
RESEARCH Open Access

cmFSM: a scalable CPU-MIC coordinated
drug-finding tool by frequent subgraph
mining
Shunyun Yang2†, Runxin Guo2†, Rui Liu3†, Xiangke Liao2, Quan Zou4*, Benyun Shi5* and Shaoliang Peng1,2*

From The Sixteenth Asia Pacific Bioinformatics Conference
Yokohama, Japan. 15-17 January 2018

Abstract

Background: Frequent subgraphs mining is a significant problem in many practical domains. The solution of this kind
of problem can particularly used in some large-scale drug molecular or biological libraries to help us find drugs or core
biological structures rapidly and predict toxicity of some unknown compounds. The main challenge is its efficiency, as
(i) it is computationally intensive to test for graph isomorphisms, and (ii) the graph collection to be mined and mining
results can be very large. Existing solutions often require days to derive mining results from biological networks even
with relative low support threshold. Also, the whole mining results always cannot be stored in single node memory.

Results: In this paper, we implement a parallel acceleration tool for classical frequent subgraph mining algorithm called
cmFSM. The core idea is to employ parallel techniques to parallelize extension tasks, so as to reduce computation time. On
the other hand, we employ multi-node strategy to solve the problem of memory constraints. The parallel optimization of
cmFSM is carried out on three different levels, including the fine-grained OpenMP parallelization on single node, multi-
node multi-process parallel acceleration and CPU-MIC collaborated parallel optimization.

Conclusions: Evaluation results show that cmFSM clearly outperforms the existing state-of-the-art miners even if we only
hold a few parallel computing resources. It means that cmFSM provides a practical solution to frequent subgraph mining
problem with huge number of mining results. Specifically, our solution is up to one order of magnitude faster than the best
CPU-based approach on single node and presents a promising scalability of massive mining tasks in multi-node scenario.
More source code are available at:Source Code: https://github.com/ysycloud/cmFSM.

Keywords: Frequent subgraph mining, Bioinformatics, Memory constraints, Isomorphism, Many integrated Core (MIC)

Background
Frequent subgraphs mining
Frequent subgraphs mining in a collection of graph ob-
jects is a very difficult challenge, especially in the im-
portant application area “Bioinformatics” where it can

help finding new drugs in pharmacological compound
databases or core functional structures in biological net-
works. Subgraph mining problem is difficult to solve be-
cause arbitrary graph structures must be generated and
matched. As isomorphism testing is a hard problem [1],
subgraph miners are exponential in memory consump-
tion and execution time.
Lin [2] have summarized that the problem of frequent

subgraph mining mainly consists of two categories: (i)
frequent subgraph patterns ought to be found in differ-
ent regions of one large graph of massive scale; (ii) fre-
quent subgraph patterns should be found within a large-
scale collection of middle-sized graphs. The first case is
usually adapted to social network domain, and the

* Correspondence: zouquan@nclab.net; benyunshi@outlook.com;
pengshaoliang@nudt.edu.cn
†Equal contributors
4School of Computer Science and Technology, Tianjin University, Tianjin
300072, China
5School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China
1College of Computer Science and Electronic Engineering & National
Supercomputer Centre in Changsha, Hunan University, Changsha 410082,
China
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Yang et al. BMC Bioinformatics 2018, 19(Suppl 4):98
https://doi.org/10.1186/s12859-018-2071-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2071-z&domain=pdf
https://github.com/ysycloud/cmFSM
mailto:zouquan@nclab.net
mailto:benyunshi@outlook.com
mailto:pengshaoliang@nudt.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

second case is usually adapted to the areas of computa-
tional pharmacology and bioinformatics. Both categories
share several common challenges. For example, large
data input size with relative low support threshold can
lead to huge number of mining results, which may ex-
ceed the memory of a single machine, and require vast
amounts of runtime. Given these characteristics, parallel
techniques are presented as a promising solution to
solve these challenges.
The objective of this problem is to find subgraphs

that occur with support higher than a threshold θ, i.e.,
0≪ θ≪ 1. Several solutions have been put up with for
the first case in either serial CPU-based techniques
[3–5] or parallel computing (MapReduce, MPI, Spark)
framework [6–9] and GPU [10]. However, we mainly
focus on the second case, which is more practical in
the field of bioinformatics and known as transaction
setting [11].

Related work
In the transaction scenario, miner/frequent subgraph
mining algorithm recursively generates all possible re-
finement extensions from empty graph by adding edges
and nodes to already generated refinements. Then, iso-
morphism test will be performed of each new possible
refinement to determine if it appears frequently. Early
miner/frequent subgraph mining algorithms generated
refinements in a Breadth First Search (BFS) way, e.g.,
AGM [12], and FSG [13]. However, the Depth First
Search (DFS) approaches need less memory and almost
show better performance. [14] have summarized three
main subproblems (i.e. Purposive refinement Efficient
enumeration and Focused isomorphism testing) have to
be solved of efficient miners and made a quantitative
and detailed comparison of some typical dfs-algorithms,
e.g., MoFa [15], FFSM [16], gSpan [17] and Gaston [18],
and some special extensions of them, e.g., CloseGraph
[19], showing them attacking the three subproblems
quite differently. Thus, the dfs-algorithms will be mainly
used for comparative analysis with our work. A follow-
up work [20] is more focus on accelerating the mining
process.
All solutions discussed above are single-core serial

version. When they come to large-scale mining prob-
lems, they may be difficult to meet time requirement.
To solve this problem, SUBDUE [21] develops a
shared-memory parallel approach by using the mini-
mum description length (MDL) principle and embodies
in the SUBDUE system. Further, [22] proposes parallel
mining strategy in a multi-core system and partitions
the mining tasks among multiple shared-memory pro-
cessors. To some extent, these studies make full use of
the machine resources on single node to accelerate the
mining process.

Another problem is all these approaches are memory-
based, and assume that the collection, intermediate data
and mining results fit in memory. However, as data size
increases and especially support threshold decreases
(the scale of mining results grows exponentially), the
assumption no longer reach. To address this limitation,
some disk-based solutions have been proposed, e. g.
ADI-Mine [23]. However, these approaches face signifi-
cant overhead of accessing the data. The same as a
disk-based solution, PGM [24] propose a data partition
approach.
The work in IFSM [11] is relatively early to employ

MapReduce [25] framework for mining frequent sub-
graphs. Specifically, it first determines local support
for all possible single-edge subgraphs by mapping a
part of the graph collection to each worker. Secondly,
a reduction phase will determine the global support
for each subgraph, and discard those candidates that
do not reach the global support threshold. The solu-
tion continues to deal with the double-edge sub-
graphs, triple-edge subgraphs and so on. Similar with
IFSM [11], FSM-H [26] and mrFSM [27] are also de-
veloped on MapReduce framework by an iterative
method. Relatively, [27] pay more attention to the
load balancing in each iteration. However, because
MapReduce is not suitable for iterative computing,
which may result in a lot of IO and serialization over-
head, these approaches on MapReduce still create sig-
nificant performance problem.
The more outstanding work so far on MapReduce

framework is MRFSM [28]. It does not adopt iterative
method, but the whole process is divided into two
MapReduce stages: filter and refinement. The filter
stage prunes based on the probability of support and
outputs local frequent subgraphs in the local dataset
which is divided to each machine. The refinement
phase intelligently translates the local support which is
gotten from the filter phase into a global support to in-
tegrate the final results. Because there are no iterations,
it presents a better performance than IFSM [11], FSM-
H [26] and mrFSM [27]. However, the implementation
code of MRFSM is not purely native java program,
most program is coding by C++, and then use Hadoop
Streaming to adapt to MapReduce framework to
complete distributed mining. As a result, the perform-
ance of the MRFSM will be severely restricted because
of limited data exchange capacity using standard I/O
and redundant data type conversions. Moreover, when
the support threshold is low enough, the massive min-
ing results tend to far exceed the single-machine mem-
ory. In this respect, because the refinement stage
distributes all candidate subgraphs to all machines, this
stage can easily cause severe memory pressure on each
machine when a large number of candidate subgraphs

Yang et al. BMC Bioinformatics 2018, 19(Suppl 4):98 Page 36 of 119

cannot be filtered due to the low support threshold.
Thus, MRFSM [28] may not be able to cope with sce-
narios with massive mining results due to low support
threshold.
In contrast, our tool is implemented by native C++ pro-

gram with several efficient parallel techniques, e.g., MPI
and OpenMP, to maximize performance. Also, every node
will not hold all candidate subgraphs but carry out its own
mining process to get local final results so as to easily han-
dle the scenarios with massive mining results.

Methods
cmFSM realizes parallelism of multiple levels and mul-
tiple granularities and utilizes MIC as accelerator. Multi-
threading is implemented using OpenMP aimed at hot-
spots of mining process. Four kinds of static task divid-
ing strategy and a supervisor-based dynamic task
dividing strategy are implemented by MPI to achieve
best load balancing. Further, we used MICs in offload
mode only to transfer double-edge frequent subgraphs
and back up complex data structures redundantly to
avoid the bottlenecks caused by excessive transmission.
By making full use of the multi-core computing capacity
of MIC, we can achieve a desired effect of execution
speed in the scenario of CPU and MIC collaboration.

OpenMP parallelization on single node

1) The strategy of parallelization

The general dfs-algorithm of frequent subgraph min-
ing uses a recursive approach to deal with the hotspot of
mining process, which is very difficult to control the par-
allel granularity. Also, a simple function call can con-
tinuously find out a large number of mining results
because we cannot pick out or predict the depth of re-
cursive process. This is bound to lead to load unbalance
among different mining tasks.
In order to solve this problem to achieve better ef-

fect of parallelization by OpenMP, we adopt a fine-
grained parallel strategy. Specifically, we translate the
common recursive mining process into a BFS loop
mining process by one-edge growth of several layers,
so as to implement the parallelization on the granu-
larity of one-edge growth. The operation consists of
two specific parts: (i) judgment of minimum DFS
code and (ii) right-most extension. Overall, the com-
puting scale of this operation is not too small, so that
there is no possibility that most CPU resources is
used in thread scheduling because the parallel granu-
larity is not big enough. At the same time, the tasks
of the two parts are specific and similar so as to eas-
ily achieve a good load balancing by dynamic schedul-
ing strategy of OpenMP. Moreover, there is no need

of system to help us manage the stack because recur-
sive processes are replaced by loops, which may lead
to additional acceleration.
Take gSpan [15] as an example, the following pseudo-

code compares original Algorithm 1 with new parallel
Algorithm 2.

As the pseudocode shown above, in order to
complete the parallelization, we apply for four new cat-
egories of buffer: children, tchildren, lchildren, cchil-
dren. The children are used to record the set of
subgraphs obtained from each level extension where
the subgraphs in same level have same number of
edges. When children is not empty, the next level min-
ing process will be carried out. It is a global variable
and will be used sequentially. The tchildren is a local
variable within single-thread tasks, recording the sub-
graphs obtained from one-edge growth of each sub-
graph. The lchildren is also a local variable within
single-thread tasks, but it is a summary of the results of
all one-edge growths for each thread and gotten from
the union of tchildren in every iteration. The cchildren
also records the set of subgraphs obtained from each
level extension. At the end of single-thread tasks, the
lchildren will be summarized to cchildren in the critical
area. Also, the cchildren and children will be exchanged
out of the parallel area in order to carry out the next
level iterative mining. It is worth noting that the mean-
ing of the existence of cchildren is that we cannot dir-
ectly summarize lchildren to children, because at the
parallel computing scenario we cannot make sure all
extension tasks in every thread are over at the same
time. The thread not yet complete tasks will continue
to use the data of children, which may lead to failures.

Yang et al. BMC Bioinformatics 2018, 19(Suppl 4):98 Page 37 of 119

2) 2) Memory Management Deep Optimization

The main challenge of frequent subgraph mining is
the memory constraint. In order to achieve the purpose
of memory reuse and the efficient utilization of memory
space, we adopt the strategy named “apply dynamically
& store pointers”. Specifically, when the subgraph is ex-
tended, the program applies edges dynamically and
stores edge pointers rather than actual edge objects in
the graph code structure, so that the new frequent
graphs share most edges with their ancestors, which will
lead to a significant saving in memory space. The sche-
matic diagram is shown in Fig. 1. It can be easily seen
that only the edge pointers are stored in the graph code
and each edge has only one instance in memory, so as to
achieve the purpose of memory reuse.

Multi-node multi-process parallel acceleration

1) The strategies of task division

The biggest challenge of multi-node program is the com-
munication overhead. To solve this problem, a coarse-
grained parallel strategy is used among processes through
dividing single-edge frequent subgraphs by MPI. The main
tasks of each process are completely independent to avoid
a large amount of communication overhead, and then each
processes will write out its corresponding results in its own
node to avoid the single-node memory pressure causing by
massive mining results. We should notice that all output
files can be easily merged to form the whole results. Fur-
ther, combining with the multi-thread work on single node,
our implementation allows to generate a second level of
parallelization by creating multiple threads per MPI
process to achieve a good performance.

However, this coarse-grained strategy is not conducive
to load balancing, which is easily lead to data tilt and can-
not make full use of system resources to achieve the best
performance. Therefore, we design and provide four kinds
of static task dividing (i.e. equality, single, increment, cir-
cle) strategies and a supervisor-based dynamic task divid-
ing strategy based on different characteristics of datasets
to achieve load balancing as much as possible.

a) static division___equality

A simple strategy is to divide the single-edge frequent
subgraphs equally. However, we found that the load is ex-
tremely unbalanced after the experiment, and it is easy to
achieve bottlenecks. Also, a lot of mining tasks are concen-
trated on the front of the nodes, and they will also pick out
most results. This is because these single-edge frequent
subgraphs will be sorted in descending order in the pre-
treatment stage. The more front they sorted, the more fre-
quent they are and also the more frequent subgraphs they
may pick out. And those sorted behind will be closer to the
support threshold, they may no longer a frequent subgraph
after one-edge growth even one time, so that they may pick
out a little results and stop tasks early. Moreover, we find
that the scale of results is decreased exponentially as the
pretreatment order. Therefore, this intuitive strategy in
most cases are difficult to achieve load balancing.

b) static division___increment

In order to solve the problem of equal division, we
propose an incremental task allocation strategy. Specific-
ally, the first node gets only one graph, the second node
gets two graphs, the third node gets three graphs, and so
on, and the last node gets all remaining graphs.

Fig. 1 Memory Reuse. The left side shows the frequent subgraph extension process in the form of graph code. The upper right subfigure is the
original subgraph. Below it lists the codes of each edge and their corresponding pointers

Yang et al. BMC Bioinformatics 2018, 19(Suppl 4):98 Page 38 of 119

Implementation of this strategy actually improves the per-
formance and achieve a better load balancing.

c) static division___single

Actually, when the dataset is big enough, although the
tasks of single-edge subgraphs ranking behind will drastically
reduce, the gap among the tasks of top-ranked single-edge
subgraphs is not obvious. In this case, incremental strategy
will lead the relative top nodes to undertake more tasks, so
that the load is still not balance. For this scenario, we pro-
posed a single task allocation strategy, in which we assign all
preceding nodes only one single-edge frequent subgraph,
and the remaining subgraphs are allocated to the last node.
This strategy sometimes can achieve a better performance.

d) static division___circle

Considering the single strategy may make a large num-
ber of tasks focused on the last node when the dataset is
big enough but the degree of parallelism is not particu-
larly high, we proposed a circle task allocation strategy,
in which we first allocate all nodes a round of single-
edge subgraphs in turn, and then we allocate all nodes a
round of graphs in reverse order, and then we allocate
all nodes a round of graphs in turn again, and so on
until all single-edge frequent subgraphs are allocated to
their corresponding nodes. This strategy is expected in
most cases to achieve better load balancing.

e) dynamic division___supervisor-based

In fact, because the mining process is very complex and
it is difficult for us to predict or measure the scale of tasks,
these static task division strategies certainly cannot adapt
to all practical scenarios. A more ideal method is to use
dynamic division strategy based on task queue, in which
we first allocate a round of single-edge subgraphs in turn
to all nodes, and then one of the remaining graphs will be
allocated to the node that finishes tasks earliest to carry
out mining process until the end of all tasks. In theory,
this strategy can always achieve a better load balancing
compare to static division strategies.
In order to implement this dynamic strategy, we treat

process0 as a supervisor, which manages all tasks uni-
formly. When other processes finish their current tasks,
they first ask process0 for a remaining single-edge fre-
quent subgraph. The process0 will search its task queue
and reply to them. When the task queue is not empty, the
process0 will allocate a new single-edge frequent subgraph
to other processes, otherwise, it replies − 1 and counts.
When the count reaches the number of process, the
process0 will end its work. On the other hand, when other
processes receive − 1 once, they will also end their work.

The Fig. 2 shows an example of five division strategies.
The dynamic strategy can always achieve a better load bal-
ancing than static strategies, but the overall performance is
not necessarily more optimal because of other operations
such as request, wait, communication and synchronization.
Thus, users can choose all these strategies. However, in
most cases it is recommended to adopt dynamic strategy.

2) Remove multi-node redundant results

Another problem in multi-node scenario is the redun-
dant results. From Algorithm 1, it is not difficult to find
that the original single-edge frequent subgraph must be de-
leted after its extension tasks. This is to avoid to consider
the high-frequency single-edge subgraphs which have been
used in the following mining process, which may lead to
redundant results. This possibility can result in some diffi-
culties in multi-node scenario. Because each process can
only handle its own single-edge frequent subgraphs in
current mining process, the high-frequency single-edge
subgraphs in other nodes which should not be considered
will not be deleted.
We extend the parallel algorithm to multi-node sce-

nario and show it in the following Algorithm 3.
In order to extend the parallel algorithm, we notice

that the single-edge subgraphs which are allocated to
every node are also be handled in turn. This characteris-
tic make it possible for us to remove high-frequency
single-edge subgraphs which priori to current object be-
fore the mining process.

CPU-MIC collaborated parallel optimization

1) Collaborated Parallelization of cmFSM

The collaboration among CPUs and MICs we employ
a medium-grained parallel strategy. In detail, we divide

Yang et al. BMC Bioinformatics 2018, 19(Suppl 4):98 Page 39 of 119

the double-edge frequent subgraphs among CPUs and
MICs, which are gotten from one-edge growth of initial
single-edge frequent subgraphs in every process. Also,
we adopt offload mode to transfer double-edge frequent
subgraphs from host to MICs. By tolerating appropriate
communication overhead and making full use of the
multi-core computing capacity of MIC, we can achieve a
desired effect of load balancing and computing speed.
The Fig. 3 shows interactive process between CPU and

MIC to achieve the ideal collaboration. It is worth not-
ing that the coarse-grained strategy is not used because
it is difficult to effectively reach load balancing under
this strategy. Also, the single-edge frequent subgraphs
are allocated to each process are not definitely able to be
divided reasonably. For example, only one single-edge
frequent subgraph may be allocated to some processes
in many cases. Coupled with the truth that there is a dif-
ference of computing capacity between CPU and MIC,
load balancing will be a great challenge. On the other
hand, the fine-grained strategy also should not be con-
sidered, because it is not shared memory between CPU
and MIC. There must be a huge scale of communication
overhead to transfer and divide the graphs by offload
mode. Thus, this strategy is also not conducive to im-
prove the overall performance.

2) Memory Reuse

The memory of one MIC card is approximately 5
Gigabytes, which cannot be matched to the general node
memory. Also, the speed of memory allocation and re-
lease is still slower than CPU. Experimental tests show
that allocating 1 Gigabyte of memory on MIC takes ap-
proximately 5 s. Therefore, you must reduce the fre-
quency of memory allocation and release on MIC and
maximize possibility of memory reuse.
In addition to the usage of “apply dynamically & store

pointers” strategy we introduced before, cmFSM reduces
the memory allocation time on MIC by memory reuse.
We create a counter JobCount to record the job number.
If count = 1, it uses “alloc_if(1) free_if(0)” to allocate mem-
ory for the array and object listed in the offload segment.
When count > 1, it employs “alloc_if(0) free_if(0)” to reuse
the memory. Until the last time, it adopts “alloc_if(0)
free_if(1)” to release the memory after the operation is
completed. By this way, we can minimize the frequency of
memory allocation and release on MIC.
On the other hand, when the dataset is relatively large

and the mining process is deep enough, even if a whole
extension process of one single-edge frequent subgraph
can use up the memory on MIC. In this scenario, it is not

Fig. 2 Different kinds of task dividing strategies. Note that the equality division is not absolute, but each process holds the number of single-
edge frequent subgraphs will be the same or keep the difference that no more than one. At the same time, the example of dynamic division in
this figure shows only a possible result which is not necessary in this case

Yang et al. BMC Bioinformatics 2018, 19(Suppl 4):98 Page 40 of 119

suitable to transfer all the data to be mined once and then
mining their results. Therefore, instead of uploading all
the double-edge frequent graphs at one time, we adopt an
iterative method to upload only a part of the graphs ob-
tained from the same single-edge frequent graph at one
time to facilitate data compression and save the memory
space on MIC, which can be clearly seen from Fig. 3.

3) Data Transmission Optimization

Although the C++ STL container and class is sup-
ported by MIC, the ICC compiler does not support the

use of offload mode to transfer these structures. It can
only support the basic datatype and array without point-
ers. Thus, we adopt the strategy named “dismantle & re-
store” to transfer the objects. The Fig. 4 shows the
format of n double-edge frequent subgraphs that are
supposed to be transfered in an iteration.
We first dismantle these objects and integrate their el-

ements to make those of same kind are stored in the
same successive buffer. Then, we transfer these buffers
to MIC by offload mode and allocate memory of original
objects on MIC. Finally, we restore these objects on
MIC by filling corresponding elements from these
buffers. This is no doubt a troublesome process, but for-
tunately we only need to transfer some double-edge fre-
quent subgraphs with the same first edge in an iteration
according to the above idea.
From the Fig. 4, we can find that there are seven

buffers are used in transmission process. Because the
format of edge code is a quintuple (ix, iy, x, a, y), the
first five buffers are used to transfer edges. The elements
with subscript 0 represent the first common edge. The
following n elements represent the second edges of every
subgraph. The next buffer represents the number of
nodes of n subgraphs. The gs buffer is the numbered
lists of original graphs where this subgraph appeared in
dataset. Because the number begins from 0, we simply
employ − 1 to separate these lists. From this formation,
we can organize and transfer data between CPU and
MIC efficiently.
On the other hand, some complex data structures will

be used in the whole mining process, such as original
graph set after the pretreatment, which may lead to un-
bearable transmission overhead and memory allocation
overhead. Therefore, we back up complex data struc-
tures redundantly which are reusable and difficult to
transfer to maximize performance. In detail, at the be-
ginning we only transfer the analytical parameters to
MIC, the coprocessor can read data and construct graph
set by itself based on these parameters, which is not the
hotspot of calculation and can be quickly completed on

Fig. 3 Framework of CPU/MIC collaboration. There are mainly three
stages of MIC process: (i) Data loading and pretreatment (ii) Iterative
mining process and (iii) Output the results. All these tasks are
collaborated with CPU at the same time. Moreover, at the end
of each stage, the two devices will synchronize their tasks to
ensure the correctness and efficiency of the program

Fig. 4 Data structure used in offload mode. The format of n double-edge
frequent subgraphs that are supposed to be transfered in an iteration

Yang et al. BMC Bioinformatics 2018, 19(Suppl 4):98 Page 41 of 119

the MIC. Also, in many cases the mining results is too
big to transfer by offload mode. Thus, at the end, instead
of returning all mining results to CPU, we only return
the count of results to show the overall consequence on
CPU. Specific mining results will be directly written on
MIC. These files can be easily merged to get the whole
results. The two stages are clearly illustrated in Fig. 3.

4) Load balancing and data division among CPU/MICs

According to the previous strategy, only the double-
edge frequent subgraphs obtained from the one-edge
growth of the same single-edge frequent graph will be
transferred to MIC in an iteration. If the process con-
tinues to mine from this layer, the scale of calculation is
supposed to be greatly closer than from single-edge sub-
graphs. Considering the computing capacities of CPU
and MIC are still close in our environment after tests,
we simply adopt a static strategy using interval division
and make the host device with slightly stronger calcula-
tion ability start first, which is because the front double-
edge subgraphs theoretically still have more potential to
extend, to achieve an efficient load balancing among
CPUs and MICs.
The data division and CPU/MIC collaborating mining

process in an iteration is shown in the Fig. 5. Taking into
account the truth that there are three MICs on single
node of Tianhe-2, we take three MICs as an example in
Fig. 5. Multiple CPUs in single node share memory, we
can manage their computing resources uniformly and
call them Host. The method of interval division can be
clearly seen from Fig. 5. At the same time, the mining
depth or scale of calculation on each device cannot be
sure, but all their processes will end until there are no
more new frequent subgraphs after one-edge growths. In
the multi-node scenario, we just allocate every node dif-
ferent single-edge frequent subgraphs to form different
task queues. There are no more other differences.

Results
We have evaluated the performance of cmFSM under
five aspects: (i) parallelization on single node, (ii) multi-
node division strategy, (iii) efficiency of multi-node
multi-thread acceleration, (iv) CPU/MIC collaboration
and (v) multi-node CPU/MIC collaboration.

Setup and dataset
The cmFSM was implemented in C++ using the STL
and compiled with the –O2 compilation flag. The first
experiment is performed on a high performance server
which consists of 8 Xeon E7–8800 v3 18 core CPU pro-
cessors with 2 Xeon Phi 3120 57 core coprocessors and
2 K40 M GPU. It has a 2 TB memory in total and the
operation system is Red Hat Enterprise Linux Server

release 7.1. The next four experiments are performed on
the Tianhe-2 supercomputer. The configuration is listed
in the following Table 1.
A comprehensive performance study was conducted in

our experiments on both real molecular and synthetic
datasets. The first real dataset we tested is the Predictive
Toxicology dataset (PTE). It is sparse and contains 340
chemical compounds, 24 different atoms, 66 atom types,
and 4 types of bonds. We use the type of atoms and
bonds as labels. The second real dataset is the AIDS
antiviral screen compound dataset from Developmental
Therapeutics Program in NCI/NIH. It contains 43,905
chemical compounds. The results of the screening tests
can be categorized into three classes: CA: confirmed ac-
tive; CM: confirmed moderately active; and CI: con-
firmed inactive. We only use CA class in our tests which
consists of 422 molecules (dataset DTP).
The synthetic graph dataset is using a synthetic data

generator similar to that described in [12]. A user can
set parameters to decide the number of graphs and their
average size. We generate three datasets (S1, S2 and S3)
for our tests, which consist of 10,000 graphs, 20,000
graphs and 100,000 graphs respectively. More informa-
tion of these four datasets in shown in Table 2.

Parallelization on single node
We try to compare our tool with a wide range of func-
tionally comparable frequent structure miners, such as
FSM [12], FFSM [14], gSpan [15] and Gaston [17]. We
should note that some of these miners had restrictions
regarding the number of labels or were restricted to mo-
lecular database. For these algorithm we only publish
limited results.
In this part, we have used first three datasets for ana-

lysis to show that cmFSM can easily present a better
performance than any other famous miners in a rela-
tively low level of parallelization. Table 3 compares re-
sults and runtimes among cmFSM and other miners on
PTE dataset.
From Table 3, it is not difficult to find that cmFSM

presents a significant performance advantage. The last
three lines in Table 3 represent that cmFSM starts 2
threads, 8 threads and 32 threads respectively. It can be
seen that even the serial version, the runtime of cmFSM
is less than gSpan. In addition, as long as we start more
than 8 threads, the runtime of cmFSM is less than all
other tools. This proves that cmFSM can show better
performance than other state-of-the-art miners even if
we only hold a few parallel computing resources. More-
over, the consistency of the mining results also demon-
strates that our parallel optimization does not affect the
correctness of the miners.
Fig. 6 reflects the mining conditions on DTP datasets.

From Fig. 6, it is not difficult to see that cmFSM can also

Yang et al. BMC Bioinformatics 2018, 19(Suppl 4):98 Page 42 of 119

achieve better performance than any other state-of-the-
art miners with a small number of threads on DTP data-
set. Also, the mining scale will drastically decrease with
the increase in support threshold.
The experiments on S1 dataset is shown on Fig. 7a,

which reflects the excellent parallel acceleration effect of
cmFSM. We have set 1%, 2%, 3% and 4% as support
thresholds respectively to form different scale of mining
process. Basically, doubling the number of threads, the

speedup is doubling too, which is close to the linear
speedup. Also, the smaller the support threshold is, the
larger the mining scale will be, where cmFSM presents a
better parallel efficiency. This means it can be well ap-
plied to large-scale mining scenes.

Multi-node division strategy
In order to compare the advantages and disadvantages
of the five division strategies under different computing
scenarios, we have experimented on DTP, PTE and S2
datasets, and set 4%, 2% and 1% as support thresholds
respectively. Also, in order to eliminate the impact of
multi-thread parallelization, we have only started one
thread of each process. The Table 4 shows the results on
DTP dataset.
From Table 4, it is not difficult to see that the runtime

did not be significantly reduced among anyone of these
five strategies with the number of process increases. This
is because the first single-edge frequent subgraph will
pick out 80% of the results on DTP dataset. Thus, the
first process will become the bottleneck. Moreover, the

Fig. 5 Data division among CPU/MICs and Mining Schematic. The data division and CPU/MIC collaborating mining process in an iteration

Table 1 Tianhe-2 supercomputer Configuration

Hardware Index

Node number 16,000

Computing node 2 Xeon E5 CPUs and 3 Xeon Phi coprocessors

CPU memory 64 GB

Xeon Phi memory 8 GB

Communication system High-speed interconnection network

File system Lustre file system

Operating system Kylin 2.6.32–431.TH.x86_64

Yang et al. BMC Bioinformatics 2018, 19(Suppl 4):98 Page 43 of 119

equality strategy is undoubtedly the worst strategy. The
single and increment strategies are relatively faster, be-
cause the first single-edge frequent subgraph will be
uniquely allocated to first process. Although the dy-
namic strategy also has such a division result, it has add-
itional communication scheduling overhead, so that the
performance is slightly lower than these two strategies.
However, no matter how much the processes are started,
the mining time of first single-edge frequent subgraph is
always bottleneck on such a special dataset.
Figure 7b and c reflects the multi-node runtimes on

PTE and S2 datasets. The condition that more than half
of the results are picked out by the first single-edge fre-
quent subgraph will not happen again on these normal
datasets, such as PTE and S2.
From Fig. 7b, we can find the equality is also the worst

strategy. The single and increment strategies present
close performance. The circle strategy gradually shows
the advantages of performance with the number of
process increases. The dynamic strategy is the best at
first, but with the increase in the number of process, its
performance begin to slowly weaker than circle. This is
due to the fact that the mining process of single-edge
frequent graphs can be completed quickly on this data-
set, so that as the number of process increases, there are
frequent task requests and competitions. Coupled with
the communication costs, the dynamic strategy shows
weakness compared to circle. Fortunately, this is not an
obvious weakness.

From Fig. 7c, we can find that the equality is still
the worst strategy on average. At the beginning, sin-
gle and increment are weaker than equality, which is
because a large number of tasks are allocated to the
final process when the number of process is small so
as to form a bottleneck. Also, it is not difficult to
find that the circle is an optimal choice among static
strategies when the mining scale is big enough. The
single and increment strategies still present close per-
formance and the dynamic strategy is always better
than all these static ones. Therefore, it is more rec-
ommended to use dynamic strategy, especially in the
face of large-scale mining tasks.

Efficiency of multi-node multi-thread acceleration
In order to evaluate the efficiency of multi-node acceler-
ation, we have experimented on S1, S2 and S3 datasets,
and set 1%, 1% and 2% as support thresholds respectively.
The Table 5 shows the result of multi-node scalability.

We should note that we have always adopted dynamic
strategy in the following experiments because this div-
ision strategy can achieve an average best performance
among all these five division strategies. By this way, we
can simplify following tests.
Figure 7d indicates the comparison of parallel efficiency

on different datasets which we can get from Table 5. we
can easily find that the parallel efficiency will be better
maintained with the increase in the number of cores for
larger datasets, which also means cmFSM can be well ap-
plied to large-scale mining scenes.

Table 2 Dataset information

Dataset Molecules Or Graphs Average #edges Largest #edges Average #vertices Largest #vertices

PTE 340 28 214 27 214

DTP 422 42 196 40 188

S1 10,000 29 276 26 225

S2 20,000 32 214 30 197

S3 100,000 45 321 38 278

Table 3 Results for PTE dataset

MinSup % 2 4 6 8 10 20 30

MinSup Abs 7 14 20 27 34 68 102

Freq graphs 136,949 5935 2326 1323 844 190 68

Runtime in Seconds

FSM 312.21 11.22 4.12 2.51 1.69 0.66 0.31

FFSM 78.12 5.21 2.01 1.03 0.75 0.58 0.29

gSpan 101.12 7.21 2.31 1.21 0.83 0.65 0.33

Gaston 36.53 2.13 1.01 0.66 0.38 0.12 0.06

cmFSM 97.32 3.28 1.25 0.71 0.49 0.15 0.08

cmFSM_2t 68.23 2.98 1.01 0.63 0.47 0.17 0.09

cmFSM_8t 21.51 1.03 0.42 0.27 0.21 0.08 0.07

cmFSM_32t 6.32 0.44 0.21 0.16 0.14 0.06 0.06 Fig. 6 Comparison of some miners for DTP dataset

Yang et al. BMC Bioinformatics 2018, 19(Suppl 4):98 Page 44 of 119

CPU/MIC collaboration
We have also used the last three datasets with 1%, 1%
and 2% as support thresholds respectively to evaluate
the effect of CPU/MIC collaboration on single node.
The following Table 6 shows the results. In general, the
computing capacity of 2 CPUs should be close to 3
MICs on single node. Therefore, we expect to be 24
times faster with 2 CPUs and achieve 48 times speedup
with 2 CPUs and 3 MICs to make full use of computing
resources on single node.
Figure 7e reflects the comparison of speedup on differ-

ent datasets with different CPU/MIC collaboration
modes which we can get from Table 6. We can easily
find that the better accelerating effect can be achieved
with larger scale mining tasks. Moreover, we obtained
more than 50 times speedup finally on S3 dataset, which
is better than we expect to get. This is because of a
series of optimization means we adopt, such as memory
reuse, data transmission optimization and vectorization.
In addition, the experiment on S1 dataset quickly
reached the bottleneck and there is no obvious differ-
ence between 2 MICs mode and 3 MICs mode. This

should also be caused by the characteristics of the data-
set itself. On this dataset, a large number of tasks are al-
ways concentrated in the Host and first MIC
coprocessor. However, the accelerating effect of CPU/
MIC is still nice in most large-scale mining scenarios.

Multi-node CPU/MIC collaboration
We have employed the biggest dataset S3 with 2%, 1%
and 0.8% as support thresholds respectively to evaluate
the effect of CPU/MIC collaboration. The following
Table 7 shows the results where each node have made
full use of 2 CPUs and 3 MICs.
Figure 7f reflects the comparison of multi-node

speedup on S3 with different support thresholds which
we can get from Table 7. We can also easily find that the
better multi-node accelerating effect can be achieved
with larger scale mining tasks. In overall, all these exper-
iments present weaker and weaker speedup than linear
speedup, which is mainly caused by multi-node commu-
nication, process competition and synchronization.
However, this condition does not affect the excellent
scalability of cmFSM under large-scale mining tasks.

A B C

D E F
Fig. 7 Experiments of parallel optimization. There are six pictures labeled as a,b,c,d,e and f respectively. The “T” in coordinate axis means the
number of thread we have started. The “P” in coordinate axis means the number of process we have started. The “1Core” means we have only
started one process with single thread to carry out these experiments. The “2CPUs” means we have started one process with 24 threads to carry
out these experiments. This is because there are two CPUs with 12 cores on single node of Tianhe-2 supercomputer

Table 4 Multi-node results for DTP dataset

Process number Equality Single Increment Circle Dynamic

2 3646 3183 3192 3532 3203

3 3584 3174 3185 3493 3213

4 3567 3178 3191 3468 3208

5 3552 3185 3188 3452 3216

Table 5 Multi-node scalability

12Core
2P*6 T

24Core
2P*12 T

48Core
4P*12 T

96Core
4P*24 T

192Core
8P*24 T

384Core
16P*24 T

S1 742 408 223 131 83 74

S2 1732 921 487 261 161 104

S3 22,821 11,763 6069 3135 1640 871

Yang et al. BMC Bioinformatics 2018, 19(Suppl 4):98 Page 45 of 119

Conclusions
cmFSM is a scalable parallel frequent subgraph mining
tool using CPUs and MICs in collaboration. It realizes
parallelism of multiple levels and multiple granularities.
We first adopt a fine-grained parallel strategy among
threads by translating the common recursive mining
process into a BFS loop mining process on single node.
In addition to some special datasets, cmFSM can obtain
near-linear speedup. Second, a coarse-grained parallel
strategy is used among processes by dividing single-edge
frequent subgraphs. Four kinds of static task dividing
(i.e. equality, single, increment, circle) strategies and a
supervisor-based dynamic task dividing strategy are im-
plemented to achieve load balancing as much as pos-
sible. Some experiments show the dynamic strategy
mostly presents better performance than all these static
ones, especially in the face of large-scale mining tasks.
Also, combining with the multi-thread work on single
node, our implementation allows to generate a second
level of parallelization by creating multiple threads per
MPI process, which shows a promising scalability of
massive mining tasks. Third, the collaboration among
CPUs and MICs we employ a medium-grained parallel
strategy by dividing the double-edge frequent subgraphs
which is gotten from one-edge growth of initial single-
edge frequent subgraphs. We also back up complex data
structures redundantly to avoid the bottlenecks caused
by excessive transmission. By memory reuse and making
full of the multi-core computing capacity of MIC, we
can obtained more than 50 times speedup on single
node for some datasets. Also, the multi-node CPU/MIC
collaboration presents an excellent scalability under
large-scale mining tasks.
Moreover, Experimental evaluation results on several

real compound molecular datasets show that cmFSM
clearly outperforms the existing state-of-the-art miners
even if we only hold a few parallel computing resources,
which sufficiently demonstrates the effectiveness of our
tool in the field of bioinformatics. However, on some
special datasets, which will concentrate most of the

mining tasks on a few front single-edge subgraphs,
cmFSM will show a great limitation. In this scenario, it
will quickly reach the bottleneck, which needs to further
our work to solve in the future.

Abbreviations
FSM: Frequent subgraphs mining; GPU: Graphics Processing Unit; MIC: Many
Integrated Core

Acknowledgments
We would like to thank Xiaoyu Zhang, Kaiwen Huang and Wenhe Su for
helpful discussions, comments and solidarity.

Funding
The authors would like to acknowledge that the publication of this article
was sponsored by National Key R&D Program of China 2017YFB0202600,
2016YFC1302500, 2016YFB0200400, 2017YFB0202104; NSFC Grants 61772543,
U1435222, 61625202, 61272056; and Guangdong Provincial Department of
Science and Technology under grant No. 2016B090918122, National Natural
Science Foundation of China (Grant Nos 81402760) and the Natural Science
Foundation of Jiangsu Province, China (Grant No. BK20161563).

Availability of data and materials
Not applicable.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 19
Supplement 4, 2018: Selected articles from the 16th Asia Pacific Bioinformatics
Conference (APBC 2018): bioinformatics. The full contents of the supplement
are available online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-19-supplement-4.

Authors’ contributions
SY designed the method, wrote the software, do some experiments and
wrote the paper. RG conceived the study, wrote the software and wrote the
paper. XL and QZ give important comments on algorithm design and writing.
SP designed the method and algorithm. All of the authors have read and
approve of the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1College of Computer Science and Electronic Engineering & National
Supercomputer Centre in Changsha, Hunan University, Changsha 410082,
China. 2School of Computer Science, National University of Defense
Technology, Changsha 410073, China. 3Department of Oncology, The
Second Xiangya Hospital of Central South University, Changsha 410011,
China. 4School of Computer Science and Technology, Tianjin University,
Tianjin 300072, China. 5School of Cyberspace, Hangzhou Dianzi University,
Hangzhou 310018, China.

Published: 8 May 2018

References
1. Mckay BD. Practical graph isomorphism. J Symb Comput. 2013;60(1):94–112.
2. Lin W. Efficient techniques for subgraph mining and query processing.

Singapore: School of Computer Engineering, Nanyang Technological
University; 2015.

Table 6 CPU/MIC collaboration on single node

1Core 2CPUs 2CPUs &1MIC 2CPUs &2MICs 2CPUs &3MICs

S1 7590 382 274 234 208

S2 18,944 875 607 486 410

S3 266,794 11,625 7749 6457 5320

Table 7 Multi-node CPU/MIC collaboration

MinSup 1node 2nodes 4nodes 8nodes

2% 5320 2816 1736 993

1% 18,329 9802 5508 2918

0.8% 43,253 23,026 12,847 6295

Yang et al. BMC Bioinformatics 2018, 19(Suppl 4):98 Page 46 of 119

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-4
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-4

3. Huan J, Wang W, Prins J, et al. SPIN: mining maximal frequent subgraphs
from graph databases. Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Seattle, Washington, Usa: August,
DBLP; 2004. p. 581–6.

4. Jiang X, Xiong H, Wang C, et al. Mining globally distributed frequent
subgraphs in a single labeled graph. Data Knowl Eng. 2009;68(10):1034–58.

5. Kuramochi M, Karypis G. Finding frequent patterns in a large sparse graph.
Data Min Knowl Disc. 2005;11(3):243–71.

6. Kang U, Tsourakakis CE, Faloutsos C. PEGASUS: mining peta-scale graphs.
Knowl Inf Syst. 2011;27(2):303–25.

7. Reinhardt S, Karypis G. A Multi-Level Parallel Implementation of a Program
for Finding Frequent Patterns in a Large Sparse Graph. Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE international.
IEEE; 2007. p. 1–8.

8. Wu B, Bai YL. An efficient distributed subgraph mining algorithm in extreme
large graphs. Artificial Intelligence and Computational Intelligence -
International Conference, Aici 2010, DBLP, Sanya, China, 2010:107–115
October 23–24, 2010, Proceedings, .

9. Yan Y, Dong Y, He X, et al. FSMBUS: a frequent subgraph mining algorithm
in single large-scale graph using spark. J Comput Res Dev. 2015;52(8):1768–83.

10. Lin W, Xiao X, Xie X, et al. Network motif discovery: a GPU approach. IEEE,
International Conference on Data Engineering IEEE. 2015. p. 831–42.

11. Hill S, Srichandan B, Sunderraman R. An iterative MapReduce approach to
frequent subgraph mining in biological datasets. ACM Conference on
Bioinformatics, Computational Biology and Biomedicine ACM. 2012. p. 661–6.

12. Inokuchi A, Washio T, Motoda H. An Apriori-based algorithm for mining
frequent substructures from graph data. European conference on principles
of data mining and knowledge discovery, London, UK. 2000;1910(1):13–23.

13. Kuramochi M, Karypis G. Frequent subgraph discovery. IEEE International
Conference on Data Mining IEEE Xplore. 2001:313–20.

14. Meinl T, Fischer I, Philippsen M. A quantitative comparison of the subgraph
miners mofa, gspan, FFSM, and gaston. European Conference on Principles
and Practice of Knowledge Discovery in Databases Springer-Verlag. 2005:
392–403.

15. Borgelt C, Berthold MR. Mining Molecular Fragments: Finding Relevant
Substructures of Molecules. IEEE International Conference on Data Mining,
2002. ICDM 2002. Proceedings. IEEE Xplore. 2002:51–8.

16. Huan J, Wang W, Prins J. Efficient mining of frequent subgraphs in the
presence of isomorphism. IEEE International Conference on Data Mining
IEEE. 2003:549–52.

17. Yan X, Han J. gSpan: graph-based substructure pattern mining. IEEE
International Conference on Data Mining, 2002. ICDM 2002. Proceedings.
IEEE Xplore. 2002:721–4.

18. Nijssen S. A quickstart in frequent structure mining can make a
difference. Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Seattle, Washington, Usa: August, DBLP;
2004. p. 647–52.

19. Yan X, Han J. CloseGraph: mining closed frequent graph patterns. ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining: Washington, Dc, Usa, August DBLP; 2003. p. 286–95.

20. Maunz A, Helma C, Kramer S. Large-scale graph mining using backbone
refinement classes. ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Paris, France, DBLP, 2009:617–
626 June 28 - July.

21. Cook DJ, Holder LB, Galal G, et al. Approaches to parallel graph-based
knowledge discovery. J Parallel & Distributed Comput. 2001;61(3):427–46.

22. Buehrer G, Parthasarathy S, Chen YK. Adaptive parallel graph mining for
CMP architectures. International Conference on Data Mining IEEE Computer
Society. 2006:97–106.

23. Wang C, Wang W, Pei J, et al. Scalable mining of large disk-based graph
databases. Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Seattle, Washington, Usa: August DBLP; 2004. p.
316–25.

24. Nguyen SN, Orlowska ME, Li X. Graph mining based on a data partitioning
approach. Nineteenth Conference on Australasian Database: Australian
Computer Society, Inc; 2008. p. 31–7.

25. Dean J, Ghemawat S. MapReduce: simplified data processing on large
clusters. Conference on Symposium on Opearting Systems Design &
Implementation; 2004. p. 107–13.

26. Bhuiyan MA, Al HM. An iterative MapReduce based frequent subgraph
mining algorithm. IEEE Transactions on Knowledge & Data Engineering.
2013;27(3):608–20.

27. Lu W, Chen G, Tung AKH, et al. Efficiently extracting frequent subgraphs
using MapReduce. IEEE International Conference on Big Data IEEE. 2013:
639–47.

28. Lin W, Xiao X, Ghinita G. Large-scale frequent subgraph mining in MapReduce.
IEEE, International Conference on Data Engineering. IEEE. 2014:844–55.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Yang et al. BMC Bioinformatics 2018, 19(Suppl 4):98 Page 47 of 119

	Abstract
	Background
	Results
	Conclusions

	Background
	Frequent subgraphs mining
	Related work

	Methods
	OpenMP parallelization on single node
	Multi-node multi-process parallel acceleration
	CPU-MIC collaborated parallel optimization

	Results
	Setup and dataset
	Parallelization on single node
	Multi-node division strategy
	Efficiency of multi-node multi-thread acceleration
	CPU/MIC collaboration
	Multi-node CPU/MIC collaboration

	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

