
RESEARCH Open Access

70ProPred: a predictor for discovering
sigma70 promoters based on combining
multiple features
Wenying He1, Cangzhi Jia2, Yucong Duan3 and Quan Zou1*

From The 11th International Conference on Systems Biology (ISB 2017)
Shenzhen, China. 18-21 August 2017

Abstract

Background: Promoter is an important sequence regulation element, which is in charge of gene transcription
initiation. In prokaryotes, σ70 promoters regulate the transcription of most genes. The promoter recognition has
been a crucial part of gene structure recognition. It’s also the core issue of constructing gene transcriptional
regulation network. With the successfully completion of genome sequencing from an increasing number of
microbe species, the accurate identification of σ70 promoter regions in DNA sequence is not easy.

Results: In order to improve the prediction accuracy of sigma70 promoters in prokaryote, a promoter recognition
model 70ProPred was established. In this work, two sequence-based features, including position-specific trinucleotide
propensity based on single-stranded characteristic (PSTNPss) and electron-ion potential values for trinucleotides
(PseEIIP), were assessed to build the best prediction model. It was found that 79 features of PSTNPSS combined
with 64 features of PseEIIP obtained the best performance for sigma70 promoter identification, with a promising
accuracy and the Matthews correlation coefficient (MCC) at 95.56% and 0.90, respectively.

Conclusion: The jackknife tests showed that 70ProPred outperforms the existing sigma70 promoter prediction
approaches in terms of accuracy and stability. Additionally, this approach can also be extended to predict promoters
of other species. In order to facilitate experimental biologists, an online web server for the proposed method was
established, which is freely available at http://server.malab.cn/70ProPred/.
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Background
Transcription is strictly regulated and controlled by cis-
regulatory DNA elements, which were known as pro-
moters and enhancers. These elements control the level
of gene expression and cell fate. Promoters are cis-acting
DNA sequences that switch on or off the gene expres-
sion. They are generally located upstream of the tran-
scription start sites of genes. In prokaryotes, promoters
are identified by RNA polymerase and a related sigma
factor [1]. Different σ factors interact with well-defined
consensus promoter sequences. Each σ factor is marked

according to its molecular weight. σ70 is a well-known
factor that regulates the transcription of most house-
keeping genes in normal circumstances [1]. For σ70

promoter, two short sequence elements approximately
located at around -10 bp and -35 bp nucleotides
upstream from the transcription start site (TSS) with
consensus TATAAT and TTGACA respectively [2]. It is
important to identify the promoters in a genome,
because it can help clarify the regulatory mechanism in
the genome and explain disease-causing variants within
cis-regulatory elements [3, 4]. Meanwhile, it’s a crucial
part of gene structure recognition and the core issue of
building gene transcriptional regulation network. Man’s
understanding of promoter is developing all the time. It’s
an area of great concern as people place increasing
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attention on their importance not only in developmental
gene expression but also in environmental response [5, 6].
Due to the rapid development of genome sequencing

technology, large-scale data has been generated [7–9], the
stable and accurate identification of promoter is an im-
portant problem. Because standard laboratory methods
are time-consuming and performance overhead costing,
bioinformatics technologies with perfect precision repre-
sent the ideal alternative for massive fast recognition of
promoter.
The σ70 promoter recognition task is a binary

classification task. Feature extraction and classifier
design are the key problems in promoter identification
technology. In the past 20 years, based on the feature of
promoter sequences, a serious of approaches have been
developed for detecting promoter region in prokaryotes
[10–23]. In 2007, Zhang proposed an algorithm using
increment of diversity with quadratic discriminant (IDQD)
analysis [21]. Position weight matrix (PWM) is always
regarded as a description of the sequence information, but
sometimes it gives poor results [22]. After that, Wu
proposed an improved Position Weight Matrix (IPWM)
[23] in 2011. In the same year, Lin proposed a hybrid
method (IPMD), which combines location-related scoring
function and diversity increment with improved Mahala-
nobis Discriminant to predict promoters [16]. The next
year, variable-window Z-curve was used for extracting
basic features of prokaryotic promoter [14]. Recently, Lin
developed an improved Z-curve called ‘multi-window Z-
curve’ (PseZNC), which can express the frequency charac-
teristics and three dimensionality characteristics of dif-
ferent length sequences [15], etc. They were mainly
focused on the σ70 promoter recognition. Among these
approaches, some typical machine learning algorithms
have been used to develop prokaryotic promoter region
prediction. Such as, SVM (Support Vector Machine),
RF (Random Forest), NB (Naïve Bayes), PLS (Partial
Least Square), etc. Although these approaches have
contributed to the advancement of promoter recognition,
their performance demonstrates that there is a long way to
go to predict promoter accurately for the following
reasons. (i) Most existing approaches overlooked the
correlation of neighboring nucleotides in each position,
especially their difference in positive and negative samples.
(ii) The local biological and physical properties of DNA
may have a certain relationship with the promoters, which
plays an important role in identifying them but were
utterly ignored. (iii) Few web-servers were provided as the
predictors, and hence their usage is quite limited [24].
In current research, we exploited a new bioinformatics

tool called 70ProPred, to predict σ70 promoter through a
combination of position-specific trinucleotide propensity
(PSTNP) and electron-ion interaction pseudopotentials
(EIIPs) of nucleotides. Finally, based on the results

analysis of jackknife test, 70ProPred significantly outper-
forms existing prediction models, and should be useful
for identifying σ70promoter.

Methods
Briefly, 70ProPred is a prediction model based on sup-
port vector machine (SVM), which was built by
PSTNPSS and PseEIIP sequence coding strategies. An
outline of the computational framework of 70ProPred
predictor is shown in Fig. 1.

Datasets
In the present study, we used the latest datasets in both
[15] and [16]. A total of 741 σ70 promoter samples were
selected from the E.coli K-12 genome, which have been
verified by experiments and downloaded from the Reg-
ulonDB9.0 (http://regulondb.ccg.unam.mx/) [25]. The
promoter region [TSS-60…TSS + 20] (the locus of TSS
is 0) were prepared as positive samples with a length of
81 bp.
As there are not enough experimental confirmed nega-

tive sequences, negative samples are collected from both
coding and non-coding regions. In simple terms, the
benchmark dataset S used in this study can be expressed
as:

S ¼ Sþ∪ S−

S− ¼ S−coding∪ S−non‐coding

�
ð1Þ

Where S+ contains 741 σ70 promoter samples, S−

contains 1400 non-promoter samples, S−coding contains

700 coding sequences, S−non‐coding contains 700 conver-

gent intergenic sequences. Each sample contains 81 nu-
cleotides, which is selected by a sliding window.
Additionally, symbol ∪ means union.

Analysis of σ70 promoter samples for conserved motif
composition
The MEME Suite is designed to screen common sequence
motifs from a set of sequences (amino acid or nucleotide).
A motif can be assumed to be a conservative sequence pat-
tern that repeats itself over a set of related sequences [26].
MEME is a useful sequence analysis tool that can rapidly
detect new, non-gapped motifs for biological sequence data
(protein, DNA and RNA) [27]. Then, we applied this tool
to analyze the main motifs of σ70 promoter samples and
found that only a small part of these samples which have
corresponding motifs in Fig. 2. The maximum number of
motif was set to 3 and the remaining arguments were set
to default.
Although phylogenetic foot printing takes the advan-

tage of relatively conservative of motifs between species
[28], these motifs are short and not complete species
[29, 30]. For example, in Table 1, the number of sites
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contributing to the construction of motif 1 only 47,
which may result in a great deal of false positive results.
Therefore, it would be practicable to turn to the ma-
chine learning-based methods and has been proved to
be effective in many fields [26, 31–46].

Feature vector construction
In order to get more useful information from the se-
quence, we extracted two kinds of features. Position-
specific tendencies of trinucleotide (PSTNPss or
PSTNPDS) was adopted to reveal the differences in the

Fig. 1 Overview of the proposed 70ProPred predictor. The diagram mainly contains datasets, sequence descriptors and 70ProPred prediction
system. The optimal encoding combination PSTNPSS and PseEIIP are used as the input to train a SVM classifier. After optimization of the SVM
parameters, the best SVM model is constructed based on the jackknife performance

Fig. 2 Motif of σ70 promoter samples as found by the MEME system. The corresponding three-motif logos as visualized for σ70 promoter samples
(details in Table 1)
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distribution of all positive and negative samples between
trinucleotide. While the electron-ion interaction pseudo-
potentials (PseEIIP) were adopted to represent the inter-
action of trinucleotides.

Position-specific trinucleotide propensity based on single-
stranded or double-stranded characteristic of DNA
(PSTNPSS/PSTNPDS)
The recently proposed position-specific theory has been
successfully applied to numerous fields of bioinformatics,
such as identifying protein S-nitrosylation sites [47], hy-
droxyproline and hydroxylysine sites [48], DNA replica-
tion origin sites [49], Enhancer [41], etc. Besides, a series
of studies have shown that the trinucleotides composition
was effective in recognition of promoter [28, 50–52]. In-
spired by the above studies, we presented a novel feature
extraction strategy, which combined position-specific tri-
nucleotide property (PSTNP) with the K-mer nucleotide
composition information to predict σ70 promoter. A brief
account of feature extraction is as follows.
Let S represents a sample which was consisted of A,

G, C, and T, i.e.

S ¼ N1N2N3⋯NL ð2Þ

In which L means the length of the sample and L = 81,
and

Ni∈ A;C;G;Tf g i ¼ 1; 2;…; Lð Þ ð3Þ

represents the i-th position of corresponding nucleotide
in the sequence.

PSTNPSS
Feature PSTNPSS using a statistical strategy based on
single-stranded characteristics of DNA. There are 43 =
64trinucleotides: AAA, AAC, AAG, ..., TTT. So, for an
81 bp sample, its details of the trinucleotides position
specificity can be expressed by the following 64 × 79
matrix [41]:

Z ¼
z1;1 z1;2 ⋯ z1;79
z2;1 z2;2 ⋯ z2;79
⋮ ⋮ ⋯ ⋮

z64;1 z64;2 ⋯ z64;79

2
664

3
775 ð4Þ

where the variable

zi; j ¼ Fþ 3merij jð Þ−F− 3merij jð Þ
i ¼ 1; 2;…; 64; j ¼ 1; 2; :::79ð Þ ð5Þ

F+(3meri| j) and F−(3meri| j) denote the frequency of
the i-th trinucleotide (3meri) at the j-th position appear in
the positive (S+) and negative (S−) data sets, respectively.
In the formula, 3mer1 equals AAA,3mer2 equals AAC, …,
3mer64 equals TTT.
Therefore, the sample of Eq.2 can be expressed as:

S ¼ ϕ1;ϕ2;…;ϕu;…;ϕ79½ �T ð6Þ
where T is the operator of transpose and ϕu was defined
as follows:

ϕu ¼

z1;u; when NuNuþ1Nuþ2 ¼ AAA
z2;u; when NuNuþ1Nuþ2 ¼ AAC
z3;u; when NuNuþ1Nuþ2 ¼ AAG

⋮ ⋮ ⋮
z64;u; when NuNuþ1Nuþ2 ¼ TTT

8>>>><
>>>>:

1≤u≤79ð Þ

ð7Þ

PSTNPDS
Feature PSTNPDS using a statistical strategy based on
double-stranded characteristics of DNA according to
complementary base pairing, so they have more evident
statistical features. At this point, we deem A and T as
identical, the same to C and G. Thus, for every sample,
it can be converted into a sequence contained A and T
only. As shown in Fig. 3, promoter-1 converted into
promoter-1 AC.
So, there are 23 = 8 trinucleotides: AAA, AAC, ...,

CCC. Therefore, for an 81 bp sample, its details of the
trinucleotides position specificity can be expressed by
the following 8 × 79 matrix:

Z
0 ¼

z
0
1;1 z

0
1;2 ⋯ z

0
1;79

z
0
2;1 z

0
2;2 ⋯ z

0
2;79

⋮ ⋮ ⋯ ⋮
z
0
8;1 z

0
8;2 ⋯ z

0
8;79

2
664

3
775 ð8Þ

where the variable

z
0
i; j ¼ Fþ 3merij jð Þ−F− 3merij jð Þ

i ¼ 1; 2;…; 8; j ¼ 1; 2; :::79ð Þ ð9Þ

F+(3meri| j) and F−(3meri| j) denote the frequency of
the i-th trinucleotide (3meri) at the j-th position appear in
the positive (S+) and negative (S−) data sets, respectively.

Table 1 Conserved motifs of σ70 promoter samples identified by the MEME system

Motif Width Best possible match Sites count

1 50 YTKRMMWNNBNRGNVGVAMTSCGTATWATGCGCCYCCNYBVMCVCGKRVV 47

2 21 ATBGTTATCRATHWHATTDKC 20

3 38 KKATATTGMHGTTRRWATDAWTAGTMTWAATGCSGCTT 10
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In the formula, 3mer1 equals AAA,3mer2 equals AAC, …,
3mer8 equals CCC.
Therefore, the sample of Eq.2 can be expressed as:

S
0 ¼ ϕ

0
1;ϕ

0
2;…;ϕ

0
u;…;ϕ

0
79

h iT
ð10Þ

where T is the operator of transpose and ϕ'
u was defined

as follows:

ϕ
0
u ¼

z
0
1;u; when NuNuþ1Nuþ2 ¼ AAA

z
0
2;u; when NuNuþ1Nuþ2 ¼ AAC

z
0
3;u; when NuNuþ1Nuþ2 ¼ ACA

⋮ ⋮ ⋮
z
0
8;u; when NuNuþ1Nuþ2 ¼ CCC

8>>>><
>>>>:

1≤u≤79ð Þ

ð11Þ

Electron-ion interaction pseudopotentials of trinucleotide
(PseEIIP)
Nair [53] came up with electron-ion interaction pseudo-
potentials (EIIP) value of nucleotides A, G, C, T. The
EIIP value based methods have been shown effective
through previous studies, such as the recognition of
gene F56F11.4, prediction of the cystic-fibrosis gene
[54], recognition of enhancer [41], and so on [55, 56].
The electron-ion interaction pseudopotentials value

for the nucleotides [53] are shown in Table 2. We let
EIIPA, EIIPT, EIIPG, and EIIPC denote the EIIP values of
nucleotides A, T, G and C, respectively. Then, we
employed the mean EIIP value of trinucleotides in each
sample to construct feature vector, which can be formu-
lated as:

V ¼ EIIPAAA � f AAA;EIIPAAC � f AAC ;…; EIIPTTT � f TTT½ �
ð12Þ

where fxyz equal to the normalized frequency of the i-th
trinucleotide (3meri), EIIPxyz = EIIPx + EIIPy + EIIPz ex-
presses the EIIP value of one trinucleotide and X, Y, Z∈
[A, C, G, T]. Obviously, the dimension of vector V is 64.

Model building and parameter selection
SVM classification algorithm plays a significant role in
some areas of bioinformatics [18, 36, 40, 57]. In this
work, SVM was implemented using the LIBSVM packet
[58] to build models and execute predictions. The radial
basis function (RBF) was selected as the kernel function.
At the same time, penalty parameter C and kernel par-
ameter γ were optimized using SVMcg in the LIBSVM
package. The final parameters C = 22.6274 and γ = 2.
8284 were selected for the prediction of σ70 promoters
and non-promoters.
The jackknife test is regarded as a unique random test

that can produce the unique result for a given dataset
[59]. Therefore, all these parameters were optimized
through jackknife test.
In order to evaluate the predictive performance of the

model, four metrics are calculated: sensitivity (Sn), speci-
ficity (Sp), accuracy (Acc) and MCC:

Sn ¼ TP
TP þ FN

ð13Þ

SP ¼ TN
TN þ FP

ð14Þ

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

ð15Þ

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

ð16Þ

In the formula, TP, TN, FP and FN represent the
numbers of true positives (accurately predicted σ70

promoters), true negatives (accurately predicted non-
promoters), false positives (falsely predicted σ70

promoters) and false negatives (falsely predicted non-
promoters).

Fig. 3 promoter-1 converted into promoter-1 AC

Table 2 EIIP values of nucleotides

Nucleotide EIIP(Ry)

A 0.1260

T 0.1335

G 0.0806

C 0.1340
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Results and discussion
Prediction of σ70 promoter using only PSTNP
PSTNP was first proposed for predicting enhancer [41].
The obvious advantage of this approach is that the feature
vectors are encoded in a way that contains information
from all training samples. In this work, the ability of
PSTNPSS and PSTNPDS to discriminate σ70 promoter and
non-promoter were first declared by jackknife test (Table 3).
For σ70 promoter, the PSTNPDS model obtained a good
performance, reaching at 75.98% sensitivity, 88.57%
specificity, 84.21% accuracy and the 0.6493 of MCC value,
while the PSTNPSS model obtained a Sn of 90.82%, a Sp of
96.57%, an Acc of 94.58% and a MCC of 0.8797.
A comparative figure (Fig. 4) with F-value of trinucleo-

tides in different position also declared the difference in
forecast results.
Furthermore, we used the Entropy (Additional file 1)

[23, 60] to demonstrate the conservative sites of trinucleo-
tides property in σ70 promoter. In order to comparing, the
calculated entropy values for the trinucleotide of the σ70

promoter and non-promoter are shown in Fig. 5. Obvi-
ously, the lower entropy, the more conservative the pos-
ition is. From this figure, we can see that in σ70 promoter
most sites are obviously of lower entropy values compared
with non-promoter. It may prove that PSTNPSS feature
extraction agreed well with the previous prediction that in
different positions the trinucleotide is conservative in
σ70promoter.
From all above, the composition of trinucleotide which

based on single-stranded characteristics of DNA contrib-
utes to the detection of σ70 promoter. This result indicated
that the PSTNPSS model performs better than the
PSTNPDS model in σ70 promoter prediction. Consequently,
the training model optimized on the basis of the feature
PSTNPSS.

Improving performance by incorporating PseEIIP
Because the physicochemical property indexes of nucleo-
tides affect the recognition of promoter, incorporating
the sample’s average energy of delocalized electrons
(EIIP), especially, the EIIP value of trinucleotides with
PSTNPSS might boost the performance of the training
model, the prediction results are listed in Table 4.
Eventually, the prediction model was established using

the PSTNPSS + PseEIIP feature extraction methods

combined with the SVM classifier (cost parameter –c
22.6274, −g 2.8284) to predict σ70promoter.
In order to gauge the predictive performance of training

model, the ROC curve and the area under the ROC curve
(AUC) were adopted. The AUC value the 70ProPred
model was 0.990 (Fig. 6).
Furthermore, we constructed a heat map to visually show

the distribution of feature PseEIIP in positive dataset, as
shown in Fig. 7. Each hotspot in the heat map corresponds
to a unique trinucleotide; for instance, hotspot (1, 1) corre-
sponds to triplet AAA. For more detailed information on
the heat map, please see Additional file 2: Table S1. Red
squares are positively associated with recognition ability.

Comparison of the performance between SVM and other
classifiers
In order to select a better classifier to identify σ70

promoter, we analyzed the performances of KNN [61],

Table 3 Jackknife test performance of PSTNPSS and PSTNPDS
Features Sn (%) Sp (%) Acc (%) MCC SVM

PSTNPSS (79) 90.82 96.57 94.58 0.8797 -c 22.6274
-g 1.4142

PSTNPDS (79) 75.98 88.57 84.21 0.6493 -c 1.4142
-g 2.8284
-w1 1.2 -w-1 1

Fig. 4 F-score value of trinucleotides in both PSTNPSS and PSTNPDS

Fig. 5 Entropy of trinucleotide in the σ70 promoter and non-promoter
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NB [62], RF [63], EB [64], LibD3C [65], GBDT [66] and
SVM, which are the most widely used classification
algorithms in bioinformatics. Since it is known that the
number of neighbors has an impact on the performance
of KNN algorithm and the tree number has an impact on
the performance of RF algorithm, the optimal parameters
of KNN and RF are searched in the study, as shown in
Additional file 3: Table S2 and Additional file 4: Table S3.
The performances for the above classifiers in the jack-

knife test are shown in Table 5. The results indicate that
SVM performs better than the other classifiers with the
highest MCC value 0.9018.

Comparison of 70ProPred with other σ70 promoter
prediction methods
The 5-fold cross-validation results achieved by Z-curve
[14], PseZNC [15], IPMD [16], PSTNPDS and 70ProPred
on the benchmark dataset are listed in Table 6. Their
marked difference is the feature extraction strategy.
Therefore, the advantage of 70ProPred superior to other
methods is mainly due to the combination of PSTNPSS
and PseEIIP coding strategy. PSTNPSS employs primary
sequence information of trinucleotides, and PseEIIP is
closely related to the physicalchemical property of DNA
sample. As shown in Table 3, based on the PSTNPSS fea-
ture only, the prediction result of 70ProPred was signifi-
cantly higher than the other methods. The performance
has been further improved by adding the feature PseEIIP,
as shown in Table 4, especially in sensitivity (Sn). Taken

together, the application of feature PSTNPSS and feature
PseEIIP achieved a good performance in the prediction
of σ70promoter.
The results in Table 6 also show that the PSTNPDS-

based model performs better than the multi-window Z-
curve-based method. It can also be a supplement to the
present methods for predicting other DNA related
predictions.

Conclusions
The 70ProPred is a new bioinformatics tool for predict-
ing σ70 promoter. This tool uses the feature extraction
methods of PSTNPSS and PseEIIP. The combination of
features and SVM could achieve an overall MCC value
of 0.90. Compared to other σ70 promoter prediction
models, 70ProPred produced better results. Although
this method shows good performance in σ70 promoter
prediction, there is still room to improve prediction
performance due to the following reasons. (i) Since
structural information is a supplementary to sequence

Table 4 Performances of our model on the jackknife test

Features Sn (%) Sp (%) Acc (%) MCC

PSTNPSS (79) 90.82 96.57 94.58 0.8797

PSTNPSS (79) + PseEIIP (64) 93.12 96.86 95.56 0.9018

Fig. 6 The ROC curves to assess the predictive performance based
on different sequences encoding schemes for σ70promoter

Fig. 7 A heat map for the F-score values of the 64 trinucleotides
with different EIIP values. The blue boxes indicate the features with
a lower effect for recognition of the σ70 promoter, while the red
boxes indicate the features that are useful for the recognition of
the σ70promoter

Table 5 Comparison of different classifiers for identifying
σ70promoter

Classifier Sn (%) Sp (%) Acc (%) MCC

KNN (8) 87.04 96.21 93.04 0.8450

Naïve Bayes 91.90 89.00 90.00. 0.7891

Random Forest (200) 85.29 97.79 93.46 0.8548

Ensembles for Boosting (200) 89.88 95.29 93.41 0.8541

LibD3C 77.33 87.57 84.03 0.6478

GBDT 86.50 96.14 92.81 0.8397

SVM 93.12 96.86 95.56 0.9018
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information, the future work may build a model
combine with the two aspects. (ii) The feature
selection algorithms can be used to delete the
redundant features to improve the prediction model.
(iii) More species of promoters should be adopted to
estimate the performance of 70ProPred method. In
conclusion, our future work is to extend this method to
other species promoter region prediction. We suspect that
our feature extraction methods is not only suitable for
identifying promoter, but also for other bioinformatics
sequence classification tasks.

Availability
The web-server for 70ProPred has been established. It is
now freely available to all interested users at http://ser-
ver.malab.cn/70ProPred/. All the data sets used in this
study can also be download on the website.
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