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Abstract

Oxidative stress and endoplasmic reticulum (ER) stress are related
states that can occur in cells as part of normal physiology but
occur frequently in diseases involving inflammation. In this article,
we review recent findings relating to the role of oxidative and ER
stress in the pathophysiology of acute and chronic nonmalignant
diseases of the lung, including infections, cystic fibrosis, idiopathic
pulmonary fibrosis and asthma. We also explore the potential of
drugs targeting oxidative and ER stress pathways to alleviate
disease.

Keywords: cystic fibrosis, endoplasmic reticulum stress,
inflammation, lung disease, oxidative stress, protein misfolding,
respiratory epithelium.

INTRODUCTION TO OXIDATIVE AND ER
STRESS

Oxidative stress and endoplasmic reticulum (ER)
stress are related states that can occur in cells as
part of normal physiology but which have been
linked in the pathophysiology of many diseases,
particularly diseases involving acute or chronic
inflammation.1 Oxidative stress occurs when
there is an imbalance between the production
and degradation of reactive oxygen or nitrogen
species (hereto ROS and RNS, respectively) within
a cell, or when there is an excess of
environmental ROS/RNS that can diffuse into the
cell. One consequence of oxidative stress is
disruption of the correct oxidative environment
within the ER where proteins in the secretory
pathway are produced, leading to misfolding of

these proteins and ER stress. Interestingly, other
triggers of protein misfolding in the ER result in
excessive ROS production and therefore oxidative
stress, further linking these states. Oxidative
stress and ER stress are entwined with
inflammation because inflammatory factors drive
the production of ROS/RNS and because the
stress activates inflammatory signalling in the
affected cells, potentially setting up a forward-
feeding loop of stress and inflammation.1 In this
article, we review recent findings relating to the
role of oxidative and ER stress in the
pathophysiology of acute and chronic
nonmalignant diseases of the lung, and the
potential of drugs targeting these pathways to
alleviate disease. Although there is evidence for
basal and therapy-induced ER stress in lung
cancer, and ER stress is being explored as a
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therapeutic target in this and other cancers,2 this
topic will not be dealt with in this review.

ER function and protein misfolding/ER stress

The endoplasmic reticulum (ER) is responsible for
the initial steps of biosynthesis of secretory
pathway proteins including folding, N-
glycosylation, disulphide bond formation, other
posttranslational modifications and for protein
quality control, which ensures newly made
secretory pathway proteins are suitable for
function on the cell surface or secretion. The ER
is also important for calcium homeostasis, being
the major reservoir of intracellular Ca2+. A range
of chaperones and enzymes resident within the
ER are essential for correct protein folding and
maintenance of the ER biosynthetic machinery.3

Typically, these chaperones disengage from
proteins once the correct conformation is
achieved allowing exit of the protein from the
ER. Although some protein misfolding occurs in
all cells and increases with increasing protein
complexity, when an excess of unfolded protein
is present, or when intracellular Ca2+ levels are
disturbed, the unfolded protein response (UPR) is
triggered. The UPR involves a series of signalling
and transcriptional events to restore ER
homeostasis via decreased translation,
upregulation of ER chaperones and other
molecules associated with productive folding (ER-
associated folding or ERAF), and increased
degradation of misfolded proteins (ER-associated
degradation or ERAD), and this has been
extensively reviewed.3–5 Briefly, there are three
major arms of the UPR regulated by (1) the ER
resident protein kinase RNA-like ER kinase (PERK)
which suppresses translation via eIF2a and
includes transcriptional responses via activating
transcription factor-4 (ATF4) and CCAAT/
enhancer-binding protein homologous protein
(CHOP), which can lead to ER stress-induced
apoptosis; (2) the endoribonucleases inositol
requiring enzyme 1 (IRE1a) (ubiquitously
expressed) and IRE1b (confined to mucosal
secretory cells including in the lung), which splice
the X-box-binding protein (XBP1) mRNA leading
to translation of the sXBP1 transcription factor
that drives expression of chaperones and other
ER resident proteins required for folding and
ERAD; and (3) the transcription factor ATF6,
which also promotes production of proteins
enhancing ER function.

Many factors can contribute to increased rates
of misfolding in the ER, including increased rates
of protein synthesis, missense polymorphisms in
individual proteins, alterations in the oxidative
environment, energy depletion, osmotic stress,
viral infection and increased temperature.
Prolonged ER stress can eventually lead to
inflammatory signalling and premature apoptosis
through several different mechanisms.6 The UPR
has been linked to the pathogenesis of diabetes,
inflammatory bowel disease, Alzheimer’s disease,
Parkinson’s disease and many respiratory
conditions including cystic fibrosis (CF),7–10 chronic
obstructive pulmonary disease (COPD),11 asthma,12

idiopathic pulmonary fibrosis (IPF)13,14 and
infection.15–17

Oxidative stress and redox balance

An endogenous factor that has been linked to ER
stress and the UPR is the excess production of ROS
and RNS disturbing the redox balance of the cell.
ROS/RNS play a critical role in many cellular
processes and can be produced in multiple
organelles, including mitochondria, peroxisomes
and ER. Mitochondria and peroxisomes contain
enzymes involved in the production of ROS/RNS
which in turn can be important for oxidation of
other molecules and for metabolism and signal
transduction. However, increased production of
mitochondrial and peroxisomal ROS/RNS leads to
cellular oxidative stress and can induce protein
misfolding and ER stress. In a stressed ER, protein
misfolding and particularly dysregulated
disulphide bond formation and reduction may
result in ROS accumulation, diffusion into the
cytoplasm and thus cause cellular oxidative stress.
Thus, ER stress and oxidative stress are intrinsically
linked with each process triggering the other in
differing scenarios encountered by the cell.
Oxidative stress can lead to activation on
inflammatory signalling pathways, including via
activation of (1) the NFjB transcription factor that
regulates inflammatory genes but also can
regulate ROS/RNS production and degradation,
and (2) the NRF2 transcription factor that
primarily regulates the oxidative state of the cell
but can also lead to inflammatory signalling.18,19

Interpretation of studies of ROS/RNS on
inflammatory activation pathways is complex as
the large number of potential pathways affected
by ROS/RNS means that both direct and indirect
activation mechanisms occur. However, generally
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the oxidative stress-mediated activation of these
transcription factors can initiate the release of
cytokines and chemokines, which further
contribute to cellular dysfunction, local tissue
damage and inflammatory pathologies in the
airways.

Susceptibility to stress of cell types found
in the lung

The lung is constituted by many different types of
cells. Because susceptibility to oxidative and ER
stress varies with cell type and their
differentiation/activation status, it is important to
understand how each of these cell types may be
affected in disease states.20 Therefore, we now
will discuss the roles of airway epithelial cells,
stromal cells and immune cells in the context of
oxidative and ER stress.

Airway epithelial cells

Airway epithelium acts as the front-line defence
for air-borne particulate matter and pathogens to
protect the lung from foreign body damage and
infection. In the healthy airway, there is a thin
coating of mucus that is continuously removed
from the lung via the action of cilia, and if it
accumulates by cough. This airway mucus is
composed mainly of mucin glycoproteins and
water, and provides a matrix for a wide variety of
antimicrobial molecules including antibodies,
defensins, protegrins, collectins, cathelicidins,
lysozyme, histatins and nitric oxide21–23. When the
mucus barrier has increased viscosity making it
resistant to mucociliary clearance, or when the
barrier is deficient or depleted, the risk of
opportunistic microbial infection is increased.24

Mucins, primarily MUC5B, are tonically secreted by
the nonciliated airway epithelial surface cells,
known as club cells in the small airway, and can
be released in large amounts in response to
inhaled material by submucosal gland mucous
cells, which contain large numbers of mucin
granules ready for stimulated secretion.22

Under appropriate stimulation, the club cells
transdifferentiate and both store and hyper-
secrete mucins, typically markedly upregulating
production of the MUC5AC mucin. Mucin
upregulation is controlled by the transcription
factor SPDEF which also upregulates other
proteins required for mucin biosynthesis, expands
the size and biosynthetic capacity of the ER and

modulates responses to TLR ligands.25,26 Increased
production of airway mucins by mucosal epithelial
cells can be stimulated by adherence of probiotic
bacteria and microbial products to assist clearance
of pathogens. Expression and production of
mucins can also be upregulated by inflammatory
cytokines including IL-1b,27 IL-4,28 IL-6,29 IL-9,30 IL-
13,31 TNF-a,32 nitric oxide,33 neutrophil elastase34

and other uncharacterised inflammatory factors,
which might contribute to pathogenesis in human
inflammatory airway disorders. IRE1b can also
regulate mucin production, linking the UPR to
mucin expression.35 However, if the increased
production of mucin proteins is not resolved,
mucus accumulation may contribute to the
pathogenesis of human inflammatory airway
disorders. Overproduction of airway mucus is a
common problem in many airway diseases
including bronchiectasis, CF and COPD where
increased concentration of mucins in mucus is a
key characteristic.36,37

The secreted mucin glycoproteins are large in
size, contain highly folded cysteine-rich domains
containing multiple intra- and intermolecular
disulphide bonds formed in the ER and therefore
present a substantial challenge for correct folding
in the ER.22 ER stress occurs when proteins misfold
during biosynthesis, and ER stress in mucin-
producing cells (known as mucous cells or goblet
cells depending on the tissue) can occur during
inflammation and could thus be a feature of
airway diseases, especially those involving mucus
hypersecretion. ER stress in mucin-producing
goblet cells has been demonstrated in a mouse
model, in which aberrant mucin biosynthesis due
to a protein misfolding mutation in the MUC2
mucin cells leads to goblet cell ER stress and an
inflammatory bowel disease-like phenotype.38,39

Mediators that can induce ER stress in the gut and
airway epithelial cells include oxidative stress and
pro-inflammatory cytokines. It is logical to suspect
that the large demand of mucin glycoprotein
production and the inflammatory environment in
many mucopurulent lung diseases could result in
ER stress in the airway epithelial cells, which could
further lead to inflammatory signalling and
chronic nonresolving inflammation. We will
explore the evidence for this contention in a
range of respiratory conditions in this review. In
addition to the mucus-producing cells, other
epithelial cells such as the ciliated cells could be
subjected to oxidative and ER stress and play an
important role in the pathology of airway disease.
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Stromal cells

The lung mucosa also contains stromal cells of a
mesenchymal derivation that may also be exposed
to oxidative and ER stress including fibroblasts,
myofibroblasts and endothelial cells. We will also
explore how these cells types, which are critical
determinants of the fibrosis that develops in
chronic lung diseases, are affected by oxidative
and ER stress in acute and chronic lung disease.

Immune cells

In health, multiple populations of immune cells
occupy the normal respiratory mucosa and the
airways themselves, and additionally, in acute and
chronic respiratory disease, there can be
substantial recruitment and activation of
leucocytes into the respiratory mucosa. Normal
resident cells are dominated by macrophages
which in the healthy lung are dominated by the
alveolar macrophages. Whilst alveolar
macrophages have an important role in ‘house-
keeping’ in the terminal airways, they can also
become an arm of innate immunity following
infection. Other important leucocytes in the
respiratory mucosa include dendritic cells, both
regulatory and effector T cells, innate lymphoid
cells and NK cells. Conspicuous recruitment of
neutrophils is also typical of many chronic
inflammatory conditions in the lung. Many of
these cell types produce effectors, such as
inflammatory cytokines, that can induce oxidative
and ER stress, or directly produce ROS/RNS into
the respiratory microenvironment, as is
characteristic of neutrophils and activated
macrophages. Each of these immune cell types is
also a potential target of ER and oxidative stress
that needs to be considered in the context of
assessing ER and oxidative stress in respiratory
disease.

OXIDATIVE AND ER STRESS IN
INFECTIOUS RESPIRATORY DISEASE

Oxidative stress and ER stress have been reported
to occur in many respiratory infections and could
arise via direct effects of the pathogen on infected
cells or as a consequence of the immune response
to the pathogen. Because viruses hijack the
secretory pathway to manufacture viral
glycoproteins, they place demands on the ER which

often result in substantial misfolding, ER stress and
subsequent activation of the UPR. In fact, viral
infection has probably shaped the evolution of the
UPR such that both the UPR-induced PERK-
mediated translational block and apoptosis can be
viewed as appropriate responses to minimise viral
replication. The best evidence that the UPR is
important in limiting viral replication is the fact
that many viruses have developed specific
mechanisms to interfere with the UPR or to subvert
or circumvent its mechanisms of action in order
that viral replication can continue in the face of
intrinsic misfolding (reviewed by Frabutt and
Zheng40, Li et al.41, Verchot42). In somewhat of a
contradiction, for some viruses, the action of at
least some arms of the UPR actually promotes
greater viral replication. The influenza A virus (IAV)
is an interesting example of this phenomenon.
Infection of respiratory epithelial cells with IAV
activates the UPR in a distinct way with suppression
of the PERK and ATF6 arms of the UPR concomitant
with strong activation of IRE1a.43 The mechanism
by which this is achieved, given the common
activation mechanisms for these three major arms
of the UPR, is not clear, but it is functionally
important because boosted activation of IRE1a is
necessary for continued viral replication.43

Respiratory syncytial virus (RSV) is another
respiratory virus that causes ER stress (for a detailed
review, see Cervantes-Ortiz et al.44) but results in a
noncanonical activation of the UPR, with in this
case activation of IRE1a and ATF6, but not PERK.45

However, in complete contrast to IAV, in RSV
infection, IRE1a suppresses viral replication.45

Another mechanism by which infection leads to
respiratory oxidative and ER stress is via mediators
of the activated immune system, such as cytokines
and direct production of ROS/RNS, which are
discussed below in the context of chronic
inflammatory lung diseases. In this context during
the infectious exacerbations that frequently occur
in chronic lung diseases, it is important to
consider the combined effect on the ER stress
pathway of infections and pre-existing
‘noninfectious’ inflammation. As an example of
experimental evidence of this concept,
concomitant RSV infection exacerbates the ER
stress that occurs in the murine bleomycin-
induced model of pulmonary fibrosis.16 Figure 1
summarises the cell intrinsic and environmental
factors that potentially drive both oxidative stress
and ER stress in respiratory epithelial cells.
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OXIDATIVE AND ER STRESS IN
CHRONIC INFLAMMATORY AND
MUCOPURULENT DISEASES

Figure 2 summarises the influences of cell intrinsic
and environmental factors that may contribute to
oxidative stress and ER stress in a range of
respiratory diseases, and each is dealt with in the
following sections.

Cystic fibrosis (CF) and non-CF
bronchiectasis (NCFBE)

Cystic fibrosis is a disease where on face value one
would predict the development of ER stress
because of (1) intrinsic misfolding of the CFTR
protein in the case of many mutations, including
the common F508del mutation that results in
misfolding of all the protein and complete
absence of CFTR on the cell surface; (CFTR is
normally expressed by a variety of different

epithelial cell types but most highly in submucosal
gland epithelium); (2) chronic bacterial infection
and frequent exacerbations due to viral infection;
(3) chronic complex inflammation with activation
of both innate immunity and adaptive immunity;
and (4) chronic mucus overproduction increasing
the ER biosynthetic load of mucin-secreting cells.
Much of the work on ER stress in CF has been
conducted by the Ribeiro group at University of
North Carolina, and they have recently reviewed
ER stress and UPR activation in CF.46 The most
instructive data on the contribution of CFTR
mutations to ER stress emanate from studies of
cultured human bronchial epithelial cells (HBECs)
derived from CF patients and healthy donors,
separating the cells with the intrinsic defect from
the inflamed and infected in vivo environment in
the disease. Somewhat surprisingly, these studies
indicate that the defects do not intrinsically drive
increased ER stress or UPR activation. Whilst ER
expansion and increased ER Ca2+ storage and
signalling can be demonstrated in CF epithelial
cells in short-term cultures, these revert to normal
in long-term, nonstimulated cultures.9,47 However,
in another study, overexpression of F508del-CFTR
was reported to increase XBP1 splicing, suggesting
that the mutant protein can increase ER stress.7 In
considering the influence of the mutated protein,
it is important to take into account that a large
proportion (~60–80%) of wild-type CFTR misfolds
during biosynthesis due to the protein’s complex
transmembrane and nucleotide-binding
domains48; consequently, there will be a
background of compensatory UPR activation in all
CFTR-expressing cells. The key question is whether
the increased misfolding in the case of mutant
CFTR substantially disturbs the state of
proteostasis normally achieved in these respiratory
epithelial cells.

Despite the lack of evidence for an intrinsic
CFTR mutation driver of ER stress, there is
evidence for ER stress and UPR activation in CF
epithelium in vivo, and mucopurulent secretions
from CF patients stimulate ER stress in healthy
cultured HBECs with consequent XBP1-dependent
expansion of the ER8. Consistent with these
observations, P. aeruginosa infection in mice
induced lung inflammation and UPR activation as
measured by splicing of XBP-1 measured in vivo
using the ERAI ER stress-reporter transgene.49

Development of ER stress is unsurprising as CF
lungs are chronically infected and the mucosa and
lung secretions contain a broad array of
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inflammatory cytokines50,51 many of which are
known to drive oxidative stress and therefore ER
stress (reviewed in Hasnain et al.1,52).

Additionally, CF airways are characterised by
pronounced neutrophil and/or macrophage
accumulation and activation of these cells during
infection and inflammation often results in
release of ROS and RNS into the
microenvironment in an attempt to control
infection, increasing oxidative stress. Production
of ROS is a feature of CF that has been linked
with damage to the epithelium and progressive
bronchiectasis and failure of lung function.53 Even
in children with CF, there is a large amount of
myeloperoxidase (MPO) produced by neutrophils
and macrophages. MPO converts H2O2 into several
damaging oxidants and MPO activity appears to
be accompanied by depletion in the lung of
counteracting reducing agent, glutathione,
further enhancing the level of oxidative stress.54,55

Activated neutrophils produce the superoxide ion
(O2

�) as a result of activation of the NOX2 NADPH
oxidase complex, whereas airway epithelial cells
primarily utilise DUOX1/2 to produce ROS
(reviewed in Pongnimitprasert et al.56, Lee and
Yang57). In contrast, inducible nitric oxide
synthase (NOS2) is reduced in CF airway epithelial
cells most likely in direct response to the CFTR
deficiency,58 and there is no significant difference
in the natural NOS inhibitor asymmetric
dimethylarginine (ADMA) in the breath
condensate from children with CF,59 suggesting
much of the oxidative stress is driven by ROS

rather than RNS. How much the altered ROS/RNS
environment in the lung also affects ER stress
remains unclear; however, there is evidence that
the neutrophils themselves experience ER stress in
CF.60

An interesting question in CF is whether the
new class of drugs designed to facilitate folding/
biogenesis of CFTR, such as Lumacaftor, influence
stress in the ER.61,62 Lumacaftor is a chaperone
type drug that is designed to aid folding in the ER
to enhance release of mutant CFTR to the cell
surface where it has partial ion channel function.
Lumacaftor is typically used in combination
therapy with Ivacaftor which potentiates ion
channel function of CFTR. These drugs are having
a significant impact in the clinic, and although the
primary benefit will be via partial restoration of
the appropriate ionic environment and hydration
of the airway, some benefit may be derived from
reducing ER stress in highly CFTR-expressing cells
in the airway.63 Alternatively, it is possible that
disruption of normal ER function/quality control
with these modulatory drugs increases ER stress
and UPR signalling, working against the desired
function of the drugs. However, there are no data
exploring these possibilities.

NCFBE is a chronic mucopurulent lung disease
which can arise via primary ciliary dyskinesia or as
a consequence of severe lung damage from
infections. Although arising in the absence of any
defects in CFTR, NCFBE shares many features with
CF including impaired mucociliary clearance,
chronic bacterial infection, frequent viral
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exacerbations, chronic inflammation (typically
involving accumulation of activated neutrophils)
and progressively declining lung function.64–67

Despite these common features, our studies have
failed to demonstrate any clear evidence of ER
stress and UPR activation in NCFBE.

Idiopathic pulmonary fibrosis (IPF)

Idiopathic pulmonary fibrosis is a progressive
interstitial lung disease arising around the distal
airway/alveoli that involves epithelial cell death,
inflammation and fibrosis, with few treatment
options and a high mortality rate.68 Although the
aetiology is unclear, there are several strong
genetic links to predisposition to IPF, including
rare alleles in surfactant (SFTPC, SFTPA2) and
telomerase pathway (TERT, TERC, PARN and RTEL)
genes, and more common alleles of MUC5B
strongly associated with a less aggressive form of
IPF (reviewed by Evans et al.68). ER stress has been
linked with disease development by multiple lines
of evidence in human IPF and in the bleomycin-
induced murine model of IPF (for recent reviews
of ER stress and IPF see Zhang et al.69 and Tanjore
et al.70). Evidence for ER stress in human
respiratory epithelial cells, particularly in type II
pneumocytes, includes high expression of CHOP,71

activation of ATF6, XBP1 and ATF4.14 Activation of
the UPR has been found in both inherited and
sporadic IPF and associated with viral infection.13

Additionally, fibroblasts from the lungs of IPF
patients show increased ER stress in response to
TGFb.72 IPF-linked mutations in SFTPC and SFTPA2
cause misfolding of the encoded surfactant
proteins and ER stress in type II pneumocytes,
providing a direct mechanistic driver for the ER
stress in these forms of IPF.13,73 Interestingly, there
is substantial evidence for the importance of
environmental triggers, and mice transgenic for
the Dexon-4 SFTPC mutation develop spontaneous
lung disease,74 whereas those expressing L188Q
SFTPC mutations only develop disease when
exposed to low dose bleomycin.75 Cultured type II
pneumocytes and transfected cells carrying the
Dexon-4 SFTPC mutation show accumulation of
the SFTPC precursor protein, UPR activation and
increased cell death when infected with RSV,
suggesting viral infection could be a trigger for
development of IPF in susceptible individuals.76

The common variant rs35705950 in the
promoter region of MUC5B is carried by 9% of
the European population and is the strongest risk

factor for developing IPF accounting for 30–35%
of the risk and also predicting asymptomatic mild
fibrosis.68,77–79 There are multiple potential
explanations for how this polymorphism could
lead to fibrosis (for a discussion, Evans et al.68),
one of which is the ER stress pathway.
Inappropriate expression of MUC5B in type II
pneumocytes, particularly in the honeycomb cysts
characteristic of this disease, is a feature of
IPF,80,81 and the MUC5B promoter polymorphism
leads to enhanced MUC5B mRNA expression.77

Interestingly, this expression, potentially driven by
altered transcription factor binding sites in the
promoter, occurs in the absence of expression of
SPDEF,80 which is a transcription factor that drives
expression of mucin genes and a network of other
genes involved in mucin biosynthesis and
secretion.82 Taking these things together, it is
inviting to propose that high expression of a
complex mucin protein in a cell type lacking the
appropriate ER machinery to fold and process the
mucin appropriately predisposes the cell to ER
stress. Perhaps this level of stress can be managed
in the absence of other stressors but with ageing
and accumulated environmental insults, including
from viral infection, ER stress and inflammation
emerge and progress with consequent fibrosis.
Whilst the mucin is normally expressed only in
differentiated cells, the polymorphism may drive
inappropriate MUC5B expression in stem cells, as
suggested by Evans et al.,68 and could lead to
altered survival or function of the stem cells that
are needed to appropriately renew epithelium in
the terminal airways.

Animal models for IPF are imperfect, with the
most commonly used being a model where
fibrosis is induced by installation of bleomycin in
the airway. ER stress develops in airway cells in
this model and is exacerbated by viral infection,
and the UPR has been associated with the
differentiation status of macrophages, and
intrinsic ER stress within macrophages also
occurs.16,71,75,83–86

Asthma

Asthma is a condition involving airway hyper-
responsiveness and there is emerging evidence
that both oxidative stress and ER stress are
features of asthma, most prominently in the
neutrophil-dominated glucocorticoid resistant
severe endotype (for a review, see Kim et al.87).
Genetic predisposition has also linked asthma and
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ER stress via the ORMLD3 gene which encodes a
protein that modulates function of the
sarcoendoplasmic reticulum Ca2+ ATPase pump
(SERCA) that regulates ER vs cytosolic Ca2+

concentrations, and thereby modulates protein
folding and Ca2+-signalling.12,88,89 Studies of ER
stress in the human disease are rather limited but
there is evidence of ER stress in both cells sampled
by bronchiolar lavage and in peripheral blood
leucocytes.90 A range of animal models of allergy
and asthma have also implicated ER stress in the
pathophysiology of these conditions.90–96 Airway
goblet cell hyperplasia and mucus hypersecretion
are characteristics of most forms of asthma and
the increased biosynthetic load in these cells may
be principal drivers of ER stress, as may the ROS/
RNS released by phagocytes, particularly in
neutrophilic disease. Furthermore, viral infection
is a trigger for exacerbating asthma and has been
shown to exacerbate ER stress in animal models of
allergic asthma.91

Chronic obstructive pulmonary disease
(COPD) and chronic bronchitis

Chronic obstructive pulmonary disease and
chronic bronchitis are characterised by
inflammation, oxidative stress and mucus
hypersecretion, all of which, based on earlier
discussion, could drive ER stress in these
conditions. There is evidence for ER stress in COPD
but it is based on a limited number of validated
studies.97–99 However, there is reasonably clear
evidence that exposure of bronchial epithelial
cells to cigarette smoke (the environmental driver
of COPD) increases ER stress.100,101

a-1-antitrypsin (AAT) deficiency

a-1-Antitrypsin is primarily caused by a variety of
mutations in AAT that produce disease of varying
severity including liver disease and a COPD-like
emphysema that is more prevalent and severe in
smokers.102 The liver disease arises as a result of
polymerisation of AAT in hepatocytes, and
accumulation within the ER and subsequent ER
stress, with the hepatocyte stress driving chronic
hepatitis potentially progressing to malignancy.102

The aetiology of the respiratory disease is less
clear, with the simplistic interpretation that AAT
deficiency contributes via loss of its capacity to
neutralise neutrophil elastase. However, the lung
phenotype of AAT individuals with complete

serum deficiency varies markedly, and there is
evidence for respiratory epithelial cell ER stress in
the human disease and in mice transgenic for the
ZZ-AAT genotype. The human Z allele is a
deletion which results in an amino acid
substitution changing the conformation of the
AAT molecule, the ZZ genotype is responsible for
98% of AAT represents the most severe
emphysema.103 Furthermore, in cultured AAT
mutant epithelial cells, the ER stress and
consequent release of inflammatory cytokines and
chemokines are exacerbated by exposure to
cigarette smoke, consistent with the enhanced
disease in smokers.103

OXIDATIVE AND ER STRESS IN ACUTE
RESPIRATORY CONDITIONS

Oxidative stress and ER stress have been
implicated in the pathophysiology of a variety of
more acute conditions affecting the lung. In septic
shock and lung stress induced in animal models by
exposure to LPS and other TLR ligands, both
oxidative stress and ER stress occur in the
damaged lung and appear to be a feature of the
pathological process.104–106 In sepsis/LPS-induced
lung injury, both ER stress and autophagy (which
may be a response to ER stress) occur and the
systemic factor cold-induced RNA-binding protein
(CIRP), local inflammatory cytokines such as IL-17
and neutrophil activation have been linked with
the development of ER stress and activation of
the UPR.104–106 Pulmonary arterial hypertension
results in chronic hypoxia, inflammation, and
consequently oxidative and ER stress, and
induction of autophagy, in the respiratory
mucosa.107 In contrast, bronchopulmonary
dysplasia (BPD) is a condition affecting ventilated
premature neonates that develops as a result of
hyperoxia and also appears to involve ER stress. In
animal models of BPD hyperoxia in neonates
drives ROS production, ER stress and ER stress-
induced apoptosis in the alveolar epithelium
providing an explanation for the alveolar damage
characteristic of BPD.108,109

THERAPEUTIC APPROACHES TO
RESOLVE OXIDATIVE AND ER STRESS
IN RESPIRATORY DISEASE

The development of oxidative and ER stress in
lung diseases described above suggests that
therapeutic approaches to either dampen
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oxidative and ER stress, or modify the UPR, may be
successful. Anti-oxidants have relieved ER stress
and pathology in some animal models of
respiratory disease. For example, the strong anti-
oxidant, chlorogenic acid, suppressed ER stress,
apoptosis and fibrosis in bleomycin-induced
fibrosis in mice.86 However, targeting oxidative
stress in humans has been largely disappointing
with the most evidence coming from trials of both
airway and systemically delivered N-acetyl-cysteine
(NAC) in CF, NCFBE and COPD.110,111 Complicating
matters, the limited beneficial effects seen
including reduced exacerbation frequency and
improved airway function are difficult to interpret
as NAC has mucolytic as well as anti-oxidant
properties, and the beneficial effects may be
attributed to improved mucociliary clearance
rather than resolution of oxidative stress. Other
approaches trialled include NOX-inhibitors,
superoxide dismutase-mimetics, myeloperoxidase
inhibitors and NRF2 activators; however, many of
these drugs have failed in clinical trials and their
development has been discontinued.112 New
approaches or improved agents are required to
suppress oxidative stress. For example, we have
found that the cytokine, IL-22, drives a robust
natural anti-oxidant programme in secretory
cells,113 including respiratory epithelial cells,
potentially providing a more effective mechanism
to protect cells from both environmental and
intrinsically-generated ROS/RNS.

There have been reasonably intense efforts to
therapeutically manipulate ER stress and the UPR
for a broad range of diseases, including primary
misfolding diseases, chronic inflammatory
diseases, diabetes and cancer. There are several
different classes of therapeutics including (1)
modulators of specific arms of the UPR, (2)
chaperone modulators, (3) chemical chaperones
and (4) modulators of ERAD (for a review, see
Rivas et al.5). Modulation of the UPR needs to be
carefully considered as it could have complex
consequences. For example, suppression of an arm
of the UPR could reduce downstream
inflammatory signalling and protect from
apoptosis, providing benefit, but at the same time
may impair the production of ER molecules
involved in folding thereby exacerbating
misfolding and driving the other arms of the UPR
with potentially adverse consequences. Use of
these experimental drugs in respiratory diseases is
mainly restricted to preclinical models of disease
and some examples are provided below.

Salubrinal is a selective inhibitor of the
phosphatase-mediated dephosphorylation of
eIF2a which is downstream of PERK and is
responsible for repression of translation during
ER stress. Salubrinal has been demonstrated to
repress cigarette smoke-induced airway epithelial
ER stress which is relevant for COPD therapy.98

4-phenylbutyrate (4-PBA) and tauroursodeoxy-
cholic acid (TUDCA) are chemical chaperones
which promote correct folding in the ER that
have been used widely in animal models of ER
stress. 4-PBA reduced ER stress, inflammation and
fibrosis in the bleomycin model in mice,84

attenuated symptoms of asthma in the house
dust mite allergen model in mice90 and also
reduced ER stress and autophagy in LPS-induced
acute lung injury.104 Similarly, TUDCA has also
been demonstrated to alleviate ER stress and
associated pathology in the bleomycin fibrosis
model and in asthma models in mice.83,92 Whilst
these studies provide proof of principle that
targeting ER stress may be beneficial in human
disease, we await the development of more
specific, less toxic and more effective drugs,
followed by clinical trials in the range of
respiratory conditions that may benefit from
these agents.

SUMMARY AND CONCLUSIONS

Oxidative stress and ER stress are frequent and
clearly linked phenomena in a wide range of
acute and chronic respiratory conditions, and
there is substantial evidence that they are integral
components of the pathophysiology of these
conditions. More often than not oxidative stress
and ER stress are accompanied by inflammation,
both because the stress can be a consequence of
factors produced by activated leucocytes, and
because the cellular pathways activated by
oxidative or ER stress lead to the release of factors
driving both innate immunity and adaptive
immunity. This potentially sets up a forward-
feeding cycle of cellular stress and inflammation,
and in each specific respiratory condition, there is
a need for a deeper understanding of the relative
primary importance of inflammation and
oxidative/ER stress, and whether targeting
individual or a combination of these pathways
will best reverse the pathological processes. Such
studies are hampered by the lack of sophisticated
therapeutic agents to modify oxidative and ER
stress, with refinement of the current agents and
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approaches required before benefits can be
realised in the clinic.
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