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Summary

The structure of genetic interaction networks predicts that, analogous to synthetic lethal 

interactions between non-essential genes, combinations of compounds with latent activities may 

exhibit potent synergism. To test this hypothesis, we generated a chemical-genetic matrix of 195 

diverse yeast deletion strains treated with 4915 compounds. This approach uncovered 1221 

genotype-specific inhibitors, which we termed cryptagens. Synergism between 8128 structurally 

disparate cryptagen pairs was assessed experimentally and used to benchmark predictive 

algorithms. A model based on the chemical-genetic matrix and the global genetic interaction 

network failed to accurately predict synergism. However, a combined random forest and Naïve 

Bayesian learner that associated chemical structural features with genotype-specific growth 

inhibition had strong predictive power. This approach identified previously unknown compound 

combinations that exhibited species-selective toxicity towards human fungal pathogens. This work 

demonstrates that machine learning methods trained on unbiased chemical-genetic interaction data 

may be widely applicable for the discovery of synergistic combinations in different species.
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Introduction

The modern era of drug discovery has been dominated by the "magic bullet" concept 

developed by Ehrlich more than 100 years ago (Strebhardt and Ullrich, 2008). This concept 

is predicated on the notion that a pathogen, genetic mutation or physiological defect can be 

remedied by a single chemical agent. This approach has proven spectacularly successful in 

the development of anti-infective agents and specific enzyme inhibitors to treat particular 

conditions. However, despite investments in genome-based approaches for target 

identification, validation and screening, the current repertoire of approved drugs targets 

stands at only ~500 proteins, with at most only a further 500 targets under active exploration 

(Overington et al., 2006; Rask-Andersen et al., 2014). The druggable genome has been 

focused on a select number of enzyme and receptor target classes, suggesting that only a tiny 

fraction of the potential target space has been tapped to date. Cell-based phenotypic screens 

explore all possible targets but with the caveat that the mechanism of action can be difficult 

if not impossible to discern (Nijman, 2015).

It has long been evident that the development, physiology and phenotype of all organisms is 

controlled by complex genetics (Waddington, 1957). Recent systematic genetic screens have 

uncovered the depth of this genetic complexity, which manifests as network of genetic 

interactions. A genetic interaction between two genes is observed when a phenotype caused 

by a mutation in the first gene is exacerbated or ameliorated by a mutation in the second 

gene, such that the combined effect exceeds the sum of each individual effect. In the extreme 

case, the synthetic combination of two or more non-lethal mutations may result in a lethal 
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genetic interaction (Mani et al., 2008). Systematic genetic screens in budding yeast have 

revealed that while only ~1000 of the ~6000 genes are essential, at least 200,000 

documented genetic interactions occur between non-essential genes (Costanzo et al., 2010; 

Chatr-Aryamontri et al., 2015). This dense genetic architecture reflects the global hierarchy 

of cellular sub-systems and allows the cell to coordinate cellular activities, resist 

perturbation and evolve new functions (Hartman et al., 2001; Kitano, 2007; Costanzo et al., 

2010). Within this context, disease is a consequence of network perturbation caused by 

genetic mutation, pathogen infection and/or environmental insult.

The complexity of the genetic landscape suggests that effective drug therapies may require 

modulation of multiple network nodes (Sharom et al., 2004; Csermely et al., 2005; 

Fitzgerald et al., 2006; Kitano, 2007; Lehar et al., 2009). Drug combinations can lead to 

increased clinical efficacy (Sharom et al., 2004; Kitano, 2007; Lehar et al., 2009) and 

prevent the emergence of resistance (Crystal et al., 2014; Chen et al., 2015). Different 

approaches have been taken to identify synergistic drug combinations. Historically, drugs 

have been combined in an ad hoc manner in the hope of achieving additional therapeutic 

benefit through synergistic interactions (Sharom et al., 2004). Similarly, the efficacy of 

single drugs may result from chance cooperative effects of drug action on multiple targets, 

an effect termed polypharmacology (Hopkins, 2008). The discovery of de novo drug 

interactions is confounded by the vast combinatorial chemical space that must be screened 

(Lehar et al., 2009), and in practice has been limited to screens with known drugs (Feala et 

al., 2010; Ejim et al., 2011; Spitzer et al., 2011; Tan et al., 2012; Robbins et al., 2015). 

Chemo-genomic sensitivity profiles in budding yeast (Ericson et al., 2008; Hillenmeyer et 

al., 2008; Lee et al., 2014) have been used to predict synergism but have led to different 

conclusions regarding the basis for drug interactions (Jansen et al., 2009; Cokol et al., 2011; 

Spitzer et al., 2011). Finally, network-based analysis has been used to predict synergistic 

drug interactions in human cells (Nelander et al., 2008; Crystal et al., 2014) but this 

approach is currently limited by incomplete network data and a paucity of established drug 

targets (Bansal et al., 2014).

By analogy to the genetic networks that underpin biology, it should be possible to identify 

combinations of chemicals that mimic genetic interactions, such that compounds that cause 

minimal phenotypes alone exhibit strong synergies when combined (Sharom et al., 2004; 

Fitzgerald et al., 2006; Kitano, 2007; Roemer and Boone, 2013). A barrier to the discovery 

of such genetically-inspired combinations is the dearth of compounds that mimic the effect 

of mutations in non-essential genes. Such compounds would cause little or no discernible 

phenotype in wild type cells yet may have strong activity in a given genetic context (Sharom 

et al., 2004). These chemical-genetic relationships may access a large previously hidden 

sector of chemical space, sometimes referred to as chemical dark matter (Wassermann et al., 

2015). In this study, we identify novel combinations of compounds in yeast that alone are 

inert but which together potently inhibit cell growth. Diverse chemical libraries screened 

against a multitude of genetic backgrounds were used to generate an experimental matrix of 

chemical-genetic and chemical-chemical interactions, which was used to develop and test 

algorithmic methods for synergy prediction. Synergistic combinations did not exhibit an 

obvious relationship with genetic interaction networks, but could be predicted accurately by 

machine learning approaches applied to chemical-genetic data. These findings demonstrate 
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the feasibility of de novo identification of synergistic chemical interactions through methods 

that should be applicable in many different disease contexts.

Results

Generation of a chemical-genetic matrix

Based on the principle of genetic synthetic lethality, any given S. cerevisiae non-essential 

deletion strain should serve as a sentinel to identify compounds with cryptic bioactivities 

that would not be evident in a wild type context (Hartman et al., 2001). We assembled a 

cohort of chemical-genetic interaction profiles for many different deletion strain 

backgrounds, which we termed the chemical-genetic matrix (CGM), and developed a 

workflow to predict and test synergistic chemical interactions (Fig. 1A). To construct the 

CGM, we screened a total of 4915 unique compounds derived from four different chemical 

libraries against a panel of 195 non-essential deletion strains (Table S1, S2). This compound 

collection represented largely uncharacterized chemical space compared to previous large 

scale chemo-genomic studies (Ericson et al., 2008; Hillenmeyer et al., 2008; Lee et al., 

2014) and was comprised of approximately 50% approved drugs or drug-like compounds, 

40% synthetic products with drug-like properties, and 10% natural products (Fig. S1A,B). 

To maximize discovery of cryptic bioactivities, sentinel strains were chosen to cover a broad 

spectrum of biological processes across the genetic landscape (Costanzo et al., 2010) (Fig. 

1B, S1C; Table S3), including genes that encode subunits of all major protein complexes 

(Fig. S1D).

We carried out over 600 growth-based screens in duplicate at a compound concentration of 

20 µM. In total, this large-scale experiment comprised pairwise tests of 713,000 chemical-

genetic interactions, which formed the CGM (Fig. 1C). To quantify growth inhibitory effects 

of each compound, Z-scores were calculated and averaged for the replicate screens. Each 

sentinel strain was sensitized by specific subsets of compounds, consistent with previous 

findings that 97% of all S. cerevisiae deletion strains exhibit specific chemical sensitivities 

(Hillenmeyer et al., 2008). Approximately two thirds of all unique compounds exhibited 

activity in at least one genetic background; of these, 300 compounds were active in only a 

single strain background and 100 compounds were active in all strains tested (Fig. 1D). The 

CGM contained 1221 compounds, which we termed cryptagens, that inhibited growth of at 

least 4 and less than two-Wildenhain et al - Page 6 thirds of the sentinel strains compared to 

DMSO controls (> 3 median absolute deviation (MAD), corresponding to > 20% growth 

inhibition) (Fig. 1D; Table S1). This range was chosen to minimize the chances of spurious 

effects on single strains and to ensure a computationally tractable density of associated 

genetic interactions for subsequent analyses.

Contrary to our expectations, the number of genetic or protein interactions did not 

significantly correlate with the number of chemical-genetic interactions exhibited by the 

corresponding sentinel strain (Fig. S2A,B). Although chemical inhibitors may be 

conceptualized as mimetics of gene deletions or mutations, this correspondence is often less 

than precise. For example, chemical-genetic interactions of the Erg11 inhibitor fluconazole 

only partially overlap with the genetic interactions of an erg11#x00394; strain (Parsons et 

al., 2004). This imprecise overlap of chemical-gene versus gene-gene interactions may arise 
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from partial inhibitory activity, pleiotropic protein function, neomorphic activity and 

compound off-target effects, all of which may further propagate and interact through the 

genetic network. These effects confound target and synergy prediction, as discussed below.

A cryptagen matrix (CM) enriches for synergistic chemical interactions

In order to develop unbiased computational approaches for synergy prediction, we required a 

large unbiased dataset of pairwise chemical combinations and growth phenotypes. We 

therefore used the CGM data to seed an extensive test matrix of chemical-chemical 

interaction data for training and evaluation of synergy prediction algorithms. We chose 128 

cryptagens with distinct chemical-genetic profiles (Fig. 2A; Table S4) and maximal 

structural diversity based on Tanimoto similarity scores (Fig. 2B). Interactions between these 

128 compounds were systematically tested in a 128×128 pairwise combination screen at a 

single concentration of 10 µM for each compound. Synergism was calculated using the Bliss 

independence model (see Supplemental Information) in which each drug is considered to act 

independently of the other. Analogous to genetic interactions, growth inhibition that exceeds 

the multiplied effect of each agent alone is termed synergism, while growth inhibition that is 

less than the multiplied effect is termed antagonism (Greco et al., 1995). Based on the 

distribution of all Bliss independence values, we defined synergistic effects with Bliss > 0.25 

and antagonistic effects with Bliss < −0.18, corresponding to a 90% confidence interval of 3 

MAD (Fig. 2C). We observed 730 synergistic and 118 antagonistic chemical interactions 

among the 8128 pairs tested. Approximately 30% of the compounds tested (45 of 128) 

showed specific synergistic interactions with each other and with other compounds in the 

CM. To our knowledge none of these combinations have been previously reported as 

synergistic or antagonistic. Hierarchical clustering of the Bliss scores revealed a well 

dispersed matrix of interactions (Fig. 2D). Only two compounds, haloperidol and 

echinocystic acid, were promiscuous for chemical interactions. We did not observe an 

obvious correlation between the number of chemical-genetic interactions and the number of 

synergistic chemical interactions, suggesting that cryptagens were not enriched for 

promiscuous compounds (Fig. 2E). Physico-chemical properties such as molecular weight, 

solubility and compound structure were also not predictive of synergistic interactions (Fig. 

S3A,B).

Prediction of compound targets and synergies based on genetic interactions

Based on the assumption that chemical perturbations may mimic genetic lesions (Hartwell et 

al., 1997), the integration of chemical-genetic interaction data with genetic network data 

may enable the prediction of compound synergies. We developed a software toolset to 

predict chemical synergies, collectively called the Second Order Naïve Bayesian and 

Random Forest (SONAR) suite. We first implemented a network-based algorithm that 

integrates chemical-genetic data with genetic interactions to predict the target genes/proteins 

for each compound and concomitantly synergistic chemical interactions. In an idealized 

example, integration of the chemical-genetic interactions for a set of deletion strains with the 

corresponding genetic interaction network should allow the inference of synergistic 

chemical interactions (Fig. 3A,B, S3C). However, this over-simplification is likely to fail 

since previous experimental studies suggest that bioactive compounds typically elicit 
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pleiotropic responses (Hillenmeyer et al., 2008), consistent with the lack of correlation 

between genetic and chemical-genetic interactions in our dataset (Fig. S2A,B).

To account for the complexity of chemical effects on the genetic network, we created a 

bipartite representation of genetic interaction data by separation of the experimental genetic 

nodes s in the CGM and their known interaction partners t in the global genetic interaction 

network. Nodes in target space t should represent known gene/protein targets of the 

cryptagen compounds, and each node was ranked according to the number of connected 

neighbors in the genetic network, such that nodes with more shared neighbors received a 

higher score (Fig. 3C). This algorithm was termed SONARG, for genetic interaction 

network. To assess the ability of SONARG to identify compound target genes/proteins, we 

curated a set of 104 known chemicals from the literature (Parsons et al., 2004; Hillenmeyer 

et al., 2008; Jansen et al., 2009; Cokol et al., 2011), of which 27 were classified as 

cryptagens in this study. SONARG correctly predicted the known targets or associated target 

pathways within the 6 highest-ranked genes for 16 of these 27 compounds (Table S5).

Once each compound was assigned a candidate list of gene/protein targets, the genetic 

interactions between these targets could then be used to predict potential compound-

compound interactions. We thus applied the SONARG counting algorithm to pairs of 

compounds in the CM to predict chemical interactions based on the genetic network (Fig. 

3C, S4). Similar to previous graph-based approaches, we used enrichment of genetic 

interactions between chemical-genetic profiles to rank potential synergistic compound pairs 

(Spitzer et al., 2011). For each compound combination cx−cy, we calculated parameters 

based on the sum of the highest ranked target candidates hsVx and hsVy, the corresponding 

p-values pvalVx and pvalVy, and the inter-compound edge list hsExy, where hs indicates 

high sum. As more than 80% of genes in the genetic network interact via second-degree 

neighbors (Costanzo et al., 2010), the SONARG bipartite graph is extremely dense because 

each compound sensitizes a number of sentinel strains that in turn exhibit many genetic 

interactions. For computational tractability, we restricted the target space represented by 

hsExy to the 35 top ranked genes by interaction count (the procedure was robust to the 

actual cut-off value chosen for counts, see Methods). We also calculated Pearson 

correlations between chemical-genetic interactions for all compound combinations (Pxy) 

and the number of shared genetic interactions between the compound pair target spaces, sgi 
(Spitzer et al., 2011). We applied principal component analysis (PCA) to these seven 

parameters derived from the CGM (pvalVx, pvalVy, hsVx, hsVy, hsExy, Pxy, sgi) to identify 

those that might explain the observed Bliss independence. However, none of the parameters 

contributed strongly to the Bliss vector (Fig. 3D) nor did any parameters perform better than 

random as measured by the area under the curve (AUC) for receiver operating characteristic 

(ROC) plots (Fig. S3D). From these results, we concluded that, at least as implemented in 

SONARG, the genetic interaction network did not have appreciable power for prediction of 

synergistic chemical interactions. This poor result led us to consider other parameters in our 

chemical-genetic and chemical-chemical interaction datasets to improve synergy prediction.
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Structural correlates of chemical-genetic interactions

To extract more granular information from the CGM dataset, we built a Naïve Bayes learner 

(NBL) to identify characteristic structural features of active versus non-active molecules for 

every sentinel strain (Fig. 3E). The NBL builds a Bayesian probabilistic model wherein each 

deletion strain represents a different class to which a likelihood score is assigned for the 

inhibitory effect of different compound substructures. This powerful approach has 

previously been used to associate chemical features with specific target classes (Keiser et al., 

2009; Besnard et al., 2012) but to our knowledge has not been applied to chemical-genetic 

interaction data. Structural characteristics of each cryptagen were represented by Extended-

Connectivity Fingerprints (ECFP4, see Methods) and combined with CGM data using a 

Naïve Bayes multi-class algorithm (SciTegic Pipeline Pilot, see Methods and Fig. S5A) to 

predict compound activities towards each sentinel strain. The NBL reliably associated 

structural features with good sensitivity (AUC>0.7) for more than half of all deletion strains 

(Table S6). The distribution of median experimental Z-scores for growth inhibition across all 

sentinel strains confirmed that most cryptagens exhibited specific activities against only a 

few sentinel strains (Fig. S5B), suggesting that each compound acts in a specific fashion. 

The likelihoods derived by the NBL algorithm showed a similarly centered distribution and 

were significantly correlated with the experimental Z-scores derived from the CGM 

(Pearson correlation distribution mode ≤ −0.5, Fig. S5B), demonstrating that the structural 

sub-features of each compound could predict genetic sensitivities. The extensive CGM 

dataset allowed the NBL model to co-segregate chemical structural properties with strain 

sensitivity, as illustrated for cyclosporine, mebendazole and chrysarobin (Fig. S5C), and 

many other examples (Fig. S5D). The chemical structure-based likelihood scores were 

agnostic to particular gene functions but accurately reflected the sensitivity of the genetic 

network to specific chemical perturbations. These results generalize previous structure-

activity predictions for specific target classes (Keiser et al., 2009; Besnard et al., 2012), and 

suggested that chemical substructures may improve predictions of chemical synergism.

Integration of NBL likelihoods and genetic interactions

The NBL-derived likelihoods deconstructed the activity response for each compound over a 

large chemical feature space and across multiple strains, and thereby extracted more 

information from the CGM than simple interaction counts. We therefore tested whether re-

calculation of SONAR parameters based on these likelihoods, termed SONARGN (for 

genetic and NBL), would improve the predictive power of one or more parameters. When 

based on NBL likelihoods, the vectors for sgi, Pxy and hsExy all showed the same 

directionality as Bliss independence, indicating that these parameters might be informative 

for synergy prediction (Fig. 3F). The use of the single strongest parameter, hsExy, resulted 

in an AUC of 0.64, whereas sgi or Pxy alone generated AUCs of 0.60 and 0.50, respectively 

(Fig. 3G, S3D). These weak outcomes still suggested that neither the underlying genetic 

network nor the correlation of chemical-genetic profiles between two compounds alone were 

useful predictors of synergistic interactions.

To further improve accuracy, we combined all seven SONARGN parameters using a random 

forest learner; this ensemble approach efficiently combines a set of weak predictors into a 

stronger overall strong predictor through a series of decision trees. The random forest model 
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was trained on one-third of the CM data with 5-fold cross-validation, and optimized for tree 

size and variable split points (Fig. S3E). This algorithm, termed SONARGNR (for genetic, 

NBL and random forest), yielded synergy scores that predicted synergistic interactions in the 

CM with an AUC of 0.87 (Fig. 3G). The score distributions for synergistic and non-

synergistic chemical pairs were well separated for a subset of synergistic combinations; 

however, synergy for more than half of all combinations was not predicted by SONARGNR 

(Fig. 3H,I, S3F). Synergistic chemical interactions bridged high-level processes in a similar 

overall manner as genetic interactions but with some bias towards particular processes (Fig. 

S6A). Many genes contributed to predicted synergistic interactions but it was not possible to 

trace a definitive genetic path from one compound to the other in a synergistic pair (Fig. 

S6B), again reflecting the manifold nature of compound action on genetic networks. Despite 

this complexity, the integration of chemical structural features with genetic interactions via 

the combined SONARGNR algorithm was able to effectively predict synergistic chemical 

interactions.

NBL-based random forest synergy prediction

Since the density of the genetic interaction network limits SONARGNR from the practical 

perspective of computational tractability, we tested the performance of a simpler prediction 

algorithm based entirely on the NBL likelihoods and a random forest learner. This 

algorithm, termed SONARNR (for NBL and random forest), did not use any information 

derived from the genetic interaction network (Fig. S7A). Compared to the seven SONARGN 

parameters derived from chemical-genetic network structure, the pure NBL model of 

SONARNR incorporates a much larger parameter space, namely the likelihoods 

corresponding to each of the 195 sentinel strains. This ensemble classifier was optimized for 

tree depth, forest size and split point sampling (Fig. S7B–D). SONARNR proved an even 

better model for synergy prediction with good separation of synergistic and non-synergistic 

compound pairs and an AUC of 0.91 (Fig. 4A). The predicted synergy scores from 

SONARNR correlated well with the experimental Bliss independence values (Pearson 

correlation = 0.56) but without a clear separation that would occur in an over-fitted dataset 

(Fig. 4B; Table S7). This lack of reliance on genetic interactions may seem counter-intuitive, 

but it is in accordance with current hypotheses about genetic network function (see 

Discussion).

To understand the importance of each sentinel strain for synergy prediction, we investigated 

whether specific sentinel strains or biological processes dominated the prediction of synergy. 

A balanced subset of 700 compound pairs each for synergistic and non-synergistic classes 

was selected at random from the CM (see Methods). The contribution of each deletion strain 

model was assessed by Gini impurity, a measure of the importance of input variables 

provided to a random forest learner. A wide variety of biological processes contributed to 

synergy prediction, including membrane transport, DNA repair, chromatin assembly and 

transcription and mRNA processing (Fig. 4C). This diversity of functions continued into the 

long tail of Gini contributions, demonstrating that the SONARNR model draws from all 

aspects of the CGM dataset. The SONARNR-derived network (Fig. 4D, S8) linked high level 

biological processes through synergistic interactions, with more diverse connections 

between processes than the corresponding genetic network (Fig. 4E) or the SONARGNR-
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derived network. The estimated sensitivity (0.93) and specificity (0.97) for the cross-

validated training data indicated that SONARNR correctly predicted non-synergistic 

combinations, but that half of the synergistic predictions were incorrect (Table S8; Fig S9 

A,B). Nevertheless, SONARNR achieved a 6-fold enrichment of synergistic pairs compared 

to chance selection and for this dataset would have reduced compound space prior to 

screening by 3.5-fold (Table S8).

To test the SONARNR classifier against an independent compound library, we screened the 

Maybridge HitsKit library of 1000 synthetic compounds against a wild type S. cerevisiae 
strain in combination with sub-inhibitory concentrations of camptothecin, cyclosporine and 

fenbendazole to identify new compound synergies. Even though SONARNR was trained on a 

different compound set (i.e., the 128 cryptagens from the Spectrum library), it achieved an 

AUC of 0.72 for the 300 top-ranked combinations from the HitsKit screen (Table S8), 

corresponding to a reduction of chemical search space by 3-fold. Since this synthetic 

Maybridge library covers very different chemical space compared to the diverse natural 

product-like composition of the MicroSource Spectrum library, the current SONARNR 

classifier is relatively robust to chemical composition. This result further validates the use of 

NBL likelihoods derived from chemical substructures and demonstrates that SONARNR can 

reduce the vast chemical search space for drug interactions (Lehar et al., 2009; Feala et al., 

2010).

Experimental verification of predicted synergies

The validation of predictive approaches based on the single concentration measurements in 

the CM dataset was subject to the caveat that one or both compounds might exhibit non-

linear dosage effects that would obviate the synergy term. Extensive dose-response surfaces 

were therefore used to validate a subset of the SONARNR synergy predictions. Since many 

crytpagens had no activity even at the highest concentration tested it was not possible to 

estimate synergism by either Loewe additivity or FICI; instead, each pairwise concentration 

was evaluated for Bliss independence across the dose-response surface. We tested 98 

compound combinations in total, comprised of 37 synergistic pairs and 61 non-synergistic 

pairs derived from the CM (Table S9). Dose-response surfaces confirmed 27 synergistic and 

43 non-synergistic combinations resulting in an AUC of 0.71 (Fig. 5A; Table S8, S9, S10; 

Fig. S10A).

We also performed full dose-response assays for 7 Maybridge HitsKit compounds that 

exhibited synergy with camptothecin, cyclosporine or fenbendazole. From a total of 21 

possible combinations, SONARNR correctly predicted 10 synergistic and 3 non-synergistic 

combinations with 5 false positive and 3 false negative predictions (Fig. 5B; Table S8, S10). 

To examine potential promiscuity between the synergizers, we also tested all possible 

pairwise combinations between camptothecin, cyclosporine, and two Maybridge HitsKit 

compounds (SP 01215 and SEW 06533). We observed a high degree of specificity in pair-

wise compound effects on cell growth (Fig. 5C; Table S10).

To benchmark the SONARNR classifier against a de novo compound set, we calculated 

synergy scores for a 1000 × 1000 compound matrix corresponding to the ChemDiv kinase 

inhibitor library, using only the structural features learned in the original SONARNR model. 
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The top 5 and bottom 5 compound combinations based on SONARNR synergy scores were 

evaluated experimentally in dose-response assays. 2 of the 5 top-ranked synergy score 

combinations from SONARNR were confirmed as synergistic, while none of the 5 bottom-

ranked combinations were synergistic (Fig. 5D; Table S8, S10). The selected structures 

predicted by the SONARNR algorithm to exhibit synergy did not resemble any previous 

structures or structural combinations in the CM. The SONARNR model thus exhibited 

substantial predictive power across different real world compound libraries.

Selective activity of synergistic combinations against fungal pathogens

Although established anti-fungal agents are often active against different fungal species, in 

many instances bioactive compounds can exhibit species-specific effects (Spitzer et al., 

2011; Brown et al., 2014; Robbins et al., 2015). To examine if synergistic combinations 

might transpose to the related genetic networks of pathogenic fungi, we tested 18 

combinations, 11 of which were active towards wild type S. cerevisiae, against the human 

pathogens C. neoformans, C. gattii, C. albicans, C. parapsilosis and A. fumigatus (Fig. 

6A,B, S10B; Table S10). Focused dose-response assays were carried out over 4 

concentrations for each compound and synergism assessed using Bliss independence at 48 h 

and 72 h (see Supplemental Information for details on each species). We observed that 16 

synergistic combinations were active against at least one pathogen with considerable species 

specificity: 12 combinations were active against C. neoformans, 9 against C. gattii, 7 against 

C. albicans, 5 against C. parapsilosis, and 2 against A. fumigatus. Furthermore, species-

specific combinations were identified for C. neoformans, C. gattii and C. albicans, but not 

for C. parapsilosis or A. fumigatus. For example, the combination of erythromycin and 

mitoxanthrone was effective against C. neoformans and C. albicans; strikingly, neither 

compound exhibited any growth inhibition alone up to a concentration of 128 µM (Fig. 6B). 

Many combinations were specific to fungal pathogens since only 5 out of the 16 

combinations also inhibited growth of HEK293 cells (Fig. 6A). The antibiotic erythromycin 

in combination with the serotonin/dopamine antagonist methiothepin showed strong 

synergistic effects against all pathogenic fungi tested. Of the agents tested, the antipsychotic 

fluphenazine and the antifungal tolnaftate exhibited the most potent synergistic activity 

towards C. neoformans, C. gattii, C. albicans and A. fumigatus (Fig. 6B), with little or no 

activity towards HEK293 or HeLa cells (Fig. 6C). These results demonstrate that synergistic 

combinations can be selective even for species within the same genera and that potential 

synergistic antifungal agents active against clinically important human pathogens can be 

readily identified by SONARNR based on data from the tractable model yeast S. cerevisiae.

Discussion

Genetic network structure suggests that combinations of compounds with little or no 

individual activity may offer potential for the therapeutic control of disease. However, the 

vast potential of synergistic chemical space has been underexplored, in part because efforts 

have focused heavily on known drugs (Feala et al., 2010). In this study, we used unbiased 

approaches to build the CGM and CM datasets, which then served as benchmark resources 

for the development of different predictive models for chemical synergism. Our initial 

expectation was that integration of chemical-genetic interaction data with the underlying 
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genetic interaction network would enable prediction of chemical synergies (Fig. 7A). 

However, our SONARG graph-based model had little predictive power. To extract more 

information from the CGM, we developed a Naïve Bayesian model that assigned a 

likelihood score for genetic interactions associated with structural features represented in the 

CGM. Incorporation of the NBL-derived likelihoods in the SONARGN model slightly 

improved predictive power but combining all seven SONARGN parameters with a random 

forest-based machine learning algorithm to yield SONARGNR greatly augmented prediction 

accuracy. Unexpectedly, this effect was largely independent of genetic network information 

because a simpler and more computationally tractable model based only on NBL likelihoods 

and an RF learner, called SONARNR, performed even better. While genetic interactions must 

obviously underpin the network response to compound combinations, this result suggests 

that explicit knowledge of the genetic network is not required for accurate synergy 

prediction (Fig. 7B). This point is illustrated by the performance of SONARNR on unrelated 

chemical-genetic data and compounds that lie outside of the training datasets.

Genetic interaction networks and prediction of chemical synergism

Current genetic network data has limited apparent power for prediction of chemical 

synergies for several reasons. First, the genotype-to-phenotype mapping problem may be too 

complex to solve in any general sense (Lehner, 2013; Taylor and Ehrenreich, 2015), and 

therefore precludes a solution to the more complex problem of chemical-to-phenotype 

mapping. Moreover, the still incomplete yeast binary genetic interaction network is already 

so dense that discrimination between different interaction paths becomes arbitrary (Costanzo 

et al., 2010), and context-dependent feedback loops further confound efforts to trace genetic 

causality (Ideker and Krogan, 2012). Second, while compound action can be idealized as 

genetic loss of function, in almost all cases chemical inhibition is incomplete and rife with 

multi-target effects that propagate through the genetic network. As demonstrated previously, 

chemical sub-structures often map to many hidden activity correlates and may be used to 

predict polypharmacological properties (Keiser et al., 2009; Besnard et al., 2012). Genetic 

interactions between deletion alleles may thus be a poor general proxy for chemical-

chemical interactions. Third, the problem of complex chemical-genetic interaction profiles is 

multiplied when two compounds are co-administered.

Previous analyses of the basis for drug synergism have arrived at different conclusions. It 

has been suggested that compounds with similar chemogenomic profiles are likely to 

synergize (Jansen et al., 2009). However, this effect and other reported synergistic 

interactions may be explained by promiscuous (non-specific) compound actions that perturb 

general aspects of membrane structure or lipid metabolism (Cokol et al., 2011; Spitzer et al., 

2011). We note that individual compounds that exhibited synergism in out study did not have 

promiscuous genetic interaction profiles. Although genetic interactions can correlate with 

chemical-genetic interactions (Costanzo et al., 2010), this effect is weak and has not been 

substantiated by other studies (Cokol et al., 2011). We similarly observed that highly 

connected genetic nodes are not predictive of chemical-genetic interactions. Our data do 

nevertheless suggest a relative enrichment for synergy between high level processes, such as 

for compounds that target vesicle transport and the fungal cell wall. The complexities of 

chemical action and genetic network density currently preclude rationalization of this 
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synergism at the level of individual genetic interactions. We also note the difficulty in 

predicting synergism from genome-scale correlates that are only indirectly linked to 

phenotype (Bansal et al., 2014).

Genetic network differences between species suggest that synergistic combinations may be 

exploited to differentially target pathogens compared to benign commensal species or the 

host (Spitzer et al., 2011; Brown et al., 2014; Robbins et al., 2015). A number of synergistic 

combinations that we identified in S. cerevisiae exhibited cross-species activity, and some in 

fact exhibited more potent activity against pathogenic fungi. Network-specific combinatorial 

inhibition may prove effective in combating anti-fungal drug resistance in important human 

and plant fungal pathogens (Denning and Bromley, 2015; Lucas et al., 2015).

Machine learning and drug discovery

There has been tremendous interest in the efficient identification of synergistic compound 

interactions to improve drug efficacy, particularly in complex disease states (Feala et al., 

2010). Collectively, the above arguments suggest that the complex relationship between the 

genetic network and chemical action may not be understandable through simple intuitive 

models. As shown here, focused forward chemical screens across many genetic contexts 

coupled to machine learning-based prediction algorithms reduce the size of the screening 

space for detection of chemical synergies. Thus, a moderate number of individual screens 

allows triangulation on potential synergistic pairs within a given collection of compounds. 

Analogous machine learning based approaches for synergism discovery may be feasible in 

other bacterial and fungal pathogens for which chemical-genetic interaction data can be 

readily acquired (Ejim et al., 2011; Roemer and Boone, 2013; Brown et al., 2014; Robbins et 

al., 2015). With the advent of robust methods for detection of genetic interactions in human 

cells (Shalem et al., 2015), the same strategy should be feasible in cancer and other complex 

diseases.

Methods

Strains, cell culture and chemical screens

S. cerevisiae deletion strains were obtained from the Euroscarf deletion set and are isogenic 

to BY4741 (Table S3). Fungal pathogen isolates were Cryptococcus neoformans (H99), 

Cryptococcus gattii (R265), Candida albicans (ATCC#90028), Candida parapsilosis 
(ATCC#90018) and Aspergillus fumigatus (Af293). All fungal species were grown and 

screened in synthetic complete (SC) medium with 2 % glucose. HeLa and HEK293 cells 

were grown in Phenol Red-free medium with 10 % dialyzed fetal bovine serum (Gibco) at 

37 °C and 5 % CO2. Compounds were from the MicroSource Spectrum, LOPAC Sigma, 

Maybridge Hitskit 1000 (Ryan Scientific) and a custom Bioactive Collection. Screens were 

conducted in duplicate in 96 well plates at 20 µM per compound, with DMSO and 10 µM 

cycloheximide controls in each plate. OD600 was measured after ~18 h growth or until 

saturation was achieved for solvent controls. OD values were normalized and Z-scores 

calculated. The 128×128 cryptagen matrix was generated using a pdr1Δpdr3Δ strain at 10 

µM per compound in duplicate experiments. Bliss independence was calculated using the 

equation Exy = Ex + Ey − (ExEy). Dose-response surfaces were assessed in wild type 
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(BY4743) and pdr1Δpdr3Δ (MT2481) strains over 2-fold serial dilutions for each compound 

(1 µM to 128 µM) in an 8×8 matrix. Synergism in fungal pathogens was assessed in 4×4 

mini-matrix at mid-point concentrations that had minimal effect on growth. For HeLa and 

HEK293 cells, dilution series were added to 100 µL seed cultures at ~5000 cells per well for 

48 h, followed by viability assessment with PrestoBlue (Invitrogen).

Naïve Bayes Learner (NBL)

Regression analysis was performed on active compound features f for each sentinel strain s 
and conditional probability p(s|f) computed assuming that features were independent. For 

each strain, compounds were classified as active (Z-score < −4) or non-active. For each 

compound, ECFP4 fingerprints based on a circular topological connectivity traverse 

algorithm were calculated with Pipeline Pilot 6.0 (Accelrys). Structural features were 

learned for each strain using a multi-class Laplacian-Modified Naïve Bayes learner and 

leave-one-out cross-validation (Figure S5A). All models and AUC performance values are 

provided in Table S4.

Synergy prediction from genetic network data

SONARG and SONARGN were based on bipartite graphs and a second-degree count 

measure to link compounds via genetic interactions. A graph was built between two 

compounds, ci and cj, and genetic interaction edges ranked between ci and cj. Sensitive 

deletion strains VS for each cryptagen were identified based on CGM data (Z-score ≤ −4 for 

SONARG) or the NBL likelihoods (using the third quartile, Q3, for SONARGN). Genetic 

interactions for the set of sensitive deletion strains VS were used to identify all neighbors VT 

that formed the target space. VS and VT were connected by genetic interaction edges based 

on BioGRID release number 3.076 (Chatr-Aryamontri et al., 2015). To rank the nodes in VT, 

each node tj was scored as the sum of all edges that link to tj and the sum of the n=35 highest 

t j(hsV = ∑1
n t j) used to characterize the target space of each cryptagen. The highest ranked 

genes in ti
s represent likely targets of molecule ci (Table S6). An interaction score between ci 

and cj was calculated using the target space sets ti
s and ti

s. Empirical p-values were calculated 

from 1,000 permutations to estimate the background distribution.

Synergy prediction using a random forest ensemble learner

SONARGNR and SONARNR used random forest learners from the R packages caret and 

randomForest. Data was analyzed using R and the FactomineR and ROCR packages. The 

SONARGNR descriptor space used for machine learning was based on the 7 parameters 

defined for SONARG above (see Figure S3). The CM dataset was randomly split into 1/3 

training with 5-fold cross validation and 2/3 test data using 512 trees with 3 variables at each 

split. The RF algorithm for SONARNR used 512 trees with 17 sentinels at each split and a 

node size limit of minimum 14 outcomes per leaf node.

Further details for all methods, algorithms and statistical analysis are provided in the 

Supplemental Information. All raw and processed data is available online at http://

chemgrid.org/cgm.
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Figure 1. 
A Chemical Genetic Matrix (CGM). (A) Data generation and analysis workflow. 4915 

unique molecules from 4 different chemical libraries were screened against a panel of 195 S. 
cerevisiae deletion strains (termed sentinels) to identify compounds that inhibit the growth 

of specific deletion strains (termed cryptagens). Pairwise combinations of 128 structurally 

diverse cryptagens from the CGM were screened in a 128×128 cryptagen matrix (CM) to 

identify synergistic compound pairs. The CGM dataset and chemical structural features were 

used to build a Naïve Bayes multi-class learner (NBL) to predict compound activity 

likelihoods for each sentinel strain. A graph-based algorithm was used to integrate chemical-
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genetic and genetic interactions to predict compound targets, based on either CGM 

interaction data (SONARG) or NBL likelihood scores (SONARGN). A random forest-based 

machine learning algorithm was used to enhance synergy prediction using the CM as 

training data, based on NBL likelihoods with (SONARGNR) or without (SONARNR) genetic 

interaction constraints. Predicted synergistic combinations were tested in S. cerevisiae, 

fungal pathogens and human cell lines. (B) GO SLIM categories represented by sentinel 

deletion strains. Color indicates significance of gene enrichment based on hypergeometric 

test. Numbers indicate genes in each category. (C) Heatmap of chemical-genetic interactions 

in the CGM. Compound activities versus sentinel strains are shown for each individual 

library screened in this study. (D) Compound activities (Zscore < −4) across sentinel strains. 

1221 cryptagens that sensitized > 4 and < 2/3 of all deletion strains are indicated. Inset: 

Median growth inhibition across all sentinel screens for each compound. See also Figures 

S1, S2.
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Figure 2. 
Cryptagen Matrix (CM) of Chemical-Chemical Interactions. (A) Activity heatmap of 128 

structurally diverse cryptagens against 195 deletion strains. (B) Tanimoto similarity across 

all 4915 molecules screened. Edges represent > 30% similarity. The 128 cryptagens used in 

the CM are shown in red. (C) Histogram of 8128 Bliss independence values for cryptagen 

pairs. (D) Heatmap of cryptagen interactions. Colors are as in panel C. (E) Scatterplot of 

chemical-genetic interactions versus observed synergistic interactions for the 128 

cryptagens. See also Figure S3.
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Figure 3. 
Synergy Prediction Based on Chemical-Genetic and Genetic Interactions. (A) Deletion 

strains are sensitized to specific cryptagens. (B) Underlying genetic interaction network. (C) 
SONARG integrates chemical-genetic and genetic interactions to predict chemical synergies. 

Sentinel strains sensitive to cryptagen c represent first order connections s. Second order 

connections t are inferred from genetic interactions of sentinel strains and ranked by 

interactions with sentinel strains in s. Edge weights between target spaces ti and tj are based 

on genetic interaction counts. See Methods for details. (D) PCA biplot of loadings for 7 

SONARG parameters in comparison to Bliss independence values from the CM. 
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Abbreviations: sgi, shared genetic interactions between deletion strains for each compound 

pair; pval, p-value; hs, high sum on V vertices for x and y and E edges between x and y. (E) 
Naïve Bayes multi-class likelihoods from the CGM. ECFP4 fingerprints for all compounds 

and activity probabilities for each feature are calculated for all sentinel strains. The 

integrated probability for compound activity across all features and classes is represented as 

a likelihood score. (F) Heatmap of CGM based on NBL likelihoods. (G) PCA biplot for 

SONARGN parameters. (H) Receiver-operator characteristics (ROC) for the single property 

Exy (AUC = 0.64) and for synergy scores based on SONARGNR parameters (AUC = 0.87). 

Inset: Precision-recall plot for SONARGNR model. (I) Distribution of SONARGNR scores for 

synergistic and non-synergistic pairs based on CM data. See also Figures S3–S6.
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Figure 4. 
Random Forest-Based Learner for Synergy Prediction Based on Chemical-Genetic 

Interactions and Chemical Structural Features. (A) ROC for synergy prediction with 

SONARNR model. Inset: Precision-recall plot. (B) Scatterplot of Bliss independence values 

and SONARNR synergy scores. (C) Naïve Bayes classes of top-ranked deletion strains that 

predict synergistic interactions. Mean decrease in Gini represents the influence of variables 

in partitioning the data into defined classes. (D) Sentinel strains associated with synergistic 

interactions predicted by SONARNR. Genes are grouped by biological processes. Edge 

weights are determined by NBL likelihood of two genes being among the top three sensitive 
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genes for synergistic pairs, corrected by subtraction of weights for the same graph generated 

from 730 non-synergistic pairs. (E) Corresponding edge weights for genetic interactions 

between strains for graph in panel D. See also Figures S8, S9.
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Figure 5. 
Validation of Predicted Synergistic Interactions. (A) Predicted combinations between 

cryptagens from the Microsource Spectrum collection. Compound abbreviations are 

provided in the Supplemental Information. (B) Novel predicted synergistic combinations of 

cyclosporine, fenbendazole and camptothecin with synthetic Maybridge compounds. (C) 
Specific interactions between structurally diverse compounds camptothecin (Cam), 

cyclosporine (Cic), SEW 06533 and SP 01215. (D) De novo predicted synergistic pairs from 

the ChemDiv Kinase library. Assays were carried out in 8×8 matrices in a pdr1Δpdr3Δ yeast 

Wildenhain et al. Page 24

Cell Syst. Author manuscript; available in PMC 2018 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



drug pump deficient strain at 0, 1, 2, 4, 8, 16, 32 and 64 µM for each compound. Data are 

provided in Table S8.
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Figure 6. 
Synergistic Combinations in Pathogenic Fungi and Human cells. (A) Bliss independence 

values for five pathogenic fungi and HEK cells. (B) Growth inhibition surface plots and 

corresponding Bliss independence heatmaps for 12 combinations from panel A for the S. 
cerevisiae pdr1Δpdr3Δ strain. Filled symbols indicate synergism, open symbols indicate lack 

of compound interaction. Abbreviations as in panel A. (C) Synergistic pair active against a 

fungal pathogen but not human cells. See also Figure S10.
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Figure 7. 
Relationship Between Genetic, Chemical-Genetic and Chemical Interaction Space. (A) 
Conceptually, genetic synthetic lethal interactions can be integrated with chemical-genetic 

interactions to predict chemical synergies. The algorithm SONARG is predicated on this 

concept but has little predictive power. (B) In reality, genetic networks and bioactive 

compounds exhibit exceedingly complex interactions that defy simple interpretation (see 

text for details). However, machine learning approaches, such as in SONARNR, can 
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associate chemical structural features with chemical-genetic interactions to predict chemical 

synergism.

Wildenhain et al. Page 28

Cell Syst. Author manuscript; available in PMC 2018 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary
	Graphical abstract
	Introduction
	Results
	Generation of a chemical-genetic matrix
	A cryptagen matrix (CM) enriches for synergistic chemical interactions
	Prediction of compound targets and synergies based on genetic interactions
	Structural correlates of chemical-genetic interactions
	Integration of NBL likelihoods and genetic interactions
	NBL-based random forest synergy prediction
	Experimental verification of predicted synergies
	Selective activity of synergistic combinations against fungal pathogens

	Discussion
	Genetic interaction networks and prediction of chemical synergism
	Machine learning and drug discovery

	Methods
	Strains, cell culture and chemical screens
	Naïve Bayes Learner (NBL)
	Synergy prediction from genetic network data
	Synergy prediction using a random forest ensemble learner

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

