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Insect societies face many social parasites that exploit their altruistic behaviours

or their resources. Due to the fitness costs these social parasites incur, hosts have

evolved various behavioural, chemical, architectural and morphological

defence traits. Similar to bacteria infecting multicellular hosts, social parasites

have to successfully go through several steps to exploit their hosts. Here, we

review how social insects try to interrupt this sequence of events. They can

avoid parasite contact by choosing to nest in parasite-free locales or evade

attacks by adapting their colony structure. Once social parasites attack, hosts

attempt to detect them, which can be facilitated by adjustments in colony

odour. If social parasites enter the nest, hosts can either aggressively defend

their colony or take their young and flee. Nest structures are often shaped to

prevent social parasite invasion or to safeguard host resources. Finally, if

social parasites successfully establish themselves in host nests, hosts can rebel

by killing the parasite brood or by reproducing in the parasites’ presence.

Hosts of social parasites can therefore develop multiple traits, leading to the

evolution of complex defence portfolios of co-dependent traits. Social parasites

can respond to these multi-level defences with counter-adaptations, potentially

leading to geographical mosaics of coevolution.

This article is part of the Theo Murphy meeting issue ‘Evolution of

pathogen and parasite avoidance behaviours’.
1. Introduction
Social insects such as ants, termites, social wasps and bees represent an enor-

mously successful way of life that plays a dominant role in most terrestrial

ecosystems [1]. Their social lifestyle based on altruistic behaviours, however,

makes them prone to exploitation [2]. On the other hand, cooperative and altruis-

tic defence strategies have evolved to deal with parasites [3]. For instance, social

insects have developed effective cooperative defence behaviours against micro-

parasites, termed social immunity [4], which include grooming and other hygienic

behaviours [5–8] or the adjustment of social networks following infection [9–11].

Here, we focus on defences against parasites that directly take advantage of the

sociality of their hosts, i.e. social parasites. Many social parasites are social them-

selves, such as the slavemaking ants [12], cleptoparasitic ants and bees [13–15] or

ants, wasps and bees that sneak into other nests to reproduce [16–18], while

others have social ancestors, such as many workerless ant inquilines [19].

We will restrict our discussion to these cases. There is a variety of other animal

taxa that invade insect societies and exploit social behaviour, such as butterfly

caterpillars, beetles, spiders and even snails [20–23].

Social parasites are, at first glance, less common in the termites (but see e.g.

[24,25]). Young termites often require little brood care beyond the exchange of

the gut microflora and already perform worker tasks [26]. Thus, it is not surprising

that exploitation of their social lifestyle evolved less frequently. Social hymenoptera

show extensive brood care as their larvae are completely dependent on adult

workers for food and defence, and many species store food in their nests. Social
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parasites exploit these behaviours and resources [12,13,27],

either by redirecting altruistic social behaviours towards them-

selves and their offspring or by stealing from the stores of the

society or the nest itself (table 1). Given the potential benefits

of exploiting others, it is not surprising that social parasitism

is an evolutionarily ancient phenomenon [17,61,62] and evolved

multiple times in the eusocial Hymenoptera and a number of

other arthropod lineages [12,23,63].

Social parasites are often closely related to their hosts

(referred to as ‘Emery’s rule’) [64,65], which distinguishes

these host–parasite interactions from those of microbial or

viral parasites and their multicellular hosts. In cases of intraspe-

cific parasitism, colonies are parasitized by workers or queens of

the same species [14,16,18,28,51,52,66,67] or sub-species [17,29]

that attempt to raid resources or reproduce. Even in interspecific

relationships, such as in the workerless ant inquilines (table 1),

they are often their hosts’ sister species [19,30]. However,

whether host and parasite are closely related also depends on

the type of social parasitism: Emery’s rule [64] mainly applies

to permanent and temporary inquilinism, but less so to dulotic

and xenobiotic relationships (table 1) [65]. Host–parasite relat-

edness also predicts host specificity as more specific parasites

are also often more closely related to their hosts.

Social parasites use mainly behavioural [31,68,69] and

chemical strategies [32] to invade the often well-defended

host fortresses. In response, hosts have evolved various behav-

ioural, chemical, architectural or morphological traits, instead

of immunological responses, which are so common and effec-

tive against microbial or viral parasites. Nonetheless, the

different phases of host–parasite interactions resemble those

of aforementioned parasites (figure 1) [70]: social parasites

also have to find their hosts and detect entrance points into

the nest [71]. Once they locate the entrance, they have to

either dodge detection [39,72] or overwhelm host defenders

[15,73]. We structure our review to follow broadly these

stages of parasitism—host detection, infiltration, establishment

and exploitation. We focus our attention on the traits and strat-

egies hymenopteran hosts of social parasites use to counteract

and interrupt this sequence of events.
2. Avoidance of parasite contact or detection
(a) Choosing the right location
It would appear that a very effective anti-parasite defence is the

avoidance of contact or detection by parasites altogether [4,11].

However, little is known about how hosts of social parasites

can achieve this. Most insect societies typically occupy nests

and cannot easily relocate if they detect parasites. Therefore,

queens or swarms should start a colony in an area where social

parasites are absent or rare. Indeed, social parasites are often

patchily distributed [27,74–77], but it remains unclear whether

there is reliable information for hosts on how common social

parasites are in the vicinity of a potential nesting site.

Another way to avoid attacks is to nest near a parasite

deterrent. For example, the stingless bee Nannotrigona
testaceicornis does not have an effective defence against clepto-

parasitic robber bees of the genus Lestrimelitta, but frequently

nests near the highly defensive bee Tetragonisca angustula
[15,78]. The latter species often comes to the aid of attacked

N. testaceicornis colonies [79] (C.G. 2013, personal observation),

making it likely that robber bee attacks are occasionally pre-

vented by aggressive T. angustula guards that intercept



steps of parasite infection host defense traits

parasite search 

parasite attack

parasite invasion 

parasite exploitation 

avoidance of parasite contact
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Figure 1. Different host defence traits evolved to interrupt the different steps of successful host exploitation by social parasites. (Online version in colour.)

(e) ( f )

(b)(a) (c)

(d )

Figure 2. Defence strategies against ant social parasites. (a) Parasite detection: Temnothorax ambiguus host worker (right) inspects an intruding T. pilagens sla-
vemaking worker. These slavemakers try to undermine the recognition system of their hosts [39]: during some raids slavemakers stay undetected, in others hosts
recognize the slavemaker as a parasite and respond by stinging. (b,c) During a slave raid an intruding T. americanus slavemaker is attacked by T. curvispinosus (b) and
T. longispinosus (c) host workers, which have to coordinate their attacks to subdue the physically stronger slavemaker [44]. (d ) Harpagoxenus sublaevis slavemakers
use the secretion of the Dufour gland to elicit fights among host defenders [45,54]. Hosts of slavemakers vary in their resistance to this chemical manipulation [46].
(e) A last line of defence is slave rebellion [47]. Here, enslaved T. longispinosus host workers attack and kill slavemaker brood, a behaviour that can increase their
indirect fitness [48,49]. ( f ) The small T. minutissimus inquiline queens coexist with the host T. curvispinosus host queen. Hosts could either try to expel inquiline
queens or become immune to the suppression of their reproduction [80].
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robber bee scouts. It remains to be tested, however, if less

defensive species strategically choose to nest near highly

defensive species to avoid being attacked.
(b) Polydomy, polygyny and reproductive investment
If it is not possible to avoid parasite contact, hosts could adapt

their colony structure so that they are better prepared in case
of an attack. For example, they could decide to either remain

in a single nest or split up into several smaller polydomous

subnests, thereby spreading the risk of an attack. Some slave-

making ants, such as Temnothorax americanus [40] (figure 2)

preferentially attack larger host colonies, so that an increase in

polydomy could be regarded as an adaptive response to the

presence of slavemakers in the local community. Indeed, in

highly parasitized areas, unparasitized host colonies of



(a)

(c)

(b)

Figure 3. Defensive strategies in the bee Melipona flavolineata. (a) A first line of defence against robber bees is formed by highly aggressive entrance guards. (b,c)
Workers also make bee-sized balls from resin, wax and earth which they use to block the entrance tube during a robber bee raid (from [90]). (Online version in
colour.)
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Temnothorax longispinosus are smaller and contain fewer queens

[81]. However, it is unclear whether this is an adaptive defence

strategy of the host or the negative outcome of frequent slave

raids, as the experimental release of slavemakers caused a

local reduction in host colony size [82]. Another potential

response of hosts to the presence of slavemakers in a population

is refraining from adopting additional queens. Monogynous

colonies have a less variable colony odour, making parasite

detection more likely [83,84]. Accordingly, queen number is

lower in highly parasitized areas, both within populations

and across geographically distant sites [75,81] and strictly

monogynous species are thought to be less likely to host social

parasites [85]. However, here also the question arises whether

queen number is the cause or the result of parasite prevalence.

Changes in investment strategies could be another potential

response to social parasitism. If social parasites are locally

common and fitness costs of attacks are high, hosts might do

better to invest more into sexuals than into workers [82]. Sexuals

in social Hymenoptera are generally winged and, therefore, are

more able to escape from highly parasitized locales.

(c) Architectural features to prevent invasion
Even if parasites are able to locate a host nest, hosts can use

architectural features to prevent parasites from gaining access

to the brood or food stores. For instance, many stingless bees

close their nest entrance at night when foraging is not possible

[86,87]. Partamona bee colonies build intriguing structures that

have been interpreted as decoy or false nests [86,88]. These

chambers are close to the entrance and often contain empty

cells, food pots and wax sheets. Observations suggest that

Lestrimelitta robber bees entering Partamona nests may end up

in the false nest, thereby giving the host time to seal-off

brood and food chambers with building material [88]. Melipona
bees make obstacles that block the entrance tube to prevent rob-

bers from entering the inner parts of the nest. While Melipona
seminigra makes small balls of mud, which workers use to

block the entrance [89], Melipona flavolineata make bee-sized

balls of batumen (a mix of mainly wax, resin and earth) to

block the entrance tube during Lestrimelitta attacks (figure 3)

[90]. In species with small entrance holes, guards in both ants

and bees can block the entrance with their heads [15,91].
3. Parasite detection
If contact with social parasites cannot be avoided, the next step

is the detection and rejection of these enemies. In cavity-nesting

species, entrance guards are often tasked with preventing

unwanted individuals from entering the nest. To do so, ants,

bees and wasps rely on chemical cues encoded in their cuticular

hydrocarbon profile to discriminate nest-mates from non-nest-

mates [92–97]. Nest-mates share a colonial profile, because of a

continuous exchange of genetically and environmentally deter-

mined recognition cues through grooming, trophallaxis or via

nesting material [98–101]. This colonial label is thought to act

as a template, enabling individuals to distinguish between

nest-mates and aliens [95,102]. In addition, some species use

visual cues to recognize parasites [103]. In turn, social parasites

have evolved physiological and behavioural adaptations to

crack the nest-mate recognition code of their host, such as

mimicry or camouflage of their host’s recognition profile, or

the evolution of chemical insignificance [32,41,72,104–106].

Although the development of a narrower acceptance range

in hosts may provide protection against mimetic parasites, it

could also lead to rejection errors when individuals falsely

reject nest-mates [43]. Selection may thus favour hosts that

exhibit flexibility in their acceptance threshold, lowering it

only when the likelihood of invasion by social parasites is

high. Temnothorax longispinosus colonies only increase their

level of aggression towards conspecific workers during the

raiding season [107] and, in particular, following an encounter
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with a T. americanus slavemaker [42]. Host colonies that showed

elevated aggression following slavemaker encounter were

better able to save their brood [43]. In honeybees, entrance

guards adjust their aggression towards incoming bees accord-

ing to the risk of robbing: when robbing of honey by bees from

other colonies is more likely, both nest-mates and non-nest-

mate bees are more likely to be aggressed by guards [52,108].

Thus, conditional adjustment of acceptance thresholds provide

fitness benefits when parasitism is eminent, without imposing

costs when heightened defences are not needed.

Host colonies could also adapt to mimetic parasites by

diversifying their chemical profile compared to adjacent con-

specific colonies. Larger inter-colonial variation in recognition

cues impairs adaptive mimicry by the parasite to its host popu-

lation as a whole. Rare host profiles may be favoured by

selection because parasites that adapt to common host profiles

will be more successful. Martin et al. [109] showed that popu-

lations of the ant Formica fusca that are targeted by a large

variety of temporary social parasites exhibit a high diversity

in nest-mate recognition cues, whereas almost unparasitized

populations were low in recognition cue diversity. Similarly,

nest-mate recognition cue diversity among, but not within,

T. longispinosus host colonies was larger in the presence of the

slavemaker T. americanus [110]. Thus, social parasites may

drive chemical cue diversity as a host defence trait, in much

the same way that cuckoos promote egg polymorphism in

their avian hosts [111,112].
4. Avoidance of parasite establishment
(a) Coordinated defence
Recognizing a parasite in itself does little to stop the threat.

Therefore, accurate detection needs to be paired with strategies

that prevent parasite establishment and a number of adaptive

host responses have evolved. Hosts could fight collectively

against intruders and try to overwhelm them [58]. To mobilize

a coordinated response, hosts often use alarm pheromones

to alert nest-mates to the presence of a parasite (e.g. [90,113]).

Coordinated, cooperative fighting strategies are especially ben-

eficial if invading social parasites are stronger than their hosts,

as found in Asian honeybees where hundreds of bees form a

ball around raiding giant hornets and increase the temperature

inside the ball to levels that are lethal for the hornet [114]. How-

ever, if hosts stand little chances to fight off the attack, e.g.

because the latter outnumber their hosts or are much stronger,

flight might be the better response. Accordingly, hosts of some

slavemaking ant species respond with nest evacuation instead

of collective fights in highly parasitized locales [44].

(b) Larger fighters
Not only the number of defenders is important, but also their

‘muscle power’. In Polistes wasps, for instance, the relative

physical size and strength of the P. sulcifer parasite and its P.
dominulus host is the determining factor for successful nest

usurpation [96]. Larger hosts are better able to defend their

colony, and females from highly parasitized populations are

larger than those from unparasitized populations [33]. These

patterns suggest host body size is an adaptive defence trait in

Polistes wasps. Similarly, some Neotropical stingless bee

species have evolved a guard caste of increased body size

(i.e. soldiers), most likely as a response to cleptoparasitic bees
[115,116]. Increased body size seems to benefit hosts in at

least two ways. First, as is the case with Polistes wasps, body

size affects the fighting ability of guards when facing robber

bees [115]. Second, body size positively correlated with the

ability of entrance guards to recognize intruders based on

chemical cues [117]. A possible explanation is that larger bees

have more sensory sensilla on their antennae, which is an

important determinant of chemosensory sensitivity in ants

and bees [117–119]. In Sericomyrmex fungus growing ants,

the task of defending the colony against a fungus raiding

‘agro-predator’ is performed by another ant species, a parasitic

guest ant of the genus Gnamptogenys [53]. Here, one parasite

defends the host against another parasite.

Behavioural specialization during social parasite attack is

also found in the absence of specialized morphological

worker castes. For instance, some T. longispinosus workers

fight against their slavemaker attackers, while others start to

evacuate the nest and flee with the brood [120]. However,

division of labour can also be maladaptive when facing

slavemakers [121]: manipulation of the level of division of

labour in T. longispinosus hosts showed that colonies composed

of generalist workers saved more brood and inflicted more

casualties among their slavemaker attackers than colonies com-

posed of specialist workers. Moreover, comparing the natural

level of division of labour in host colonies across populations

confirmed that hosts were less specialized when threatened

by slavemakers.
(c) Unresponsiveness to parasite manipulation
Social parasites frequently use appeasement, repellent and pro-

paganda substances, which pacify the host, cause panic and

confusion in host workers, or even lead to fights among host

nest-mates (ants: [32]; wasps: [122]; bees: [79,123]). These sub-

stances are often produced in the Dufour’s gland, and its usage

in both ant, bee and wasp social parasites suggest convergent

evolution of host manipulation (e.g. [34,124–129]). In Lestrimelitta
robber bees, the repellent chemicals used during raids appear to

originate from the labial and the mandibular glands [123].

Despite the success of chemical manipulation by parasites,

host colonies are not entirely defenceless. Indeed, several

studies have shown that host species and populations differ

markedly in their susceptibility to manipulation by parasites.

For instance, the slavemaker Harpagoxenus sublaevis applies

its Dufour’s gland substances to Leptothorax workers during

slave raids, which elicits deadly fights among hosts. Leptothorax
acervorum workers from unparasitized British populations are

more aggressive towards the secretion than workers from para-

sitized populations, suggesting that host populations that

occur in sympatry with the slavemaker developed some resist-

ance to the parasite’s chemical weaponry [45]. Similar patterns

of variation in host susceptibility were found across host

species and populations in Europe, where some hosts

responded with flight rather than intracolonial fights. As

flight resulted in fewer host fatalities, it could be an adaptive

host response to manipulation by the slavemaker [130]. A simi-

lar pattern is observed in stingless bees, where some species do

not show aggression towards robbers, but hide in their nest

during a raid. To reduce the losses caused by raids, workers

from these ‘pacifist’ species consume as much food as they

can when attacks start and regurgitate this food after the raid

has ended, i.e. they use the communal crop as a temporary

safe for valuable resources [15].
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Lack of host susceptibility to manipulation by social parasites

can have far reaching consequences for the eco-evolutionary

dynamics between antagonists, as has been recently demon-

strated for the North-American slavemaker ant T. americanus
[46]. Like H. sublaevis, T. americanus uses its Dufour’s gland

secretions to manipulate its hosts into attacking nest-mates

[129], which may deter defenders away from the parasitic inva-

der during invasion. Temnothorax host species and populations

not only varied substantially in their responsiveness to the slave-

maker’s Dufour’s gland secretions, but hosts that were less

susceptible to manipulation were also more successful against

an intruding slavemaker and, subsequently, suffered far lower

slavemaker pressure. Thus, successful host counter-adaptations

can have important implications for the prevalence and host

preference of social parasites.
Soc.B
373:20170200
5. Tolerance towards the parasite
Even if social parasites manage to establish themselves within

host colonies, second lines of defence can limit the negative

effects of parasites and allow parasitized hosts to partially

rescue their fitness [131]. During ant slave rebellions [47,48],

host workers rise up against their oppressors, mostly by attack-

ing and killing the parasite’s offspring. As a consequence, these

colonies grow more slowly and attack fewer neighbouring host

colonies in order to replenish their work force. If those spared

adjacent colonies are related to the enslaved workers [49], the

slaves are indirectly helping their free-living relatives, which

are less likely to end up being attacked.

Detection does not necessarily have to occur towards adult

social parasites. The social wasp Polistes biglumis is able to dis-

criminate between alien eggs and their own, and founding

females selectively remove alien eggs that are destined to

become reproductives [132]. Although direct evidence that

brood discrimination in this system evolved as a defence

against social parasites is lacking, it is the most likely driver

because P. biglumis lacks reproductive competition within the

colony. Some hosts of slavemaking ants also evolved

recognition of nest-mate larvae [133], which allows them to

discriminate against slavemaker brood [47].

Another form of tolerance against parasite manipulation

was detected in workers of the paper wasp P. dominulus [134]:

while parasites often suppress host reproduction, host workers

parasitized by the socially parasitic P. sulcifer were found to

develop their ovaries more. Opportunistic egg laying by host

workers from parasitized colonies suggests that this host has

evolved successful counter-defences against the behavioural

suppression of worker reproduction by P. sulcifer.
6. Multi-level defences or the evolution of
defence portfolios

Most host species do not develop a single defence trait, but use

multiple defences against parasites. These sets of defence traits

have been described as defence portfolios [135,136]. Some of

these defences are rather indirect and unspecific, such as

being very aggressive or closing the nest entrance at night.

Other traits are highly specific and directly target a particular

parasite species, such as hosts that evolved unresponsiveness

towards a specific manipulative secretion of a social parasite

thereby becoming ‘immune’ to this parasites’ chemical tricks
[129,46]. This raises the question of whether and how these

different defence traits interact. How are these defence portfo-

lios structured? If a frontline defence is highly effective, for

example, a host colony invariably detects a social parasite

and can deny access to its nest, secondary defences, such

as slave-rebellion, might not evolve or be lost secondarily.

Likewise, if colonies evolve a flight strategy, they might lose

counter-attack responses. Accordingly, in some highly parasi-

tized populations, ant hosts concentrate on flight and do not

attempt to fight off intruding social parasites [46].

There are cases where two different defence traits clearly

support each other. We already mentioned the example where

entrance guards that are better at detection are also better

at fighting, both due to their increased body size [115,117]. In

T. longispinosus, aggressive colonies are able to save more

brood if they encounter a slavemaker scout before the slave

raid has begun [43]. Thus, only colonies that detected the

enemy (parasite detection) and show a certain trait expression

(high aggression) managed to defend their nest effectively.
7. Geographical mosaic of coevolution
The geographical mosaic theory of coevolution posits that

variation in selection, genetic drift or gene flow across coevolu-

tionary hot and cold spots can lead to spatial differences in the

strength of biotic interactions [137]. Social parasites are often

patchily distributed, leading to selection mosaics, which can

result in the evolution of host defences only in heavily parasi-

tized locations. Indeed, defence trait expression covaries with

parasite pressure from the slavemaking ant T. americanus over

the geographical ranges of two Temnothorax host species

[44,46,138]. A similar association between parasite presence

and defence trait expression was found in Polistes wasps,

where foundresses in parasitized locales have enlarged body

size and are more often present on the nest during mid-day,

which is when parasitic wasps are most likely to attack

[33,139]. On the other hand, spatial association between para-

site occurrence and defence trait expression can also be the

result of induced defences following parasite contact. In the

eusocial bee T. angustula, the investment in soldiers covaries

with the presence of robber bees. Experimental introduction

of chemical robber bee cues revealed an induced long-term

upregulation of the number of soldiers over several worker

generations [140].

Social insect populations can be attacked by multiple

social parasites at the same time. Studies of such a tripartite

coevolutionary arms race in Temnothorax ants revealed that

intraguild interactions among the two slavemaking ants

strongly affected selection pressures on hosts, potentially

contributing to the geographical mosaic of coevolution [141].

During coevolution, local adaptation is expected to occur in

both parasites and hosts of sympatric populations if gene

flow between populations is not too high [69]. For example,

experimental studies analysing the outcome of interactions

between sympatric or allopatric populations showed that the

fitness consequences for slavemaker and host depend on a his-

tory of co-adaptation [82,142]. Interestingly, a model suggests

that local adaptation in parasites is inversely proportional to

the fraction of its host’s range that they occupy [143]. In other

words, parasites with a restricted distribution should be best

adapted. A restricted distribution could be the result of local

extinction by social parasites, because, for example, hosts
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developed strong defences. Unfortunately, historic data on

social parasite loss are lacking, but there are possible cases,

such as the L. acervorum populations of the British Isles,

which do not harbour H. sublaevis slavemakers, but are

highly effective in defending their nests against their raids

[45,142]. However, alternatively, the social parasite H. sublaevis
may never have invaded Britain, possibly due to the absence of

its more preferred host, L. muscorum [144]. While the coevolu-

tion between bacteria and parasitic phages can be directly

observed in experimental evolution set-ups, the long gener-

ation times of social parasites and their hosts hamper the

study of temporal changes in these systems. Instead, geo-

graphical comparisons combined with population genetic

analyses are required to gain insights into the coevolutionary

history of these biotic interactions between parasites and

hosts with similar evolutionary potentials [145,146].
.B
373:20170200
8. Future directions
Despite the recent progress in our understanding of how colo-

nies can defend themselves against social parasites, many

open questions remain. For instance, can founding queens or

swarms actively avoid areas with a higher prevalence of

social parasites? How costly are defence strategies against

social parasites? The fact that the expression of defence traits

often increases with parasite pressure indicates that defence

traits are traded-off and are costly in the absence of parasites

[44,46,121,140]. Highly specific defence traits might carry
low or no costs if the parasite is absent. More general, unspe-

cific defences, such a lower degree of division of labour

[121], nest architecture, or guards might lower the pro-

ductivity of the colony. These costs could be detrimental in a

competitive environment. Other questions include whether

chemical, morphological or behavioural defence traits are

more likely to be specific or costly. Are different types of

defence traits more likely to facilitate each other? Are defence

portfolios more likely to contain certain types of traits? Social

structure and genetic diversity have been shown to be impor-

tant when dealing with endoparasites (e.g. [147]), but it

remains to be explored whether different types of social para-

sitism are affected by social structure in the same way. One

major obstacle to a better understanding is the lack of basic

natural history data (e.g. regional variation in social structure,

defensive investment or behaviour), which would allow us to

evaluate evolutionary patterns in host–parasite interactions.

We hope that our review will motivate researchers to fill

some of these gaps.
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