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Key Points

• Activation of the Vdr
pathway stimulates
proliferation of early,
but not late, mouse
erythroid progenitors in
a cell autonomous
manner.

• Vdr and Gr signaling
cooperate to increase
the growth of mouse
erythroid progenitors.

The pathways that regulate the growth of erythroid progenitors are incompletely

understood. In a computational analysis of gene expression changes during erythroid

ontogeny, the vitamin D receptor (Vdr) nuclear hormone receptor transcription factor gene

was identified in fetal and adult stages, but not at the embryonic stage of development.

Vdr was expressed in definitive erythroid (EryD) progenitors and was downregulated during

theirmaturation. Activation of Vdr signaling by the vitamin D3 agonist calcitriol increased the

outgrowth of EryD colonies from fetal liver and adult bone marrow, maintained progenitor

potential, and delayed erythroid maturation, as revealed by clonogenic assays, suspension

culture, cell surface phenotype, and gene expression analyses. The early (cKit1CD71lo/neg), but

not the late (cKit1CD71hi), EryD progenitor subset of LinnegcKit1 cells was responsive to

calcitriol. Culture of cKit1CD71lo/neg progenitors in the presence of both vitamin D3 and

glucocorticoid receptor ligands resulted in an increase in proliferation that was at least

additive compared with either ligand alone. Lentivirus shRNA-mediated knockdown of Vdr

expression abrogated the stimulation of early erythroid progenitor growth by calcitriol. These

findings suggest that Vdr has a cell-intrinsic function in early erythroid progenitors. Targeting

of downstream components of the Vdr signaling pathwaymay lead to new approaches for the

expansion of erythroid progenitors ex vivo.

Introduction

Erythropoiesis is the process by which red blood cell (RBC) progenitors are produced and undergo
terminal differentiation to erythrocytes. During ontogeny, the earliest erythroid progenitors emerge
transiently in the yolk sac and differentiate into “primitive” erythroid cells (EryP).1,2 Two sequential
waves of definitive erythroid (EryD) progenitors have been identified: the first wave is transient and yolk
sac-derived,3 and the second is stable and generated from hematopoietic stem cells in the fetal liver
(FL).4,5 Within 2 to 3 days after the onset of FL erythropoiesis, EryD progenitors far outnumber EryP in
the circulation.6 Toward the end of gestation, hematopoietic stem cells from the FL migrate to the bone
marrow (BM), which becomes and remains the primary site of hematopoiesis, including the production
and differentiation of erythroid progenitors, throughout postnatal life (for recent reviews, see Dzierzak
and Philipsen7 and Barminko et al8).

Definitive erythropoiesis produces more than 1011 RBCs per day from erythroid progenitors.9 Two
distinct EryD progenitors have been defined functionally, using colony assays: the earlier burst-forming
unit–erythroid (BFU-E) progenitor undergoes a limited number of self-renewal divisions before giving rise
to more mature colony-forming unit–erythroid (CFU-E) progenitors (reviewed in Dzierzak and Philipsen7
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and Hattangadi et al10). CFU-E maturation is accompanied by 5 to 6
cell divisions that result in the sequential formation of 5 morpholog-
ically distinct populations of erythroblasts.11 With each successive
division, the cells accumulate hemoglobin and decrease in size;
within their nuclei, loss of nucleoli and chromosomal condensation
are observed.2,7,10 Erythroblasts eventually enucleate to form
reticulocytes that undergo additional steps in maturation, including
clearance of mitochondria and other organelles.12,13 Flow cytometric
strategies have been developed to phenotypically identify these
distinct stages of erythroid maturation in the mouse.11,14-16

The basal rate of erythropoiesis is determined by the growth and
survival of CFU-E progenitors, which are regulated largely by
erythropoietin (EPO) and its receptor.10,17,18 Under conditions of
stress such as anemia, acute blood loss, or hypoxia, RBC production
must increase above the basal rate, with increased self-renewal
of BFU-E in response to EPO and a number of other hormones
and cytokines (reviewed in Paulson et al19 and Socolovsky20). The
pathways that regulate the growth of early erythroid progenitors
remain poorly understood.

In a computational search for transcription factor genes that are
differentially regulated in the primitive (embryonic)1 and definitive (fetal,
adult)21,22 erythroid lineages, we observed that the vitamin D receptor
(Vdr) nuclear transcription factor gene is expressed at the fetal and
adult, but not the embryonic, stage of erythroid ontogeny. Vdr is related
to the glucocorticoid, estrogen, androgen, and other steroid hormone
receptors (reviewed in Levin23). Binding of its hormone ligand, vitamin
D3, results in formation of heterodimers of Vdr and retinoic acid X
receptor (RXR) that translocate into the nucleus.24 Heterodimerization
permits high-affinity binding to vitamin D response elements within Vdr
target genes.24 The Vdr signaling pathway has been best studied in
bone, the immune system, and skin (reviewed in Bouillon et al25).
Studies on the response to vitamin D signaling in erythropoiesis have
employed mostly erythroleukemia cell lines (eg, Moore et al,26 Waki
et al,27 and Alon et al28) and have reached conflicting conclusions.
In one study, calcitriol was reported to inhibit erythroid differentiation
in human K562 and mouse erythroleukemia cells, but no effect on
proliferation was detected.26 In a second study of human cord blood
and TF1 cells, proliferation was enhanced by treatment with calcitriol,
but erythroid differentiation was not evaluated.28 In yet a third study,
both the proliferation and differentiation of mouse erythroleukemia cells
were inhibited by calcitriol.27 Improvement in the anemia associated
with chronic renal failure has been reported andmay involve an increase
in the numbers of BFU-Es.29 The role of this pathway in erythropoiesis
remains poorly understood.

Here, we report that activation of Vdr by calcitriol, the most biologically
active metabolite of vitamin D3,30 stimulates the growth of mouse FL
and BM erythroid progenitors, resulting in a large increase in the
numbers of mature red blood cells. Vdr is expressed in EryD
progenitors and is downregulated during erythroid maturation. The
increase in proliferation of progenitors results, at least in part, from
maintenance of erythroid progenitor potential and from delayed
maturation. The early progenitor CD71lo/neg, but not the late
progenitor-containing CD71hi population of Linneg cKit1 cells, is
responsive to calcitriol, independent of its calcemic effects. Vdr and
the glucocorticoid receptor can cooperate to regulate the proliferation
of early progenitors. Lentiviral shRNA-mediated knockdown of Vdr
abrogates the stimulation of early progenitor growth by calcitriol.
These findings demonstrate that Vdr has an intrinsic function in early

erythroid progenitors and may allow the identification of novel targets
for therapeutic intervention. Activation of the Vdr pathway offers a new
approach for the expansion of EryD progenitors ex vivo.

Materials and methods

Detailed experimental procedures are described in the supplemen-
tal Materials.

Preparation of hematopoietic cells

FL (embryonic day 12.5 [E12.5] unless otherwise indicated) or BM
(6-8 weeks old) cells were isolated from CD-1 mice (Charles River
Laboratories) as described.31-33 Lineage depletion of single-cell
suspensions was performed using a Lineage Cell Depletion Kit
(Miltenyi Biotec Inc.) according to the manufacturer’s instructions.
The Mount Sinai School of Medicine Institutional Animal Care and
Use Committee approved this study.

Culture of erythroid progenitors

To expand erythroid progenitors, cells were cultured (37°C, 5%
CO2) in serum-free progenitor medium (PM): StemSpan SFEM
(Stem Cell Technologies) supplemented with human recombinant
EPO (0.5 units/mL; Amgen), mouse stem cell factor (100 ng/mL;
Thermo Fisher Scientific), mouse insulin-like growth factor (40 ng/mL;
Thermo Fisher Scientific), lipid concentrate (13; Thermo Fisher
Scientific), penicillin/streptomycin (1%; Pen/Strep; Thermo Fisher
Scientific), and dexamethasone (1026 M; Sigma; D2915).

Erythroid maturation culture

Erythroid maturation was initiated by culturing cells in suspension
(2.5 3 105/mL, 37°C, 5% CO2) in maturation medium (MM): IMDM
(Corning) supplemented with recombinant human EPO (2 U/mL),
mouse stem cell factor (100 ng/mL), knockout serum replacement
(10%; Thermo Fisher Scientific), fetal bovine plasma-derived serum
(5%; Animal Technologies), protein-free hybridoma medium II (10%;
Thermo Fisher Scientific), glutamine (13; Thermo Fisher Scientific),
and penicillin/streptomycin (1%).34 Cell density was measured daily.
At cell concentrations 4.03 106/mL or higher, the cultures were split
into 1.0 3 106 cells/mL. Culture medium was supplemented with
calcitriol (100 nM, or as indicated; Sigma), calcipotriol (100 nM or as
indicated; Cayman Chemical), or dexamethasone (100 nM).

Results

Activation of Vdr signaling by calcitriol stimulates the

growth of EryD progenitors

To examine Vdr expression during ontogeny and at different stages of
erythroid maturation, RNA was isolated from whole or lineage-depleted
(Linneg) BM or FL, maturing Ter1191 FL erythroblasts, and progenitor
stage (E8.5) yolk sac EryP1,32,35 and analyzed using quantitative reverse
transcription polymerase chain reaction. Vdr mRNA was detected in
both whole and Linneg BM and FL, but not in maturing Ter1191 FL
erythroblasts or in EryP (Figure 1A). In our earlier microarray analysis of
developing primitive erythroid cells, Vdr was also not expressed in EryP
progenitors (E7.5-8.5) or erythroblasts (E9.5-12.5).1

Expression of Vdr was higher in the progenitor-enriched Linneg

population than in unfractionated tissue from BM or FL (Figure 1A).
To determine whether activation of Vdr signaling influences
progenitor potential, Linneg E12.5 FL cells were plated in clonogenic
assays in the presence or absence of calcitriol and scored for the
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formation of BFU-E and CFU-E colonies. The numbers of BFU-E
were increased by nearly 4-fold when cells were cultured with
calcitriol (Figure 1B), suggesting that calcitriol enhances the growth
and/or survival of progenitors. Comparable increases in BFU-E
numbers were observed for Linneg cells isolated from E13.5 or
E14.5 FL (Figure 1B). Not only the numbers of BFU-E, but also of
CFU-E, were increased (by ;40%; Figure 1 C). The response to
Vdr signaling was not limited to fetal erythropoiesis, as BFU-E and
CFU-E colony numbers from calcitriol-treated Linneg BM cells were
also increased (Figure 1D). We have not detected differences
between male and female BM cells in these assays (Figure 1B,D).
The response to calcitriol stimulation was dose dependent, as
shown for CFU-E from BM (supplemental Figure 1C-D).

Signaling through Vdr maintains EryD progenitors

and delays their maturation

For these studies, we focused on the Linneg fraction of FL, which is
the major site of definitive erythropoiesis before birth, and in which

the majority of hematopoietic progenitors is committed to the
erythroid lineage. To dissect the mechanisms by which calcitriol
increases progenitor numbers, we next expanded progenitors
in liquid medium before plating in methylcellulose. When E12.5
Linneg FL cells were cultured for 2 days under progenitor conditions
(in PM), cell numbers were increased by ;3-fold (Figure 2A). Before
lineage depletion, themajority of FL cells were Ter1191 (;70%), and a
minority were ckit1 (;10%) (data not shown). After lineage depletion,
the Ter1191 cell population was decreased to;28% and the fraction
of cKit1 cells increased to;40%. After 2 days, the frequency of cKit1

cells nearly doubled (to;77%), with a corresponding decrease in the
frequency of Ter1191 cells (to;12%; Figure 2B). Consistent with the
increase in the numbers of cKit1 cells, a ;2-fold increase in Vdr
transcription was observed (Figure 2C). To examine the developmental
potential of cells cultured in PM, equal numbers of Linneg cells were
transferred (after 48 hours in PM) to methylcellulose in the presence
or absence of calcitriol. Colony numbers were scored after 8 days.
Three types of erythroid colonies were identified: BFU-E, CFU-E, and

Fetal Liver BFU-E

E12.5
Co

lon
ies

B

0

200

400

600

- c
alc

itri
ol

+ ca
lci

trio
l

**

0

- c
alc

itri
ol

+ ca
lci

trio
l

200

400

600

**

E13.5

- c
alc

itri
ol

+ ca
lci

trio
l

0

200

400 **

600
E14.5

W
ho

le 
BM 1

0

BM FL

A

100

200 Vdr

Re
lat

ive
 m

RN
A

ex
pr

es
sio

n

W
ho

le 
BM 2

Lin
- B

M 1

Lin
- B

M 2

Lin
- B

M 3

E12.5 FL

Lin
- E

12.5 FL

CD71+ Te
r1

19+
EryP

Fetal Liver Bone Marrow
C D

CFU-E

- c
alc

itri
ol

+ ca
lci

trio
l

0

100

200

300
***

BFU-E

Co
lon

ies

- c
alc

itri
ol

+ ca
lci

trio
l

*

0

100

200

300

Co
lon

ies

- c
alc

itri
ol

+ ca
lci

trio
l

*

0

150

300

450

CFU-E

Figure 1. Activation of Vdr signaling stimulates the

growth of EryD progenitors in fetal liver and bone

marrow. (A) Real-time reverse transcription polymerase chain

reaction (RT-PCR) analysis of RNA (10 ng) isolated from cells

from BM (whole or Linneg), FL (whole, Linneg, CD711Ter1191),

or E8.5 yolk sac (GFP1 EryP1). Expression was normalized to

Ubb. (B) E12.5, E13.5, and E14.5 Linneg FL cells were cultured

in methylcellulose (3.3 3 104 cells/mL) in 1 mL total volume

(35-mm dish), with or without calcitriol. The number of colonies

was increased by treatment with calcitriol (photos of E12.5

Linneg FL BFU-E colonies on the right; scale bars, 100 mm).

(For data in histogram, n 5 3.) (C) E12.5 Linneg FL cells cultured

in methylcellulose (1.6 3 103 cells/mL, 1 mL in 35-mm dish),

with or without calcitriol. CFU-E colonies were scored after 2 or

3 days (n 5 3). (D) Linneg BM (female) cells cultured in

methylcellulose under conditions (see panels B and C) that

support the growth of BFU-E or CFU-E, BFU-E (n 5 2), and

CFU-E (n 5 5). Data were analyzed using an unpaired Student

t test (**P , .01, B; *P , .05, C-D; ***P , .001, D). Biological

replicates are represented. Error bars, 6 standard error of

the mean (SEM) for panels A-C and D (CFU-E) or standard

deviation (SD) for panel D (BFU-E).
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multi-CFU-E (mCFU-E or late BFU-E, cluster of 3-20 CFU-E;
supplemental Figure 2A). The distribution of these colony types,
but not their total numbers, was altered when Vdr signaling
was activated (Figure 2D), with increased numbers of earlier

progenitors (BFU-E and mCFU-E) and decreased numbers of the
later progenitors (CFU-E). These findings indicate that culture in
PM maintains cKit1 colony-forming erythroid progenitors that can
respond to activation of Vdr by calcitriol.
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Figure 2. Activation of Vdr delays maturation of EryD progenitors. (A) Proliferation of E12.5 Linneg FL cells cultured for 2 days under progenitor conditions (in PM;

n 5 3). (B) Representative flow cytometry analysis of cKit and Ter119 expression for E12.5 FL Linneg cells after 2 days of culture in PM (n 5 3). (In contrast with the

starting population of FL cells, the Ter1191 cells that remained after lineage depletion showed only very weak Ter119 fluorescence.) (C) Real-time RT-PCR analysis of

Vdr RNA (10 ng) from E12.5 FL Linneg cells after 2 days of culture in PM. Expression was normalized to Ubb. (D) Distribution of colonies formed from Linneg progenitors

cultured for 2 days in PM and then transferred to methylcellulose (2.0 3 103 cells in 1 mL, 35-mm dish) with or without calcitriol. The distribution of these colony types,

but not their total numbers, was altered when Vdr signaling was activated, with increased numbers of earlier progenitors (BFU-E 1 mCFU-E, 40% vs 18%) and decreased

numbers of the later progenitors (CFU-E, 45% vs 69%) (n 5 3). (E) Proliferation of E12.5 Linneg cells cultured for 2 days in PM and then transferred to MM with or without

calcitriol (n 5 5). (F) Representative flow cytometry plots of DRAQ5 staining vs FSC of Ter1191 cells after 5 days of culture in MM, with or without calcitriol. (G) Wright-

Giemsa or o-dianisidine staining of cytospun cells from day 6 of culture in MM. Scale bars, 20 mm. Data were analyzed using a 2-way analysis of variance (analysis of

variance [ANOVA], E) or an unpaired Student t test (B-D,F; *P , .05, C; **P , .01, D-E; ***P , .001, E). Error bars, 6 SEM (n 5 3).
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When progenitors were cultured in suspension under maturation
conditions (in MM) and allowed to mature, cell proliferation
continued for6days,with a;60-fold increase in cell number (supplemental
Figure 2B), corresponding to;5 cell divisions. In the presence of calcitriol,
cell numbers increased by 160- to 180-fold (Figure 2E), suggesting
that 1 to 2 additional cell divisions took place during the 6-day period.
The increase in cell numbers was dose-dependent (supplemental
Figure 3). As expected for maturing cells, the numbers of cKit1 and
Ter1191 cells decreased and increased, respectively (supplemental
Figure 2C). Cell and nuclear size as well as surface expression of
CD44 all decreased as the cells progressed to enucleate (supple-
mental Figure 2D-G). A maturation delay was observed during the first
4 days of culture in the presence of calcitriol, with lower numbers of
Ter1191 cells, higher forward scatter (FSC) and CD44 (supplemental
Figure 4A-B), and delayed enucleation (Figure 2F; supplemental
Figure 4C). By days 6 to 7, staining with Wright-Giemsa and
accumulation of hemoglobin protein were similar in treated and
untreated cultures (Figure 2G; supplemental Figure 4D).

The CD71lo/neg population of LinnegcKit1 FL erythroid

progenitors is the target of Vdr stimulation

The Linneg population of FL cells contains cKit1 progenitors at
different stages of maturation that can be identified prospectively on
the basis of their expression of CD71 (Figure 3A); multiple types of
hematopoietic progenitors, including early erythroid progenitors, are
CD71lo/neg, whereas late erythroid progenitors are CD71hi.14,21,36

To determine which populations of cKit1 cells respond to activation
by calcitriol, sorted cells were first analyzed for expression of Vdr,
which was significantly higher (;13-fold) in the CD71lo/neg than in
the CD71hi population (Figure 3B). For these studies, cells were
plated at low density (500 cells/mL) to facilitate analysis of single-
cell contribution to each colony. The CD71lo/neg cells produced
BFU-E, mCFU-E, and CFU-E, whereas the CD71hi cells produced
mostly CFU-E (Figure 3C). Analysis of colony size (surface area)
using ImageJ did not reveal significant differences for the 2 culture
conditions (supplemental Figure 5). CD71lo/neg cells, but not CD71hi

cells, responded to activation of Vdr, with formation of ;2.5-fold
higher numbers of BFU-E (Figure 3C-D). The colonies were strongly
pigmented, indicating production of hemoglobin (Figure 3D). When
the 2 sorted cell populations were plated directly into MM, treatment
with calcitriol again stimulated proliferation of CD71lo/neg, but not
CD71hi, cells (Figure 3E). Similar to the CD71hi population, the ckit1

CD71med population formed primarily CFU-E and did not increase
proliferation in response to calcitriol (supplemental Figure 6B-C).

As observed for unfractionated Linneg cells, cKit expression in the
CD71lo/neg population was prolonged, and fewer Ter1191 erythroblasts
formed in response to calcitriol (supplemental Figure 7A). By day 5, cKit
expression was lost and the majority of cells were Ter1191 (not shown).
However, these Ter1191 cells displayed higher FSC and CD44
expression and less enucleation than the untreated cells, suggesting that
they were less mature (supplemental Figure 7B-C).

To determine the period over which Vdr signaling can maintain
progenitor potential, we cultured cKit1CD71lo/neg and ckit1CD71hi

populations in MM in the presence or absence of calcitriol and
transferred the cells to methylcellulose cultures after 1, 2, 3, or 4
days (Figure 4A). Both cKit1CD71lo/neg-derived early and late
progenitors (Figure 4A) and their surface phenotypes (Figure 4B)
were maintained for a longer time and in greater numbers in

response to activation of Vdr. CD71hi progenitor potential was lost
after 1 day in the presence or absence of calcitriol (Figure 4A;
supplemental Figure 7E).

Regulation of erythroid progenitor growth by vitamin

D signaling is dependent primarily on the

transcriptional activity of Vdr

Calcitriol stimulates Vdr-regulated transcription as well as alterations
in Ca21 flux.37 To distinguish between these effects, the CD71lo/neg

population was treated with calcipotriol, a vitamin D3 analog
reported to be 100- to 200-fold less potent in its calcemic
effects than calcitriol.38 Calcipotriol increased BFU-E numbers
by ;2.5-fold, with a corresponding decrease in the numbers of
CFU-E, and increased cell proliferation by ;2.8-fold (Figure 4C-D),
comparable to the effects seen with calcitriol (Figure 3C,E). Therefore,
calcium flux is not the primary driver of these effects. As demonstrated by
the titration shown in supplemental Figure 7E, the effect of calcipotriol
was dose-dependent.

Maintenance of progenitor potential is enhanced by

simultaneous activation of Vdr and glucocorticoid

receptor signaling

The glucocorticoid receptor (Gr), Similar to Vdr, is a member of
the nuclear hormone receptor transcription factor family and has
been shown to stimulate the proliferation of cKit1CD71lo/neg

cells.21 To determine whether the Vdr and Gr signaling pathways
can cooperate to modulate erythroid progenitor growth, cKit1

CD71lo/neg cells were cultured with or without calcitriol, dexa-
methasone, or the 2 ligands in combination. After 24 hours, the
cells were plated in methylcellulose to evaluate progenitor
potential. In the absence of Vdr or Gr ligand, the numbers of
BFU-E and mCFU-E decreased as the numbers of CFU-E
increased (Figure 4E). Colony numbers were maintained in the
presence of either ligand alone (Figure 4E). When the 2 ligands
were present together, the numbers of BFU-E and mCFU-E
increased (Figure 4E), suggesting that they function cooperatively.

To evaluate the effect of these steroid hormones on proliferation,
cKit1CD71lo/neg cells were cultured for up to 9 days in the presence
or absence of calcitriol, dexamethasone, or the 2 ligands in combination.
Either ligand alone stimulated cell proliferation (calcitriol ;3-fold;
dexamethasone, ;8-fold; Figure 4F). In combination, calcitriol and
dexamethasone increased cell numbers by ;17-fold (Figure 4F).
Although CD71med cells did not respond to calcitriol alone
(supplemental Figure 6B-C), their proliferation was stimulated by
dexamethasone and, to an even greater extent, dexamethasone and
calcitriol together (Figure 4F). Neither dexamethasone nor calcitriol
stimulated proliferation of CD71hi cells (Figure 4F).

Vdr signaling maintains cycling of Linneg

cKit1CD71lo/neg progenitors

The cKit1CD71lo/neg population of progenitors represents
;10% of FL Linneg cells (Figure 3A). To obtain sufficient
numbers of cells for more detailed analyses, we precultured the
cells in PM for 2 days in the absence of calcitriol, resulting in a
;10-fold increase in cell numbers (Figure 5A). The cells
remained almost entirely cKit1 and Ter119neg (Figure 5B); the
majority of colony-forming cells were erythroid progeni-
tors (Figure 5C). When precultured cells were then plated in
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colony assays in the presence or absence of calcitriol, the
numbers of early progenitors (BFU-E and mCFU-E) increased
(57% vs 28%), and numbers of late progenitors (CFU-E)

decreased (48% vs 27%; Figure 5C). These results strongly
suggest that calcitriol maintains early progenitors at the expense of
late progenitors.
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When CD71lo/neg cells were cultured in suspension in MM, calcitriol
treatment resulted in increased cell numbers (Figure 5D), cell
divisions (dilution of carboxyfluorescein diacetate succinimidyl ester;
Figure 5E), and DNA synthesis (incorporation of EdU; Figure 5F).
In addition, a transient increase in the numbers of cells in S phase
and a decrease in the numbers of cells in G0/G1 were observed
(days 2-5; supplemental Figure 8). Consistent with these changes,
erythroid maturation was delayed, as evidenced by levels of
expression of cKit, Ter119, and CD44; cell size (FSC); and frequency
of enucleation (supplemental Figure 9A-C). Activation of Vdr signaling
did not appear to influence cell survival, as we did not observe
significant changes in expression of annexin V or activated caspase
3/7 (not shown). As expected, calcipotriol and dexamethasone
(supplemental Figure 9D-E) each increased the proliferation of
CD71lo/neg cells. Cells precultured in PM before transfer to MM
proliferated more when exposed to both calcitriol and dexameth-
asone (;7-fold) than when cultured with either ligand alone (;2.3,
calcitriol; ;3.2, dexamethasone), as observed for cells that were
not precultured (Figure 4F).

Changes in gene expression after activation of Vdr

The Vdr transcription factor regulates gene expression in cells
in response to binding of vitamin D3 agonists. Cyp24a1 (1,25-
dihydroxyvitamin D3 24-hydroxylase), a well-characterized direct
target of Vdr,39 was strongly activated in erythroid progenitors

cultured in the presence of calcitriol, but was undetectable in its
absence (Figure 6A). In contrast, activation of Vdr by calcitriol
blocked the upregulation of erythroid transcription factor genes
Gata1, Fog1, andKlf1 (Figure 6B) and the erythroid genesHbb-a1/2,
Hbb-b1, and Alas2 (Figure 6C). To our surprise, the expression of
genes associated with erythroid progenitors and known to be
downregulated during maturation (Gata2, Hopx, and Gcr)21,22 was
not affected after activation of Vdr. Expression of these genes
decreased to nearly undetectable levels within 24 hours, irrespec-
tive of the presence of calcitriol (data not shown).

Vdr is required for stimulation of erythroid cell

proliferation by calcitriol

To determine whether the stimulation of erythroid cell prolifera-
tion is dependent on Vdr, we used a lentivirus shRNA-mediated
knockdown approach. LinnegcKit1CD71lo/neg cells were plated
in PM and transduced with shRNA lentiviruses targeting Vdr
(shRNA1 or shRNA2) or with a luciferase shRNA virus and were
then allowed to mature by culture in MM, in the presence or
absence of calcitriol. Mock transduced and untreated cells
served as additional controls. Knockdown of Vdr using shRNA1
or shRNA2 abrogated the calcitriol-mediated increase in cell
numbers seen in the controls (Figure 7A). Vdr expression in
shRNA1 or shRNA2 lentivirus-transduced cells was reduced to
;40% of its level in the controls (Figure 7B). Consistent with
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these findings, Vdr knockdown reversed the delay in maturation
in response to calcitriol, as evidenced by control levels of
enucleation (Figure 7C) and surface expression of Ter119
(Figure 7D). No differences were observed in cell numbers or
in the frequencies of cKit1 cells among the various conditions
(supplemental Figure 10A-B).

Discussion

The mechanisms underlying the development and growth of early
erythroid progenitors are poorly understood. Studies in vitro and
in vivo have demonstrated that several steroid hormone ligand-
activated receptors influence the decision between expansion
(glucocorticoid and androgen receptors)22,40-43 and terminal
differentiation (thyroid hormone receptor)44,45 of erythroid progen-
itors. VDR is a transcription factor that is activated by binding to its
steroid hormone ligand, vitamin D3. The VDR signaling pathway has
been largely unexplored in the erythroid lineage, and the targets of
signaling by VDR in erythroid progenitors are unknown. Here, we
define a function for vitamin D signaling through VDR in EryD (but
not EryP) progenitors. Vdr is not expressed in primitive erythroid
progenitors (E7.5-8.5) or erythroblasts (E9.5-12.5; Isern et al1 and
this report), and therefore, these cells would not be expected to
respond to vitamin D agonists.

Vdr signaling stimulates the growth of

erythroid progenitors

Erythroid progenitors are known to respond to a variety of stimuli
in vitro and in vivo (reviewed in Hattangadi et al10 and Paulson
et al19). We have found that activation of the murine Vdr pathway by
vitamin D3 agonists increases the numbers of BFU-E and CFU-E

progenitors from fetal liver and adult bone marrow and delays their
maturation. Vdr signaling is active in early erythroid progenitors
in FL (E12.5-E14.5) and adult BM, but not in maturing erythroid
cells. The expansion of erythroid progenitors results, ultimately, in
increased numbers of mature erythroid cells.

We note that definitive erythro-myeloid progenitors are present in
the FL at E11.5-12.5; however, their numbers decline thereafter, as
hematopoietic stem cell-derived erythroid progenitors expand and
differentiate.3 The increase in the numbers of BFU-E colonies in
response to calcitriol is essentially the same for Linneg cells from
E12.5, E13.5, or E14.5 FL. Although some of the responding cells
at E12.5 might be erythro-myeloid progenitors, our data clearly
indicate that the effect of Vdr activation by calcitriol is not limited to
a stage of development when erythro-myeloid progenitors are
present. Indeed, erythroid progenitors from adult bone marrow also
respond to calcitriol.

Early erythroid progenitors are targets of

Vdr signaling

The Linneg population of hematopoietic cells in FL and BM contains
early and late cKit1 erythroid progenitors that can be further
fractionated on the basis of their expression of CD71.14,15,21,36 In
the discussion that follows, we refer to populations based on their
immunophenotype and avoid the terms BFU-E and CFU-E.

The CD71lo/neg progenitors (here termed early progenitors) are a
heterogeneous population, forming nonerythroid colonies, BFU-E,
multi-CFU-E, and CFU-E colonies, whereas CD71hi (late progen-
itors) form primarily CFU-E colonies (Figure 3C). The primary target
of Vdr signaling in fetal liver is the cKit1CD71lo/neg population (early
progenitors), but not the cKit1CD71med or cKit1CD71hi populations
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(late progenitors). In contrast, not only the cKit1CD71lo/neg but also
the cKit1CD71med population responds to glucocorticoid signaling
(this report and Flygare et al21 and Zhang et al22). Therefore, the
vitamin D pathway functions in a more restricted set of progenitors
than does the glucocorticoid pathway. It is important to note that
we have evaluated not only changes in immunophenotype and
cell numbers in response to calcitriol or dexamethasone but also
functional changes in progenitor potential (using colony assays).
Although the morphologies of the colonies we scored as CFU-E from
any of the 3 CD71 populations were indistinguishable, the differ-
ences among these populations in their response to calcitriol vs
glucocorticoids strongly suggest there must be functional differences
among the target cells.

Agonists of the glucocorticoid and vitamin D receptor

pathways function together to increase erythroid

cell numbers

Treatment of erythroid progenitors from FL with either calcitriol/
calcipotriol or dexamethasone increases the numbers of early
erythroid progenitors and stimulates cell proliferation during
maturation. Therefore, vitamin D agonists may partially substitute for
the function of glucocorticoids on early erythroid progenitors. When
these steroid hormones are combined, the observed increases are
at least additive, and perhaps synergistic. Moreover, although
calcitriol alone does not enhance the proliferation of cKit1CD71med

cells, its combination with dexamethasone does result in increased
cell proliferation, perhaps in part through upregulation of Vdr by
Gr.46,47 The cooperative effects of Vdr and Gr observed in our
experiments are reminiscent of the reported synergy between

dexamethasone and Ppar-a agonists for CD71lo/neg progenitors.47

We have shown that VDR agonists enhance the proliferation of
cKit1CD71lo/neg cells. It is possible that Vdr and Gr have unique
functions within certain cell subsets and synergistic functions in
other subsets within the cKit1CD71lo/neg population.

Transcriptional regulation by Vdr in

erythroid progenitors

Vdr and vitamin D3 have both interdependent and independent
functions.48-50 Our shRNA knockdown studies revealed that
Vdr is necessary for the proliferative response to vitamin D3.
Unliganded Vdr is apparently not necessary for the growth of
erythroid progenitors, as indicated by the absence of an effect of
partial (;60%) Vdr knockdown in the absence of vitamin D3.
However, it is possible that complete Vdr knockdown would reveal a
requirement for unliganded Vdr. In any case, these findings point to an
erythroid cell-autonomous function for Vdr in response to activation by
calcitriol.

Calcipotriol, a vitamin D3 analog with far less potent calcemic effects
than calcitriol,37 induces the same changes in the growth of early
erythroid progenitors as calcitriol. Therefore, these changes
are likely a result of Vdr-regulated transcription, and not to
alterations in Ca21 flux. Whether these genes are direct or indi-
rect targets of Vdr remains to be determined. Although vitamin D
response elements can be identified within or at various distances
from genes encoding erythroid regulators such as Gata1 or Klf1
(not shown), it is not yet known which of these elements function in
erythroid progenitors.
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Both the glucocorticoid receptor (Gr) and Vdr are steroid hormone
receptors. The regulation of erythroid progenitors by glucocorti-
coids such as dexamethasone has been well documented in the
literature (eg, see Flygare et al,21 Zhang et al,22 and von Lindern
et al51). Although DNA-binding mutant Gr mice are not anemic, an
erythroid defect was uncovered in response to hypoxic stress.41

As observed for Gr, Vdr is not essential for steady-state
erythropoiesis.52-54 Given the similarity in response of erythroid
progenitors to glucocorticoids and to vitamin D agonists, and the
additive effects of these steroid hormones, it seems likely that Vdr,
similar to Gr, plays a role in stress erythropoiesis. It is worth noting
that, as stress erythroid progenitors have unique properties, many of
the genes involved in the erythroid recovery from stress have little, if
any, effect on steady-state erythropoiesis.55,56

Although glucocorticoids are well known to stimulate erythropoie-
sis, their use in the treatment of anemia is associated with severe
adverse effects.57-59 Several studies have reported an association
between vitamin D deficiency and anemia (reviewed in Smith and
Tangpricha60) and have established that vitamin D3 improves
anemia in chronic renal failure and other types of anemia.29,60-62

Vitamin D deficiency is also associated with and is a predictor of
anemia in end-stage heart failure.63 Although the results from the
present study suggest that vitamin D agonists stimulate erythropoi-
esis by targeting progenitors, expression of genes known to
regulate erythroid progenitors (Gata2, Zfp36l2, Bmi1, and Hopx)
was not affected by Vdr signaling. Therefore, other genes must be
involved in the Vdr signaling pathway in erythroid progenitors.

In conclusion, these findings support a model in which vitamin
D signaling through the Vdr transcription factor stimulates the
growth of early erythroid progenitors (see cartoon, supplemental
Figure 10). A better understanding of how the growth of erythroid

progenitors and the switch from self-renewal to differentiation are
controlled might facilitate the development of novel erythropoiesis-
stimulating agents)64,65 with fewer adverse effects. Moreover, com-
bined activation of distinct pathways within progenitors might be
achieved at lower concentrations of their agonists to achieve
maximum therapeutic benefit, and might also be of value for the
development of more efficient systems for the generation ex vivo of
RBCs (or their progenitors) for transfusion.66,67
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