:Scen Sim −0.199 0.007

Height CWM:Scen Dissim 0.171 0.020

Height CWM:Scen Random 0.024 0.726

Height CWM:Scen Sim 0.173 0.020

RGR p. proj. area

Intercept (Scen Beals) 0.014 0.957 0.061 0.492

LUI 0.215 0.001

Height FD (Scen Beals) 0.183 0.000

SLA CWM 0.130 0.006

LDMC CWM 0.092 0.035

Height CWM −0.100 0.035

Scen Dissim −0.194 0.095

Scen Random −0.185 0.025

Scen Sim −0.054 0.468

Height FD:Scen Dissim −0.146 0.027

Height FD:Scen Random −0.173 0.013

Height FD:Scen Sim −0.153 0.026

RGR leaf length

Intercept (Scen Beals) 0.060 0.863 0.051 0.544

LUI 0.210 0.001

Height FD (Scen Beals) 0.129 0.016

Height CWM (Scen Beals) −0.119 0.077

Scen Dissim −0.218 0.039

Scen Random −0.091 0.249

Scen Sim 0.001 0.984

Height FD:Scen Dissim −0.156 0.045

Height FD:Scen Random −0.079 0.326

Height FD:Scen Sim −0.213 0.008

Height CWM:Scen Dissim 0.133 0.094

Height CWM:Scen Random 0.041 0.586

Height CWM:Scen Sim 0.210 0.009

Continued
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Responses Predictors Estimate p-value Marginal R² Conditional R²

RGR leaf number

Intercept (Scen Beals) −0.168 0.297 0.013 0.440

LUI 0.086 0.086

Height FD 0.057 0.075

SLA CWM (Scen Beals) 0.024 0.659

Scen Dissim 0.016 0.904

Scen Random 0.008 0.927

Scen Sim 0.045 0.554

SLA CWM:Scen Dissim −0.093 0.155

SLA CWM:Scen Random −0.068 0.308

SLA CWM:Scen Sim 0.066 0.269

Veg. period 2013

RGR height
Intercept 0.079 0.864 0.012 0.682

LUI −0.126 0.046

RGR p. proj. area
Intercept 0.029 0.910 0.005 0.398

SLA FD 0.086 0.020

RGR leaf length

Intercept 0.017 0.967 0.026 0.568

SLA FD 0.124 0.000

Height CWM −0.138 0.001

RGR leaf number

Intercept 0.040 0.729 0.014 0.357

Multi-trait FD −0.090 0.017

SLA FD 0.114 0.005

Harvest 2013

Biomass

Intercept (Scen Beals) −0.016 0.865 0.064 0.423

LUI 0.170 0.002

Multi-trait FD (Scen Beals) 0.003 0.960

LDMC FD (Scen Beals) −0.116 0.076

SLA CWM (Scen Beals) −0.094 0.107

Scen Dissim −0.116 0.382

Scen Random −0.066 0.476

Scen Sim −0.048 0.535

Multi-trait FD:Scen Dissim 0.217 0.029

Multi-trait FD:Scen Random 0.064 0.514

Multi-trait FD:Scen Sim −0.080 0.333

LDMC FD:Scen Dissim 0.052 0.581

LDMC FD:Scen Random 0.018 0.854

LDMC FD:Scen Sim 0.226 0.008

SLA CWM:Scen Dissim 0.292 0.000

SLA CWM:Scen Random 0.228 0.007

SLA CWM:Scen Sim 0.185 0.016

SLA

Intercept (Scen Beals) 0.095 0.683 0.044 0.509

Height CWM 0.140 0.001

LDMC CWM (Scen Beals) −0.118 0.024

Scen Dissim −0.347 0.005

Scen Random −0.040 0.644

Scen Sim 0.041 0.574

LDMC CWM:Scen Dissim 0.196 0.003

LDMC CWM:Scen Random 0.212 0.003

LDMC CWM:Scen Sim −0.013 0.825

LDMC

Intercept (Scen Beals) 0.062 0.557 0.036 0.556

SLA FD −0.080 0.030

LDMC FD 0.077 0.042

SLA CWM (Scen Beals) −0.020 0.757

LDMC CWM (Scen Beals) 0.065 0.300

Scen Dissim 0.275 0.041

Scen Random 0.037 0.682

Scen Sim 0.046 0.531

SLA CWM:Scen Dissim −0.005 0.952

Continued
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models did not result in model improvement, with the exception of soil moisture (SI Table S6). In winter, soil 
moisture had significantly negative impacts on growth variables, while in summer the effects were positive, e.g. 
on RGR plant projection area (Fig. 9, SI Table S6). In addition, soil moisture had also positive effects on RGR of 
height and leaf length in the vegetation period 2013 and on SLA and LDMC at the time of harvest (SI Table S6). In 
all cases, where models were improved by including climate variables, the other predictors remained significant 
after the climate variable had been added.

Discussion
We showed that the performance of newly colonizing species strongly depended on the trait composition of the 
resident community and land-use intensity. In addition, the scenario according to which the phytometer species 
were selected had a strong influence on how well the phytometer performed.

In many of the monitoring intervals and for many growth variables, phytometer species selected by the sce-
nario based on co-occurrence probability of added and resident species derived from a vegetation database 
(Beals) performed better than those selected by trait information (Sim, Dissim) or random selection (Random). 
These results support our first hypothesis and also confirm the observed higher survival rates in the Beals sce-
nario24. More generally, this finding demonstrates the huge potential of co-occurrence-based approaches in 
growth models24,40. Although no traits were used in the Beals selection process of species, and the species selected 
were not as similar as they possibly could have been, a surprising feature of this scenario was that the added 
species did not result in a change in mean pair-wise trait distances across all plots24. Assuming the species in 
the resident community had a trait composition filtered by land-use and other factors at that site, and that this 
trait composition facilitated the survival of the resident species, the traits of the newcomer species in the Beals 
scenario had exactly the same degree of similarity or dissimilarity to the resident species, which increased their 
survival and, at the same time, their performance compared to species in the other scenarios. This also implies 
that rather than the most similar or dissimilar species, it were those with trait values at intermediate distances to 
the resident species that performed best. The Beals scenario was found to rank closer to the Sim than to Dissim 
scenario (at 32% of the distance between Sim and Dissim)24. This also explains why species in the Sim scenario 
often ranked second in growth after those in the Beals scenario but were superior to the Dissim and Random 
scenarios. It is however noted that the phytometer species of the Beals scenario did not always show the highest 
growth rates in all intervals or the highest aboveground biomass production. Slow growth, shade tolerance, higher 
investment into roots compared to leaves or other strategies alternative to fast growth41 might also apply to the 
higher survival success of species of the Beals scenario24. Similarly, our second hypothesis has to be rejected that 
species of the Sim scenario performed better with increasing land-use intensity because none of the best models 
included the interaction between land-use and scenario.

As stated in our third hypothesis, land-use intensity was one of the strongest drivers of phytometer perfor-
mance. In our study, LUI often had an additive effect together with scenario, FD and CWM on the growth of plant 
individuals, particularly in the winter and early spring interval. In this period, fewer disturbances occurred and 
the plants had the chance to grow without being eaten, cut or trampled on. As a high LUI is often combined with 
high levels of fertilization, early spring was probably the season when plants benefitted most from a higher nutri-
ent supply. In contrast, LUI had a negative effect on height growth in the subsequent summer interval, probably 
because the plants remained smaller due to more frequent mowing or grazing events.

In addition to the strong effect of scenario and land-use intensity, and often interacting with these predictors, 
FD also played a role in the performance of the added species, which confirms other approaches of predicting 
biomass from traits42. With the exception of trait responses (SLA and LDMC at the time of harvest), the estimates 
for FD measures on growth were always positive, showing that the added species benefitted from a functionally 
more diverse community. In particular, FD in SLA was found to be a consistent positive predictor. Given that SLA 
reflects the main axis in the leaf economics spectrum43, the importance of FD of SLA points to a pattern of niche 
partitioning in resource use. For example, it has been described that grassland species in diverse mixtures absorb 

Responses Predictors Estimate p-value Marginal R² Conditional R²

SLA CWM:Scen Random −0.076 0.362

SLA CWM:Scen Sim 0.164 0.027

LDMC CWM:Scen Dissim −0.041 0.611

LDMC CWM:Scen Random −0.268 0.001

LDMC CWM:Scen Sim 0.104 0.157

Table 2.  Results of the minimum linear mixed effects models for the transplant’s relative growth rates in height, 
plant projection area, leaf length and number of leaves for the three monitoring periods in 2012 and 2013 and 
for aboveground biomass, specific leaf area (SLA) and leaf dry matter content (LDMC) at the final harvest in 
September 2013. All models were simplified starting with the same suite of predictors: land-use intensity (LUI), 
community weighted means (CWM), functional diversity (FD), scenario (Beals, Dissim, Random, Sim, see 
text for explanation) and all interactions of scenario with LUI, CWM, and FD. CWM and FD were based on 
the single traits SLA, LDMC and height, while multi-trait FD was based on all eight traits (see Methods). All 
variables were scaled by mean and standard deviation, thus the estimates show the direction and magnitude of 
impact on the plant responses. Marginal R2 refers to the variance explained by fixed factors and conditional R2 
to the variance explained by both fixed and random factors. Random factors in the model included Exploratory 
(Schwäbische Alb, Hainich and Schorfheide), plot (n = 54) nested in Exploratory, subplot (n = 432) nested in 
plot and species identity (n = 130). For variance of random factors see SI Table S5.
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up to 20% more light than those in monocultures as a result of a greater three-dimensional use of space, brought 
about by more overlapping plant architecture, and in consequence, a higher biomass density44. Consistent with 
our results, the authors also encountered an increase in canopy height44. Similarly, a positive correlation between 
individual plant height and functional richness45 and an increased aboveground use of space with increasing 
functional richness46 is in accordance with our results. Some FD predictors only had effects in certain scenarios, 
such as FD of height, which increased the growth rates in plant area in the Beals scenario only. Thus, it might well 
be that FD effects can only play out if the species added to the community have already been environmentally fil-
tered. Then, the finding that multi-trait FD, which was based on the traits chosen by us for devising the scenarios, 

Figure 3.  Absolute standardized model estimates of the best single-predictor models with their corresponding 
standard errors for the different growth rates (RGR of height, plant projection area, leaf length and leaf number) 
in the three time intervals (1–4, 4–5 and 5–7), and aboveground biomass, LDMC and SLA at the time of the 
final harvest. Only the predictors (see different color legend) are shown that had the highest explanatory power 
on the responses. Multi-trait FD refers to FD based on eight traits (SLA, LDMC, height, leaf anatomy, leaf 
persistence, leaf distribution, physical defense and vegetative reproduction). Plus and minus signs above bars 
indicate positive or negative effects.

Figure 4.  RGR height in the first vegetation period (1–4) as a function of Multi-trait FD. For parameter 
estimates and p-values see Table 2; for variance of random factors see SI Table S5.
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was also a frequent predictor is an indication that the traits chosen for this index are ecologically meaningful for 
growth and persistence.

Finally, there were also a few but notable effects of CWM trait values on plant performance. For example, 
CWM of SLA had a positive impact on aboveground biomass at the end of the experiment in the Sim, Dissim 
and Random scenario in the second year, which might reflect better overall resource supply. However, the sig-
nificant interaction with scenario and the negative response of species in the Beals scenario shows that different 
species respond differently to a community’s trait composition, and the conditions that are favorable for one 
group might be disadvantageous for another. For example, a high CWM of SLA also indicates stronger compe-
tition for light47, making it more difficult for less tall species to persist in the shady undergrowth48. However, the 
increased resource partitioning of light through the addition of smaller species to a community, can result in only 
very slight increases in community biomass production49. Another explanation for a negative response to CWM 
of SLA might be that the FD of a trait is not independent from the CWM of the same trait, since trait variation 
is constrained by the mean50. Thus, extreme values of CWM values result in low values of FD and conversely, a 
negative relationship to CWM of a trait might only indicate a positive relationship to FD of the same trait. Finally, 
responses to CWM also depended on the different scenarios. Accordingly, the expected negative relationship of 
the target plant’s SLA with the CWM of LDMC51 was only encountered in the Sim and Beals scenarios, where 
species had been selected with the highest similarity (Sim) or at least with some similarity (Beals) to the resident 
community. The finding that the target plant’s SLA increased with the CWM of LDMC in the Random and Dissim 
scenarios shows that they became more divergent to the residents, which simply reflects the selection procedure.

Figure 5.  RGR plant projection area residuals in winter (4–5) as a function of height FD and scenario. For 
parameter estimates and p-values see Table 2; for variance of random factors see SI Table S5.

Figure 6.  RGR height in the second vegetation period (5–7) as a function of LUI. For parameter estimates and 
p-values see Table 2; for variance of random factors see SI Table S5.



www.nature.com/scientificreports/

1 0SCIentIfIC REPOrTs |  (2018) 8:9076  | DOI:10.1038/s41598-018-27017-9

Despite the clear patterns found in our study, a lot of variation in growth remained unaccounted for. The high 
importance of random factors such as “Exploratory” and “plot” results from the realistic field conditions under 
which the experiment has been carried out. The vast range of soil, climate and management conditions across 
all plots were only partially captured by the few environmental variables used as fixed predictors in our study. 
Similarly, the high variation brought about by species identity is explained by the large pool of species (130) from 
which we drew the phytometer species for the different scenarios. We also may have missed an important com-
partment of the plants. As we only focused on aboveground biomass we do not know whether allocation patterns 
between leaves and roots differed among scenarios. For example, in another study on the same grasslands, root 
volume was found to increase with land-use intensity and root-to-shoot ratio to depend both on the local neigh-
bourhood and the level of land-use intensity52. However, they found root biomass to be only poorly predicted 
by traits and environmental factors5. In contrast to our study, where the phytometer traits were captured in the 
scenarios, Herz et al. used single traits measured on the phytometers to predict performance. In their models, root 
traits such as root calcium and root carbon content considerably improved the model quality for aboveground 
biomass. Root carbon concentration indicates the prevalence of more reduced and polymerized structural carbo-
hydrates, which was negatively related to above- and belowground growth5. However, accounting for root traits 
in our study would have required to include them in the different scenarios from the beginning, which was not 
feasible given the large size of the species pool from which the scenarios were constructed. Elsewhere, in the high 
semi-arid Andes, it has been observed that with increasing grazing pressure, more biomass is allocated to roots53. 
Similarly, we do not know the proportion of aboveground biomass extracted by land-use. However, biomass 

Figure 7.  Aboveground biomass residuals (log scale) at time of harvest (end of second vegetation period) as a 
function of SLA CWM and scenario. For parameter estimates and p-values see Table 2; for variance of random 
factors see SI Table S5.

Figure 8.  SLA residuals at time of harvest (end of second vegetation period) as a function of LDMC CWM and 
scenario. For parameter estimates and p-values see Table 2; for variance of random factors see SI Table S5.
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measurements in the Exploratory grassland plots have shown that productivity increased with higher levels of fer-
tilization8 and fertilization is a component of the LUI9. We therefore have to acknowledge that monitoring growth 
rates with simultaneous biomass extraction does not allow for simple explanations. Many plant individuals had 
more or less the same aboveground size at the end of our experiment as at the beginning. As grazing occurred at 
different times in different plots, and compensatory growth after grazing also varies with time of recovery54, the 
fixed monitoring dates might not have always captured plant growth in the most accurate way. However, given 
the logistic effort already involved, plot-wise adaptation of monitoring dates would not have been feasible. Such 
varying dates would also have precluded relationships to weather conditions, which varied over time and space. 
In addition, incorporating climate variables into our models supported our fourth hypothesis that they explained 
additional variance. In particular, soil moisture had a positive effect on plant growth and SLA in summer 2013, 
when temperatures were higher than in summer 2012. This is in accordance with findings of increased biomass 
production and growth at increased soil moisture under warm conditions55–57. In contrast, under low tempera-
tures in winter soil moisture had a negative effect on plant growth, which might be explained by water logging 
which negatively affects N mineralization58. Accordingly, seasonal variation in RGR, biomass production and SLA 
has also been reported in numerous other studies (e.g.59–61).

In summary, our finding that co-occurrence information allows conclusions to be drawn on plant growth 
bodes well for the capability to predict individual as well as community performance from vegetation databases, 
which has, as yet, not been attempted before. This potential predictive power became particularly evident when 
we combined co-occurrence data with functional traits. The fact that plant responses to community trait com-
position differed among scenarios, might point to a hierarchical cascade of community assembly. Thus, species 
might only respond to community FD or CWM after they have passed other environmental filters. We also con-
firmed the key role of land-use intensity for plant performance62. However, the finding that land-use intensity 
played different roles at different times of the year demonstrates that temporal resolution is required when assess-
ing land-use impacts on plant performance at larger spatial scales63,64.

Materials and Methods
Study Sites and Experimental Design.  We planted different vascular plant species into 54 grasslands 
communities, making use of the network of experimental plots in the German Biodiversity Exploratories65. In 
each of the three study regions (Schwäbische Alb, South Germany; Hainich, Central Germany and Schorfheide, 
Northeast Germany), 18 grassland plots were selected that represent the three main land-use types (i.e. each six 
plots of meadows, pastures and mown pastures). The plots differed in land-use intensity, which was assessed by 
an index (LUI) that combines mowing and grazing frequencies, number of grazers per hectare and fertilization 
levels9 according to formula (1).

= + +LUI
G
G

F
F

M
M (1)p

p p p

The land-use index for a site p (LUIp) was calculated from the sum of grazing intensity Gp, assessed as the 
density of livestock (number per ha) and duration of pasture (days per year), amount of fertilizer application Fp 
(kg nitrogen per year and ha) and mowing intensity Mp, defined as the number of cutting events per year. Each 
category Gp, Fp and Mp was scaled by the mean of this variable over all sites from each of the three regions of the 
Biodiversity Exploratories (G , F  and M , respectively). We used the mean of the LUI for the years 2006 to 2010, i.e. 
those preceding our experiment. There were eight subplots per plot, each measuring 1 × 1 m, which were planted 

Figure 9.  RGR plant projection area residuals (a) in winter 2012/2013 (4–5) and (b) in the following vegetation 
period 2013 (5–7) as a function of soil moisture. For parameter estimates and p-values see SI Table S6.
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with six phytometers of six different species, selected from a total pool of 130 species according to the four trans-
plant addition scenarios, namely Sim, Dissim, Beals and Random. The six species planted in each subplot were 
specifically selected based on each plot’s species composition, and they therefore differed among plots. Species in 
the Sim and Dissim scenarios were selected that they would have respectively have the lowest and highest mean 
pairwise trait distance d  to the extant species in each plot, with the selection based on eight functional traits (SLA, 
LDMC, height, leaf anatomy, leaf persistence, leaf distribution, vegetative reproduction, physical defense; see SI 
Table S1). These traits closely reflect the trait constellation of all resident and phytometer species in the study (SI 
Fig. S1). As we used only young plants in the experiment, and deliberately excluded plants at the germination 
stage, we focused on persistence traits and disregarded seed and reproduction traits. As such, traits were chosen 
that reflect competitive ability through their capacity to affect growth rates such as specific leaf area (SLA), leaf 
dry matter content (LDMC), height, leaf anatomy, leaf persistence and leaf distribution51,66. SLA and LDMC were 
somewhat correlated (r2 = 0.23) across all phytometer and resident species in the community, while both were 
uncorrelated with height (SI Fig. S1). Furthermore, we included traits that increased persistence after disturbance 
by providing the ability to colonize or re-colonize habitats through means of vegetative reproduction. We also 
included the trait of “physical defense mechanisms”, because it directly relates to land-use. Plants that have phys-
ical defense traits such as thorns or hooks are less likely to be grazed. Thus, the traits used represented independ-
ent axes of specialization. Trait distance calculations were based on all these eight traits using Gower’s distance. In 
the Beals scenario, species used had the highest probability of co-occurrence with the resident species in the 
German Vegetation Reference Database (GVRD)25, while in the Random scenario, the species were randomly 
selected from the species pool. We calculated both the mean pairwise trait distances among all resident species 
before the phytometer species were planted and between the six introduced species in the four scenarios (Beals, 
Dissim, Random and Sim) and all resident species.

In total, we planted 2592 individuals (3 Exploratories, 18 plots per Exploratory, 8 subplots per plot, 6 plant 
individuals per subplot). Detailed information of the experimental design and the scenarios is reported in a previ-
ous paper24. SI Table S1 shows the mean trait values of the phytometers planted under the four different scenarios. 
With the exception of SLA, all scenarios differed in their trait values. On average, of all species selected for the dif-
ferent scenarios, species in the Beals scenario had leaves that were to a higher degree hygromorphic and arranged 
in rosettes and reproduced more frequently vegetatively. In contrast, Sim species ranked highest in mesomorphic 
and evergreen leaf types and regular leaf distribution. Dissim species were tallest, more scleromorphic and they 
often had semi-rosettes. Finally, species chosen for the Random scenario had leaves with the highest LDMC, 
which were more summer-green (Table S1).

After planting in April 2012, the phytometers were monitored regularly for growth and survival in April, May, 
July, August and October 2012 and in May, June/July and September 2013. These eight monitoring events were 
numbered from zero to seven. At each date, we recorded height, aboveground plant projection area (calculated 
from two diameters using the ellipse formula), leaf length and number of leaves. At the last monitoring date in 
September 2013, aboveground biomass of all surviving plants was harvested, dried and weighed. Regressions of 
height and projection area on aboveground biomass at the time of harvest showed a high positive correlation of 
r = 0.47 and 0.78, respectively, indicating that our non-destructive variables were good proxies for aboveground 
biomass. Photographs were taken of fresh leaf samples for every individual and then analyzed using Image J (ver-
sion 1.48e67, National Institutes of Health) to assess leaf area. Fresh leaf samples and aboveground biomass were 
dried for three days at 60 °C. Dry leaves and dry aboveground biomass were weighed and summed to calculate 
total aboveground biomass. SLA was calculated by dividing leaf area (m²) by dry leaf mass (kg). LDMC was cal-
culated by dividing dry leaf mass (mg) by fresh leaf mass (g)51. As most species did not produce flowers or fruits in 
the presence of grazing and cutting, we could not analyze individual fitness but instead focused on relative growth 
rates (RGR) as a measure of performance. RGR was calculated according to formula (2)68, where M is any growth 
variable and t is the time span in weeks between the two monitoring dates 1 and 2.

=
−
−

RGR M M
t t

ln( ) ln( )
(2)i

2 1

2 1

We calculated RGR for three intervals, May to October 2012 (1–4), October 2012 to May 2013 (4–5), and May to 
September 2013 (5–7).

CWM calculation.  The community-weighted mean value (CWM) of SLA, LDMC and height was calculated 
according to formula (3):

∑= ∗= p xCWM (3)i
s

i i1

where pi is the relative cover of species i (i = 1, 2, …, s) obtained from vegetation records on all subplots made in 
2011, when the visual plant cover of every species was estimated as a percentage of the subplot area (1 m2). Total 
plant cover included the cover of transplants, obtained from the aboveground plant projection area calculated 
from two diameters using the ellipse formula and then transferred to percentage. As the six transplanted indi-
viduals contributed to the CWM trait value of the subplot, only the surviving transplants were included in the 
calculation. In addition, as the transplants were of different size on the various monitoring dates, CWMs differed 
among dates. The trait value (xi) of species i (i = 1, 2, …, s) refer to species mean trait values measured in 2011, 
complemented from the databases LEDA66, BIOPOP69, BIOLFLOR70 and Rothmaler71. Species with missing trait 
values were excluded from CWM calculation.

FD calculation.  FD was calculated according to Rao´s defined quadratic entropy72 according to formula (4):
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where pi and pj are relative cover and Dij the trait distances between all species i and j in one subplot. The calcula-
tion employed the same traits as in CWM (SLA, LDMC and height) and the same multi-trait distance Dij that was 
used for selecting the species for the Sim and Dissim scenario (see above). As in CWM, FD included the sizes of 
all survivors at the end of the three time intervals.

Climate Data.  Air temperature and relative air humidity were measured at 2 m above the ground, while 
soil temperature and moisture were measured at 10 cm below the ground. All climate data were collected at 
10 minutes intervals using data loggers installed in the same plots and aggregated to monthly mean values (see 
Acknowledgements). The monthly means were averaged for the three time intervals in our study (vegetation 
period 2012, winter 2012/2013 and vegetation period 2013).

Data Analysis.  In a first step, to analyse the total amount of variation explained by our study design, we sub-
jected all 15 response variables to a variance partitioning analysis (i.e. height, aboveground plant projection area, 
leaf length and number of leaves, for each of the three monitoring intervals as well as aboveground biomass, SLA 
and LDMC at the time of harvest). The exclusive and jointly explained variances by plot (nested in Exploratory: 
Schwäbische Alb, Hainich and Schorfheide), scenario and species identity were assessed using the varpart com-
mand in the vegan package in R73. We repeated the analysis including additional subplot-based trait measures 
to serve as a fourth predictor category (both CWM and FD of height, SLA and LDMC as well as FD of all traits).

Thereafter, regressions were calculated using mixed linear models in R (lmer, package lmerTest)74 using 
“Exploratory”, “plot” nested in “Exploratory”, “subplot” nested in “plot” and “species identity” as random factors. 
This random structure was used in all subsequent models.

In the second step, we calculated single fixed-predictor linear mixed effects models that related RGR of the 
15 different response variables (height, plant projection area, leaf length, number of leaves, for each of the three 
monitoring intervals, and the variables at the time of harvest, i.e. aboveground biomass, SLA and LDMC) to eight 
predictor variables (CWM and FD of height, SLA and LDMC as well as to FD of all traits used in the scenario 
definition (multi-trait FD) and land-use intensity (LUI)). We identified the models with the highest absolute 
standardized estimates of the predictor and plotted standardized estimates for all 15 response variables.

In the third step, we constructed full multiple-predictor linear mixed effects models that related the RGR of 
the different response variables to land-use intensity (LUI), scenario (Beals, Dissim, Sim, Random), CWM (sep-
arately for SLA, LDMC and height) and FD (of the single traits SLA, LDMC and height and the multi-trait FD). 
Logger failure resulted in plots with missing values for one of the four climate variables (see SI Table S3), which 
precluded the inclusion of climate variables in the full models for all 54 plots. As we were particularly interested 
in how the different scenarios modified the phytometer responses, we also included all two-fold interactions 
with scenario. Aboveground biomass was log transformed to achieve normal distribution. The models were then 
improved by backward selection of predictor variables using the step command of R package lmerTest to elim-
inate insignificant effects74. The final models were then compared with models to which one of the four climate 
variables (air temperature, relative air humidity, soil temperature and soil moisture) was added as an additional 
predictor, using AIC. This required recalculating the models both with and without climate variables for the 
subsets for which climate data were available (SI Table S3). Models with climate variables were considered better 
than those without if ΔAIC was >1.

We used the method described by Nakagawa & Schielzeth to calculate the amount of variance explained by the 
mixed models75, both as marginal R2 (i.e. the variance explained by fixed factors), and as conditional R2 (i.e. the 
variance explained by both fixed and random factors). While all graphs were produced using unscaled variables, 
all predictor variables in the multiple regression models and those reported in the tables were scaled by mean and 
standard deviation, which allowed for the direct comparison of parameter estimates of effect sizes. All estimates 
refer to the Beals scenario (when scenario as a categorical predictor was included in the model Beals was coded 
as intercept in the model’s design matrix) and to the mean of all continuous variables in the final model. The 
parameter estimates of these final models were then used to calculate regression lines. Partial regressions were 
produced by calculating a linear mixed effects model without the target variable and then relating the residuals 
of that model to the target variable in an ordinary linear model. For all statistical analyses, we used the software 
R version 3.4.376.

The datasets analysed during the current study are available from the corresponding author upon request; for 
trait values also see supporting information Table S2.
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