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Abstract

In the presence of metal implants, metal artifacts are introduced to x-ray CT images. Although a 

large number of metal artifact reduction (MAR) methods have been proposed in the past decades, 

MAR is still one of the major problems in clinical x-ray CT. In this work, we develop a 

convolutional neural network (CNN) based open MAR framework, which fuses the information 

from the original and corrected images to suppress artifacts. The proposed approach consists two 

phases. In the CNN training phase, we build a database consisting of metal-free, metal-inserted 

and pre-corrected CT images, and image patches are extracted and used for CNN training. In the 

MAR phase, the uncorrected and pre-corrected images are used as the input of the trained CNN to 

generate a CNN image with reduced artifacts. To further reduce the remaining artifacts, water 

equivalent tissues in a CNN image are set to a uniform value to yield a CNN prior, whose forward 

projections are used to replace the metal-affected projections, followed by the FBP reconstruction. 

The effectiveness of the proposed method is validated on both simulated and real data. 

Experimental results demonstrate the superior MAR capability of the proposed method to its 

competitors in terms of artifact suppression and preservation of anatomical structures in the 

vicinity of metal implants.

Index Terms

X-ray computed tomography (CT); metal artifacts; convolutional neural networks; deep learning

I. Introduction

Patients are usually implanted with metals, such as dental fillings, hip prostheses, coiling, 

etc. These highly attenuated metallic implants lead to severe beam hardening, photon 

starvation, scatter, and so on. This brings strong star-shape or streak artifacts to the 

reconstructed CT images [1]. Although a large number of metal artifact reduction (MAR) 

methods have been proposed during the past four decades, there is still no standard solution 

[2]–[4]. Currently, how to reduce metal artifacts remains a challenging problem in the x-ray 

CT imaging field.
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Metal artifact reduction algorithms can be generally classified into three groups: physical 

effects correction, interpolation in projection domain and iterative reconstruction. A direct 

way to reduce artifacts is to correct physical effects, e.g., beam hardening [5]–[7] and photon 

starvation [8]. However, in the presence of high-atom number metals, errors are so strong 

that the aforementioned corrections cannot achieve satisfactory results. Hence, the metal-

affected projections are assumed as missing and replaced with surrogates [9]–[11]. Linear 

interpolation (LI) is a widely used MAR method, where the missing data is approximated by 

the linear interpolation of its neighboring unaffected projections for each projection view. 

The LI usually introduces new artifacts and distorts structures near large metals [12]. By 

comparison, by employing a priori information, the forward projection of a prior image is 

usually a more accurate surrogate for the missing data [13]–[17]. The normalized MAR 

(NMAR) is a state-of-the-art prior image based MAR method, which applies a thresholding 

based tissue classification on the uncorrected image or the LI corrected image to remove 

most of the artifacts and produce a prior image [14]. In some cases, artifacts are so strong 

that some image pixels are classified into wrong tissue types, leading to inaccurate prior 

images and unsatisfactory results. The last group of methods iteratively reconstruct images 

from the unaffected projections [18]–[21] or weighted/corrected projections [22]. With 

proper regularizations, the artifacts are suppressed in the reconstructed results. However, due 

to the high complexity of various metal materials, sizes, positions, and so on, it is hard to 

achieve satisfactory results for all cases using a single MAR strategy. Therefore, several 

researchers combined two or three types of MAR techniques as hybrid methods [23] [24], 

fusing the merits of various MAR techniques. Hence, the hybrid strategy has a great 

potential to obtain more robust and outstanding performance by appropriately compromising 

a variety of MAR approaches.

Recently, deep learning has achieved great successes in the image processing and pattern 

recognition field. For example, the convolutional neural network (CNN) has been applied to 

medical imaging for low dose CT reconstruction and artifacts reduction [25]–[34]. In 

particular, the concept of deep learning was introduced to metal artifact reduction for the 

first time in 2017 [29], [31], [35]–[39]. Park et al. employed a U-Net to correct metal-

induced beam hardening in the projection domain [38] and image domain [39], respectively. 

Their simulation studies showed promising results over hip prostheses of titanium. However, 

the beam hardening correction based MAR methods have limited capability for artifact 

reduction in the presence of high-Z metal. Gjesteby et al. developed a few deep learning 

based MAR methods that refine the performance of the state-of-the-art MAR method, 

NMAR, with deep learning in the projection domain [29] and image domain [31], [35], 

respectively. The CNN was used to help overcome residual errors from the NMAR. While 

their experiments demonstrated that CNN can improve the NMAR effectively, remaining 

artifacts are still considerable. Simultaneously, based on the CNN, we proposed a general 

open framework for MAR [36], [37]. This paper is a comprehensive extension of our 

previous work [36]. We adopt the CNN as an information fusion tool to produce a reduced-

artifact image from some other methods corrected images. Specifically, before the MAR, we 

build a MAR database to generate training data for the CNN. For each clinical metal-free 

patient image, we simulate the metal artifacts and then obtain the corresponding corrected 

images by several representative MAR methods. Without loss of generality, we apply a beam 
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hardening correction (BHC) method and the linear interpolation (LI) method in this study. 

Then, we train a CNN for MAR. The uncorrected, BHC and LI corrected images are stacked 

as a three-channel image, which is the input data of CNN and the corresponding metal-free 

image is the target, and a metal artifact reduction CNN is trained. In the MAR phase, the 

pre-corrected images are obtained using the BHC and LI methods, and these two images and 

the uncorrected image are put into the trained CNN to obtain the corrected CNN image. To 

further reduce the remaining artifacts, we incorporate the strategy of prior image based 

methods. Specifically, a tissue processing step is introduced to generate a prior from the 

CNN image, and the forward projection of the prior image is used to replace metal-affected 

projections. The advantages of the proposed method are threefold. First, we combine the 

corrected results from various MAR methods as the training data. In the end-to-end CNN 

training, the information from different correction methods is captured and the merits of 

these methods are fused, leading to a higher quality image. Second, the proposed method is 

an open framework, and all the MAR methods can be incorporated into this framework. 

Third, this method is data driven. It has a great potential to improve the CNN capability if 

we continue increasing the training data with more MAR methods. The source codes of our 

proposed method are open1.

The rest of the paper is organized as follows. Section II describes the creation of metal 

artifact database and the training of a convolutional neural network. Section III develops the 

CNN based MAR method. Section IV describes the experimental settings. Section V gives 

the experimental results and analyzes properties of the proposed method. Finally, Section VI 

discusses some relevant issues and concludes the paper.

II. Training of the Convolutional Neural Network

There are two phases to train a convolutional neural network for MAR. First, we generate 

metal-free, metal-inserted and MAR corrected CT images to create a database. Then, a CNN 

is constructed and the training data is collected from the established database and used to 

train the CNN.

A. Establishing a Metal Artifact Database

At first, we need to create a CT image database for CNN training. In this database, for each 

case, metal-free, metal-inserted, and MAR methods processed images are included.

1) Generating Metal-free and Metal-inserted Images—In this subsection, we 

describe how to generate metal-free and metal-inserted CT images, where beam hardening 

and Poisson noise are simulated. To ensure that the trained CNN works for real cases, 

instead of using phantoms, we simulate the metal artifacts based on clinical CT images. To 

begin with, a number of DICOM format clinical CT images are collected from online 

resources and “the 2016 Low-dose CT Grand Challenge” training dataset [40]. In the 

presence of metal implants, we manually segment metals and store them as small binary 

images, which represent typical metallic shapes in real cases. Several representative metal-

free CT images are selected as benchmark images. For a given benchmark image, its pixel 

values are converted from CT values to linear attenuation coefficients and denoted as x. To 

simulate polychromatic projection, we need to know the material components in each pixel. 
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Hence, a soft threshold-based weighting method [41] is applied to segment the image x into 

bone and water-equivalent tissue components, denoted as xb and xw, respectively. Pixels 

with values below a certain threshold T1 are viewed as water equivalent, while pixels above 

a higher threshold T2 are assumed to be bone. The pixels with values between T1 and T2 are 

assumed to be a mixture of water and bone. Thus, a weighting function for bone is 

introduced as

ω(xi) =

0, xi ≤ T2
1, xi ≥ T2
xi − T1
T2 − T1

T1 < xi < T2

, (1)

where x is the ith pixel value of x. Hence, xb and xw are expressed as

xi
b = ω(xi)xi, (2)

xi
w = (1 − ω(xi))xi . (3)

Fig. 1 gives an example of the image segmentation.

For an x-ray path Lj, the linear integral of water and bone images are d j
w and d j

b, respectively. 

We have

d j
k = ∫

L j
xkdl, (4)

where the superscript “k” indicates “w” or “b”. To simulate polychromatic projections, we 

need to obtain linear attenuation maps of water and bone at various energies. For each 

material, the linear attenuation coefficient at the pixel is the product of the known energy-

dependent mass attenuation coefficient and the unknown energy-independent density [42]. 

We have

xi
k(E) = mk(E)ρi

k, (5)

where ρi
k is the density of “k” material at the ith pixel, and mw(E) and mb(E) are respectively 

mass attenuation coefficients at energy E of water and bone. For a given polychromatic x-ray 
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imaging system, let us assume that the equivalent monochromatic energy is E0. Then, xi
b and 

xi
w can be written as

xi
k = xi

k(E0) = mk(E0)ρi
k . (6)

Combining Eqs. (5) and (6), the unknown density ρi
k can be eliminated. Hence, the energy 

dependent linear attenuation coefficient for each material is obtained as the following,

xi
k(E) =

xi
kmk(E)

mk(E0)
. (7)

for the given x-ray path Lj, the ideal projection measurement y j recorded by the jth detector 

bin is

y j = ∫ I(E)exp −∫
L j

xi
w(E) + xi

b(E) dl dE

= ∫ I(E)exp −∫
L j

xi
wmw(E)
mw(E0)

+
xi

bmb(E)
mb(E0)

dl dE ,

= ∫ I(E)exp −
mw(E)d j

w

mw(E0)
−

mb(E)d j
b

mb(E0)
dE

(8)

where I(E) is the known energy dependence of both the incident x-ray source spectrum and 

the detector sensitivity. Because the linear projection dw and d j
b have been computed in 

advance, computing the polychromatic projection using Eq. (8) is very efficient. 

Approximately, the measured data follow the Poisson distribution:

y j Poisson y j + r j , (9)

where rj is the mean number of background events and readout noise variance, which is 

assumed as a known nonnegative constant [42], [43]. Thus, the noisy polychromatic 

projection p for reconstruction can be expressed as:

p j = − ln
yi

∫ I(E)dE
, (10)
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The metal-free image is reconstructed using filtered backprojection (FBP), and the image is 

assumed as reference and denoted as xref.

To simulate metal artifacts, one or more binary metal shapes are placed into proper 

anatomical positions, generating a metal-only image xm. We specify the metal material, and 

assign metal pixels with linear attenuation coefficient of this material at energy E0, and set 

the rest pixels to be zero. Because metals are inserted into patients, pixel values in xb and xw 

are set to be zero if the corresponding pixels in xm are nonzero. Then, the d j
w and d j

b are 

updated, and the corresponding metal projection is computed using Eq. (4). Similar to Eq. 

(8), the ideal projection measurement is

y j
∗ = ∫ I(E)exp −

mw(E)d j
w

mw(E0)
−

mb(E)d j
b

mb(E0)
−

mm(E)d j
m

mm(E0)
dE, (11)

where mm(E) is the mass attenuation coefficient of the metal at energy E. Following the 

same operations in Eqs. (9) and (10), the noisy polychromatic projection p* is obtained, and 

then the image xart containing artifacts is reconstructed. Fig. 2 shows four samples in the 

database. The top four rows in Fig. 2 are benchmark images, metal-only images, metal-free 

images and metal-inserted images, respectively.

2) Simple Metal Artifact Reduction—We apply two simple metal artifact reduction 

methods, the linear interpolation (LI) and beam hardening correction (BHC) [44], to 

alleviate artifacts. These methods are fast and easy to implement, and there are no manually 

selected parameters. Moreover, they suppress metal artifacts with different schemes, which 

have a great potential to provide complementary information for the CNN. In the LI method, 

the metal-affected projections are identified and replaced with the linear interpolation of 

their unaffected neighboring projections in each projection view. The LI corrected image is 

denoted as xLI. The BHC approach [44] adopts a first-order model of beam hardening error 

to compensate for the metal-affected projections. The length of metal l j
m  along each x-ray 

path is computed by forward projecting the binary metal-only image. The difference p j
m

between the original and LI projections is assumed as the contribution of metal. The 

correction curve between l j
m  and p j

m  is fitted to the correlation using a least squares cubic 

spline fit. Finally, the correction curve is subtracted from the original projection to yield the 

corrected data. The image obtained using BHC is denoted as xBHC. The two bottom rows in 

Fig. 2 are four samples of BHC and LI corrected images, where metals are not inserted back 

into the LI images.

B. Training a Convolutional Neural Network (CNN)

For each sample in the database, the original uncorrected image, BHC image and LI image 

are combined as a three-channel image. The samples in the database are randomly divided 

into two groups for CNN training and validation. Small image patches of s × t × 3 are 

extracted from three-channel images, and these patches are assumed as the input data of 
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CNN. Correspondingly, image patches of s × t are also obtained from the same positions of 

the metal-free images, and these patches are assumed as the target of CNN during training. 

The rth training sample pair is denoted as u ∈ ℝs×t×3 and vr ∈ ℝs×t, r = 1, …, R, where R is 

the number of training samples. The CNN training is to find a function H: ℝs×t×3 → ℝs×t 

that minimizes the following cost function [30]:

H = arg min
H

1
R ∑

r = 1

R
H(ur) − vr F

2 , (12)

where ‖ · ‖F is the Frobenius norm.

Fig. 3 depicts the workflow of our CNN, which is comprised of an input layer, an output 

layer and L = 5 convolutional layers. The ReLU, a nonlinear activation function defined as 

ReLU(x) = max(0, x), is performed after each of the first L − 1 convolutional layers. In each 

layer, the output after convolution and ReLU can be formulated as:

Cl(u) = ReLU(Wl ∗ Cl − 1(u) + bl), l = 1, …, L − 1, (13)

where * means convolution, Wl and bl denote weights and biases in the lth layer, 

respectively. We define C0(u) = u. Wl can be assumed as an nl convolution kernel with a 

fixed size of cl × cl. Cl(u) generates new feature maps based on the (l − 1)th layers output. 

For the last layer, feature maps are used to generate an image that is close to the target. 

Then, we have:

CL(u) = WL ∗ CL − 1(u) + bL . (14)

After the construction of the CNN, the parameter set Θ = {W1, ⋯, WL, b1, ⋯, bL} is 

updated during the training. The estimation of the parameters can be obtained by minimizing 

the following loss function:

Loss(U, V, Θ) = 1
R ∑

r = 1

R
CL(ur) − vr F

2 , (15)

where U = {u1, ⋯, uR} and V = {v1, ⋯, vR} are the input and target datasets, respectively.

III. CNN-MAR METHOD

Because the proposed MAR approach is based on the CNN, it is referred to as CNN-MAR 

method. It consists of five steps: (1) metal trace segmentation; (2) artifact reduction with the 

LI and BHC; (3) artifact reduction with the trained CNN; (4) generation of a CNN prior 

image using tissue processing; (5) replacement of metal-affected projections with the 

forward projection of CNN prior, followed by the FBP reconstruction. The workflow of 
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CNN-MAR is summarized in Fig. 4. Steps 1 and 5 are the same as our previous work [24], 

and step 2 has been described in the above subsection. Hence, we only provide the details 

for the key steps 3 and 4 as follows.

A. CNN Processing

After the BHC and LI corrections, the original uncorrected image xart, BHC image xBHC and 

LI image xLI are combined as a three-channel image xinput. Hence, the image after CNN 

processing is

xCNN = CL(xinput), (16)

where the parameters in CL have been obtained in advance in the CNN training phase. Fig. 5 

shows an example of the CNN inputs and processed CNN image. All the three input images 

contain obvious artifacts, as indicated by the arrows 1–3. Although the LI alleviates the 

artifacts indicated by the arrow 1, it introduces new artifacts indicated by the arrow 4. In the 

CNN image, the artifacts are remarkably suppressed.

B. Tissue Processing

Although the metal artifacts are significantly reduced after the CNN processing, the 

remaining artifacts are still considerable. We generate a prior image from the CNN image by 

the proposed tissue processing approach. Because the water equivalent tissues have similar 

attenuations and are accounted for a dominate proportion in a patient, we assign these pixels 

with a uniform value to remove most of the artifacts and obtain a CNN prior image.

By the k-means clustering on the CNN image, two thresholds are automatically determined 

and the CNN image is segmented into bone, water and air. To avoid wrong clustering in the 

case of only a few bone pixels, the bone-water threshold is not less than 350 HU. 

Additionally, to preserve low-attenuated bones, larger regions are segmented with half of the 

bone-water threshold, and those regions overlapped with the previously obtained bony 

regions are also assumed as bone and preserved. Then, we obtain a binary image B for water 

regions with the target pixels setting to be one and the rest setting to be zero.

Because it may cause discontinuities at boundary and produce fake edges/structures to 

directly set all water regions with a constant value [13], [24], we introduce an N = 5 pixel 

transition between water and other tissues. Based on the binary image B, we introduce a 

distance image D, where the pixel value is set to be the distance between this pixel and its 

nearest zero pixel if the distance is not greater than N, and is set to be N if it is greater than 

N. Hence, in the image D, most of the water pixels are with the value N, and there is an N 
pixel transition region, while the other tissues are still zeros. We compute the weighted 

average of water pixel values:
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xCNN, w =
∑i Dixi

CNN

∑i Di
, (17)

Thus, the prior image is obtained:

xi
prior =

Di
N xCNN, w + (1 −

Di
N )xi

CNN . (18)

Finally, to avoid the potential discontinuities at boundaries of metals, the metal pixels are 

replaced with their nearest pixel values.

Fig. 5(f) shows an example of the CNN prior image after the tissue processing. It is clear 

that the regions of water equivalent tissue are flat and the artifacts are removed. 

Simultaneously, the bony structures are persevered very well. The CNN prior is beneficial 

for the projection interpolation. As shown in Fig. 6, the LI is a poor estimation of the 

missing projections. With the help of forward projection of the CNN prior, the surrogate 

sinogram is extremely close to the ideal one.

IV. Experiments

A. Creating a Metal Artifact Database

74 metal-free CT images and 15 metal shapes are collected. Various metal implants are 

simulated, such as dental fillings, spine fixation screws, hip prostheses, coiling, wires, etc. 

The metal materials include titanium, iron, copper and gold. We carefully adjust the sizes, 

angles, positions and inserted metal materials so that the simulations are close to clinical 

cases. In this work, a database is created with 100 cases.

To segment water and bone from a benchmark image, thresholds T1 and T2 are set to linear 

attenuation coefficients corresponding to 100 HU and 1500 HU, respectively. Mass 

attenuation coefficients of water, bone and metals are obtained for the XCOM database [45]. 

To simulate metal-free and metal-inserted data, an equi-angular fan-beam geometry is 

assumed. A 120 kVp x-ray source is simulated and each detector bin is expected to receive 2 

× 107 photons in the case of blank scan [46]. There are 984 projection views over a rotation 

and 920 detector bins in a row. The distance between the x-ray source and the rotation center 

is 59.5 cm. The metal-free and metal-inserted images are reconstructed by the FBP from 

simulated sinograms and each image consists of 512 × 512 pixels.

B. CNN Training

In Fig.3, the convolutional kernel is 3 × 3 in each layer. Therefore, the convolutional weights 

are 3 × 3 × 3 × 32 in the first layer, 3 × 3 × 32 × 32 in the second to the fourth layers and 3 × 

3 × 32 × 1 in the last layer. We set the padding to 1 in each layer so that the size of the 

output image is the same as the input.
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To train the CNN, images are selected from the database to generate the training data. 

10,000 patch samples with the size of 64 × 64 are extracted from the selected images. 

Because the spatial distribution of metal artifacts in an image is not uniform, we design a 

specific strategy to select training patches. A major proportion of the total training data are 

those patches with strongest artifacts in each corrected image, and the rest patches are 

randomly selected. The trained neural networks are very similar with different proportions 

between 50% to 80%. The obtained training data are randomly divided into two groups. 80% 

of the data is used for training and the rest is for validation during the CNN training. The 

CNN is implemented in Matlab with the MatConvNet toolbox [47], [48]. A GeForce GTX 

970 GPU is used for acceleration. The training code runs about 25.5 hours and stops after 

2000 iterations.

C. Numerical Simulation

Three typical metal artifacts cases are selected from the database to evaluate the usefulness 

of the proposed method. They are: case 1, two hip prostheses; case 2, two fixation screws 

and a round metal inserted in bone; case 3, several dental fillings. These cases are not used 

in the CNN training.

The proposed method is compared to the BHC, LI and a famous prior image based method 

NMAR [14]. In the NMAR, a prior image is generated from an original image in the case of 

smaller metal objects of medium density and from an LI image in the case of strong 

artifacts. For a comprehensive comparison, we generate prior images from both of the 

original and LI images for the NMAR, which are referred as to NMAR1 and NMAR2 in this 

paper, respectively. For a quantitative evaluation, we use the metal-free images as references 

to compute the root mean square error (RMSE) and the structural similarity (SSIM) index 

[49].

D. Real Data

The effectiveness of the proposed method is also validated over a clinical data. A patient 

with a surgical clip is scanned on a Siemens SOMATOM Sensation 16 CT scanner with 120 

kVp and 496 mAs using the helical scanning geometry [50]. The measurement was acquired 

with 1160 projection views over a rotation and 672 detector bins in a row. The FOV is 25 cm 

in radius and distance from the x-ray source to the rotation center is 57 cm.

V. Results

A. Numerical Simulation

Fig. 7 shows the reference, uncorrected and corrected images of the bilateral hip prostheses 

case. The corresponding prior images for the NMAR1, NMAR2 and CNN-MAR are given 

in Fig. 8. A severe dark strip presents between two hip prostheses in the original image as 

indicated by the arrow “1”. Although the BHC alleviates these artifacts to some extent, the 

remaining artifacts are still remarkable. The NMAR1 corrected image also contains strong 

dark strip in the same location, which is due to its poor prior image. The NMAR method 

adopts a simple thresholding to segment air, water equivalent tissue, and bone after the 

image is smoothed with a Gaussian filter [14]. Then, air and water regions are set to −1000 
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HU and 0 HU, respectively. Because of the severe artifacts in the original image, several 

regions are segmented as wrong tissue types. The NMAR1 prior presents false structures as 

indicated by the arrows “1” and “2” in Fig. 8(a). The false structural information is 

propagated to the NMAR1 corrected image. The LI corrected image has moderate artifacts 

compared to the aforementioned methods. However, the bony structures near the metals, as 

highlighted in the magnified ROI, are blurred and distorted. This is due to the significant 

information loss near a large metal. As a result, the NMAR2 prior does not suffer from the 

wrong segmentation but an inaccurate bony structure as indicated by the arrow “3” in Fig. 

8(b). Hence, the NMAR2 corrected images reduce artifacts well and introduce wrong bony 

structures. By comparison, the CNN image captures tissue structures faithfully from the 

original, BHC and LI images, and avoids most of the artifacts. Due to the excellent image 

quality of the CNN image, a good CNN prior is generated, followed by a CNN-MAR image 

with superior image quality. It is clearly seen from Fig. 7(h) that the artifacts are almost 

removed completely and the tissue features in the vicinity of metals are faithfully preserved.

Fig. 9 presents the case 2, where two fixation screws and a metal are inserted in the shoulder 

blade. The metal artifacts in the original image are moderate, and the BHC is able to remove 

the bright artifacts (arrow “2”) around the metals and recovered some bony structures. On 

the contrary, the LI introduces many new artifacts, and most of the bony structures near the 

metals are lost as indicated by the arrow “1”. Both the NMAR1 and NMAR2 are not able to 

obtain satisfactory results because it can hardly get a good prior image from the original or 

LI corrected images. The CNN image restores most of the bony features near the metals, and 

no new artifacts are introduced. Consequently, the CNN-MAR corrected image is very close 

to the reference.

Fig. 10 shows the dental images with multiple dental fillings. The original, BHC, LI and 

NMAR1 images suffer from severe artifacts, and the NMAR2 has less artifacts. Although 

none of Figs. 10(b)–10(d) has a good image quality, the CNN demonstrates an outstanding 

capacity to preserve the tissue features and avoid most of the strong artifacts simultaneously. 

Consistent with the previous cases, the CNN-MAR achieves the best image quality.

Table I lists the RMSEs of the original and corrected images with respect to the reference 

images, where the metallic pixels are excluded. Because the noise also contributes to the 

RMSE, the artifact induced error is slightly smaller than the values listed in the table. The 

BHC, LI and NMAR1 have overall large error. In comparison, the NMAR2 achieves a 

higher accuracy. The CNN images have comparable accuracy to the NMAR2, and the CNN-

MAR achieves the smallest RMSEs for all these three cases.

Because the SSIM measures the structural similarity between two images, it is good to 

evaluate the strength of artifacts [49]. The SSIM index lies between 0 and 1, and a higher 

value means better image quality. Table II lists the SSIM of each image in the numerical 

simulation study. The BHC has comparable SSIM indices to those of the uncorrected 

images. The other five MAR methods increase the SSIM significantly. For the LI, NMAR1, 

NMAR2 and CNN, their ranks are case-dependent. Generally speaking, the NMAR2 and 

CNN have better image quality. By comparison, the CNN-MAR has the highest SSIM for 

the three cases, implying its superior and robust artifact reduction capability.
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B. Clinical Application

Fig. 11 shows a patient’s head CT image with a surgical clip. The patient is a 59 year-old 

female with diffused subarachnoid hemorrhage in the basal cisterns and sylvian fissures. The 

CT angiography demonstrates a left middle cerebral artery aneurysm. She is taken to the 

operation room and the aneurysm is clipped. She has numerous head CT scans after the 

surgery for assessment of increased intracranial pressure to rule out rebleeding and 

hydrocephalus [50]. The original, BHC and LI images contain too strong artifacts to provide 

bleeding information in her brain. The NMAR1 and NMAR2 are able to better alleviate 

artifacts. However, there still exists obvious artifacts in the images as indicated by the arrow 

“1”, and bony structures indicated by the arrow “2” are distorted. In comparison, the CNN-

MAR achieves the best image quality. As highlighted in the rectangular region, there is only 

one tiny dark streak, and the bright hemorrhage can be observed clearly. The CNN-MAR 

demonstrates a superior metal artifact reduction and the potential for diagnostic tasks after 

the clipping surgery.

C. Properties of the Proposed CNN-MAR

1) Effectiveness of the Tissue Processing—To study the effectiveness of the tissue 

processing, we ignore the tissue processing step and directly assume the CNN images as the 

prior images. The corresponding corrected images are shown in Fig. 12. Compared to the 

CNN images in Figs. 7, 9 and 10, some artifacts can be alleviated by the forward projection. 

Nevertheless, most of the streaks that are tangent to the metals are preserved as indicated by 

the arrows in Fig. 12. By comparison, the tissue processing keeps the major structures and 

removes the low-contrast features and remaining artifacts. Although the features in the 

regions of water equivalent tissues are lost after the tissue processing, because the metal-

affected projections account for a very small proportion in the sinogram, the missing 

information is able to be partially recovered from the rest of the unaffected projections. In 

addition, in the projection replacement step, a projection transition is applied to compensate 

for the difference between the prior sinogram and the measurements at the boundary of the 

metal traces [24], which is also beneficial to the information recovery. However, in the 

presence of large metals, a low-contrast feature in the vicinity of metal may suffer from 

missing or distortion.

2) Selection of Input Images (MAR Methods)—In this work, the original uncorrected, 

BHC and LI images are adopted as the input of CNN. We also compare the results with 

various input images (MAR methods). Here, we apply the original uncorrected, BHC, LI, 

NMAR1 and NMAR2 images as a five-channel input image, and adopt the original and LI 

images as a two-channel input image. In addition, the NMAR2 images is employed as a one-

channel input image. Fig. 13 shows the results of dental fillings case. When NMAR2 is 

selected as the single input image, the CNN processing is equivalent to the NMAR-CNN 

method proposed by Gjesteby et al. [31], [35]. Because the NMAR2 image has less artifacts, 

the CNN image and CNN-MAR image have better image quality. Regarding the multi-

channel input, it can be seen from the top three rows that the performance of artifacts 

reduction is improved by introducing more input images. Particularly, compared to the cases 

of two-channel input images, three-channel input images remarkably improve the image 

quality. Therefore, introducing the NMAR1 and NMAR2 only brings limited benefits. This 
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effect depends on if the newly introduced input images contain new useful information. As 

the aforementioned, the BHC and LI belong to different MAR strategies, which provide 

complementary information. Without the BHC, some artifacts are wrongly classified as 

tissue structures and preserved, as illustrated in the third row of Fig. 13. On the contrary, the 

NMAR1 and NMAR2 are obtained based on prior images from the original and LI images, 

respectively. Hence, they provide limited new information. In summary, as an open MAR 

framework, the performance of CNN-MAR can be further improved in the near future by 

incorporating various types of MAR algorithms.

3) Architecture of the CNN—To study the performance of CNN with respect to different 

architectures, we adjust the CNN parameters and calculate the average RMSE and SSIM 

over ten simulated metal artifact cases including the aforementioned three cases. Fig. 14 

shows the values of RMSE and SSIM using the networks with different number of 

convolutional layers, number of filters per layer, and the size of each filter. In each subplot, 

there is only one parameter to be tuned and other parameters are kept as the default ones. 

The number of neurons in the network increases with the increase of these three parameters, 

obtaining slightly smaller RMSE and greater SSIM indices. However, because the 

computational cost rises considerably by using greater parameters, we employ a medium 

size CNN in this work.

4) Training Data—We compare the network trained with different numbers of patches. 

Fig. 15 presents the average RMSE and SSIM values over ten cases of our results using the 

network trained with 100, 500, 2000 and 10000 patches. It is clear that the RMSE decreases 

and the SSIM increases dramatically by applying more training data. This suggests that the 

performance of the proposed method strongly depends on the size of training data.

We also compare selection strategies for the training data. The convergence curves of CNN 

training are presented in Fig. 16(a), and the obtained network after 2000 training epochs is 

used in this work. It can be observed that the energy of the objective function decreases 

steadily with the increasing training epoch. In Fig. 16(a), the training and validation data are 

selected from a subset of the same dataset, which consists of all types of inserted metals. It is 

clear that the trained CNN works well on the validation data. In Fig. 16(b), the training data 

and the validation data are selected from the same subset. While the training data is from all 

types of metals except the multiple dental fillings, and the validation data is from the 

multiple dental fillings cases. The two separated curves demonstrate an unsatisfactory 

performance of the obtained CNN on the validation data caused by the difference of the 

artifact patterns in the two data sets. Hence, it is crucial to include a wider variety of metal 

artifacts cases as the training data.

5) Training Epochs—The proposed method is tested with different training epochs. Fig. 

17 compares average RMSE and SSIM values over ten cases of the CNN and CNN-MAR 

images obtained with the network after 100, 200, 1000 and 2000 training epochs. Obviously, 

by increasing the training epochs, the RMSE of CNN images decreases steadily and the 

SSIM increases constantly. After the tissue processing, the image quality of CNN-MAR 

images is remarkably improved. Likewise, the RMSE and SSIM of CNN-MAR images with 

respective to training epochs follows the same trend to those of CNN images.
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VI. Discussion And Conclusion

From the aforementioned experimental results, it can be seen that the CNN and tissue 

processing are two mutual beneficial steps. For the CNN step, its strength is to fuse useful 

information from different sources to avoid strong artifacts. Its drawback is that the CNN 

can hardly remove all artifacts and mild artifacts typically remain. As to the tissue 

processing, similar to other prior image based MAR methods, it can remove moderate 

artifacts and generate a satisfactory prior image. However, in the presence of severe artifacts, 

the prior image usually suffers from misclassification of tissues. By incorporating the CNN 

and tissue processing, the CNN training can stop with fewer epochs, and the obtained CNN 

prior is not affected by tissue misclassification. Their strengths are complementary.

The key factors to ensure outstanding performance of the CNN-MAR are twofold: selection 

of the appropriate MAR methods and preparation of the training data. The former factor 

provides sufficient information for the CNN to distinguish tissue structures from the 

artifacts. The later ensures the generality of the trained CNN by involving as many varieties 

of metal artifacts cases as possible.

The forward projection of metal identifies which project data is affected. For data correction/

estimation based metal artifact reduction methods, including the proposed method, the 

performance of artifact reduction may be compromised in the case of inaccurate metal 

segmentation [51]. Fortunately, a few advanced metal segmentation schemes have been 

reported [50], [52], which can be directly applied to the proposed method. Moreover, the 

deep learning strategy has been widely used for image segmentation [53]. Study of applying 

the neural network for the robust metal segmentation is planned for our future work.

Although the proposed CNN-MAR in this paper works on 2D image slices, it can be directly 

extended to 3D volumetric images. Along the new dimension, due to different spatial 

distribution patterns of tissue structures and artifacts, the 3D version may achieve superior 

performance. Meanwhile, 3D data will require more training time.

In conclusion, we have proposed a convolutional neural network based metal artifact 

reduction (CNN-MAR) framework. It is an open artifact reduction framework that is able to 

distinguish tissue structures from artifacts and fuse the meaningful information to yield a 

CNN image. By applying the designed tissue processing technique, a good prior is generated 

to further suppress artifacts. Both numerical simulations and clinical application have 

demonstrated that the CNN-MAR can significantly reduce metal artifacts and restore fine 

structures near the metals to a large extent. In the future, we will increase the training data 

and involve more MAR methods in the CNN-MAR framework to improve its capability. 

From a broader aspect, the proposed framework has a great potential for other artifacts 

reduction problems in the biomedical imaging and industrial applications.
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Fig. 1. 
Example of tissue segmentation. (a) The benchmark image, (b) water-equivalent tissue and 

(c) bone.
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Fig. 2. 
Representative samples in the database. Each column corresponds to one case. The top four 

rows are benchmark images, metal-only images, metal-free and metal-inserted images, 

respectively. The last two rows are images after metal artifact reduction using the BHC and 

LI, respectively.
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Fig. 3. 
Architecture of the convolutional neural network for metal artifact reduction.
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Fig. 4. 
Flowchart of the proposed CNN-MAR method.
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Fig. 5. 
Illustration of the CNN image and CNN prior.
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Fig. 6. 
Comparison of sinogram completion. An ROI is enlarged and displayed with a narrower 

window.
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Fig. 7. 
Case 1: bilateral hip prostheses. (a) is the reference image, (b) is the original uncorrected 

image, and (c)–(h) are the corrected results by the BHC, LI, NMAR1, NMAR2, CNN and 

CNN-MAR, respectively. The ROI highlighted by the small square is magnified. The display 

window is [−400 400] HU.
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Fig. 8. 
The prior images for NMAR1, NMAR2 and CNN-MAR in Fig. 7.
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Fig. 9. 
Same as Fig. 7 but for case 2: two fixation screws and a metal inserted in the shoulder blade. 

The display window is [−360 310] HU.
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Fig. 10. 
Same as Fig. 7 but for case 3: four dental fillings. The display window is [−1000 1400] HU.
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Fig. 11. 
The head CT image with a surgical clip. (a) is the original uncorrected image, and (b)–(f) are 

the corrected results by the BHC, LI, NMAR1, NMAR2 and CNN-MAR, respectively. The 

display window is [−100 200] HU.
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Fig. 12. 
Results obtained by directly adopting a CNN image as the prior image without the tissue 

processing step. (a)–(c) corresponds to the cases 1–3, respectively.
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Fig. 13. 
CNN and CNN-MAR results based on different channels of input images. Five-channel: 

original, BHC, LI, NMAR1 and NMAR2 images. Three-channel (default): original, BHC 

and LI images. Two-channel: original and LI images. One-channel: NMAR2 image.
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Fig. 14. 
Average RMSE and SSIM of CNN images and CNN-MAR images with respect to various 

CNN architecture parameters: (a) number of convolutional layers, (b) number of filters/

features in each layer and (c) the size of each filter. The default CNN has 5 convolutional 

layers, 32 filters per layer, and each filter is with the size of 3 × 3.
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Fig. 15. 
Average RMSE and SSIM values using the CNN trained with different data size.
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Fig. 16. 
The convergence curves of CNN training in terms of energy of loss function versus training 

epochs. (a) Training data and validation data are selected from the same dataset. (b) Training 

data and validation data are from different cases in the dataset.
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Fig. 17. 
Average RMSE and SSIM values using the CNN trained after different epochs.

Zhang and Yu Page 34

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang and Yu Page 35

TA
B

L
E

 I

R
M

SE
 o

f 
ea

ch
 im

ag
e 

in
 th

e 
nu

m
er

ic
al

 s
im

ul
at

io
n 

st
ud

y.
 (

U
ni

t: 
H

U
).

O
ri

gi
na

l
B

H
C

L
I

N
M

A
R

1
N

M
A

R
2

C
N

N
C

N
N

-M
A

R

C
as

e 
1

15
5.

0
86

.3
46

.2
12

1.
2

35
.4

33
.1

29
.1

C
as

e 
2

71
.5

44
.4

54
.5

50
.4

41
.4

31
.5

22
.8

C
as

e 
3

32
0.

3
18

3.
5

10
7.

3
23

4.
9

82
.3

83
.4

58
.4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang and Yu Page 36

TA
B

L
E

 II

SS
IM

 o
f 

ea
ch

 im
ag

e 
in

 th
e 

nu
m

er
ic

al
 s

im
ul

at
io

n 
st

ud
y.

O
ri

gi
na

l
B

H
C

L
I

N
M

A
R

1
N

M
A

R
2

C
N

N
C

N
N

-M
A

R

C
as

e 
1

0.
56

5
0.

57
6

0.
57

6
0.

88
7

0.
93

5
0.

94
0

0.
94

3

C
as

e 
2

0.
88

3
0.

85
4

0.
93

1
0.

95
5

0.
95

0
0.

96
5

0.
97

7

C
as

e 
3

0.
52

2
0.

53
6

0.
88

6
0.

83
3

0.
94

2
0.

93
2

0.
96

7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 01.


	Abstract
	I. Introduction
	II. Training of the Convolutional Neural Network
	A. Establishing a Metal Artifact Database
	1) Generating Metal-free and Metal-inserted Images
	2) Simple Metal Artifact Reduction

	B. Training a Convolutional Neural Network (CNN)

	III. CNN-MAR METHOD
	A. CNN Processing
	B. Tissue Processing

	IV. Experiments
	A. Creating a Metal Artifact Database
	B. CNN Training
	C. Numerical Simulation
	D. Real Data

	V. Results
	A. Numerical Simulation
	B. Clinical Application
	C. Properties of the Proposed CNN-MAR
	1) Effectiveness of the Tissue Processing
	2) Selection of Input Images (MAR Methods)
	3) Architecture of the CNN
	4) Training Data
	5) Training Epochs


	VI. Discussion And Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Fig. 13
	Fig. 14
	Fig. 15
	Fig. 16
	Fig. 17
	TABLE I
	TABLE II

