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The goal of this review article is to assess how
relevant is the concept of dissipative structure
for understanding the dynamical bases of non-
equilibrium self-organization in biological systems,
and to see where it has been applied in the five
decades since it was initially proposed by Ilya
Prigogine. Dissipative structures can be classified into
four types, which will be considered, in turn, and
illustrated by biological examples: (i) multistability,
in the form of bistability and tristability, which
involve the coexistence of two or three stable
steady states, or in the form of birhythmicity,
which involves the coexistence between two stable
rhythms; (ii) temporal dissipative structures in the
form of sustained oscillations, illustrated by biological
rhythms; (iii) spatial dissipative structures, known as
Turing patterns; and (iv) spatio-temporal structures
in the form of propagating waves. Rhythms occur
with widely different periods at all levels of biological
organization, from neural, cardiac and metabolic
oscillations to circadian clocks and the cell cycle; they
play key roles in physiology and in many disorders.
New rhythms are being uncovered while artificial
ones are produced by synthetic biology. Rhythms
provide the richest source of examples of dissipative
structures in biological systems. Bistability has been
observed experimentally, but has primarily been
investigated in theoretical models in an increasingly
wide range of biological contexts, from the genetic
to the cell and animal population levels, both in
physiological conditions and in disease. Bistable
transitions have been implicated in the progression
between the different phases of the cell cycle and,
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more generally, in the process of cell fate specification in the developing embryo. Turing
patterns are exemplified by the formation of some periodic structures in the course of
development and by skin stripe patterns in animals. Spatio-temporal patterns in the form of
propagating waves are observed within cells as well as in intercellular communication. This
review illustrates how dissipative structures of all sorts abound in biological systems.

This article is part of the theme issue ‘Dissipative structures in matter out of equilibrium:
from chemistry, photonics and biology (part 1)’.

1. Dissipative structures: from spatio-temporal to functional organization
From the very beginning of his scientific work, Ilya Prigogine devoted his attention to non-
equilibrium self-organization in chemical, physical and biological systems [1–3]. Although
trained primarily in chemistry and physics, Prigogine was always attracted by the self-organizing
properties of living organisms [4]. It is thus not surprising that when Prigogine started his
investigations on the origin of order in chemical systems, he chose a biological example to study
the conditions in which sustained oscillations occur in time. Prigogine & Balescu [5] thus used a
chemical analogue of the model proposed by Volterra for predator–prey interactions to show that
periodic behaviour can occur at a sufficient distance from thermodynamic equilibrium, provided
the system is governed by nonlinear kinetic laws. Already one decade earlier, Prigogine, then
aged 29, had written with Jean-Marie Wiame, a microbiologist also working at the Université
Libre de Bruxelles, a brief note in French entitled ‘Biologie et thermodynamique des phénomènes
irréversibles’ [6], where they applied the non-equilibrium thermodynamic approach to the
evolution of biological systems.

Building on the pioneering work of Turing published in 1952 [7], in the 1960s Prigogine
extended his analysis to self-organization in space [8,9]. To stress the fact that non-equilibrium
self-organization in open systems requires the dissipation of energy, Prigogine coined the
term ‘dissipative structures’, so as to distinguish them from equilibrium structures [3,10]. The
conditions for dissipative structures are readily encountered in living systems, which are (i)
open, (ii) governed by nonlinear evolution equations, and (iii) operate far from thermodynamic
equilibrium. A major source of nonlinearity is provided by a variety of feedback processes,
which evolved at the cellular and supracellular levels to optimize the operation and survival
capability of biological systems. The special interest of Prigogine for self-organization in biological
systems is again reflected by the title ‘Structure, dissipation and life’ that he gave in 1967
to the contribution, published in 1969, where he first introduced the concept of dissipative
structures [10].

Dissipative structures occur far from equilibrium when a steady state becomes unstable at
a critical bifurcation point [11,12]. Sustained oscillations in time represent temporal dissipative
structures, while spatial dissipative structures, often referred to as Turing patterns, represent a
stationary inhomogeneous distribution of chemical species in space [7,8,11]. Spatio-temporal
structures in the form of propagating waves mix self-organization in time and space. Finally, the
nonlinearity of the evolution equations allows for the coexistence of multiple attractors [11,13].
The latter situation corresponds to the appearance of a form of functional order. While bistability
is associated with the coexistence of two stable steady states, each of which can be reached from
different sets of initial conditions that represent their basins of attraction, the number of coexisting
states may be larger. Thus, tristability refers to the situation where three stable steady states
coexist. Other modes of coexistence may involve one stable steady state and one periodic attractor
(hard excitation), two or three periodic attractors (birhythmicity or trirhythmicity), or the coexistence
between periodic and aperiodic oscillations. The latter correspond to chaotic behaviour and to the
evolution toward a strange attractor.

Many biological examples of self-organization do not represent dissipative structures, because
their origin does not involve the passage by an instability or their maintenance does not require
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energy dissipation; this is the case, for example, for self-assembled structures such as biological
membranes. Moreover, many, if not most biochemical reactions, even if they operate far from
equilibrium, do not produce instabilities and simply evolve to a stable steady state. Examples
of dissipative structures nevertheless abound in biological systems in which they play essential
roles.

Given the rich repertoire of dissipative structures and the ubiquitousness of nonlinearity at
the cellular and supracellular levels, it seems befitting to examine in this article how relevant is
the concept of dissipative structure for understanding the dynamical bases of self-organization
in biological systems, and to see where it has been applied to illuminate the dynamics of
life processes in the five decades since it was initially proposed by Ilya Prigogine. Because
innumerable articles were devoted to topics related to these issues in the last decades, the aim
of this paper will be to give an overview of dissipative structures of various kinds in biological
systems, without attempting to provide an exhaustive list of relevant publications, because such
endeavour would exceed the scope of a brief review. I will examine, in turn, biological examples
of multiple steady states, temporal structures in the form of oscillations, and, finally, spatial and
spatio-temporal structures. As will become clear in the following, biological rhythms provide
a particularly rich source of examples of dissipative structures in biology [14–16]; these were
recently the topic of more detailed reviews [17,18].

2. Multiple steady states: bistability
While multiple steady states have been observed experimentally in biological systems, their
occurrence has primarily been found in theoretical models. One reason is that observing
experimentally multiple attractors is not as straightforward as observing oscillations. To
demonstrate the coexistence between two stable steady states one needs to show either an all-
or-none transition from one stable steady state to another upon suprathreshold perturbation, or
the occurrence of hysteresis. In the latter phenomenon, the system follows one branch of steady
states when increasing a control parameter until a critical limit point is reached at which the
system jumps to another branch of stable steady states; upon decreasing the control parameter,
the system then follows the second branch until it jumps back to the original branch when another
limit point corresponding to a lower critical value of the control parameter is reached. By contrast,
observing a regime of oscillations is less cumbersome and more straightforward as it does not
require the use of suprathreshold perturbations nor any demonstration of hysteresis.

The mention of bistability in a biological context dates back at least to 1949, when Delbrück
mentioned the possibility of a coexistence of multiple stable steady states in a genetic regulatory
network [19]. A few years later bistability was considered theoretically in a model for a structured
enzyme system [20]. With the surge of interest triggered in the 1960s by the development
of thermodynamic studies initiated by Prigogine and the discovery of chemical oscillations
in the Belousov–Zhabothinsky reaction, a number of theoretical studies focused in the early
1970s on the phenomenon of bistability. Such studies of bistability included models for an
excitable membrane [21], an autocatalytic enzyme reaction [22] and autocatalytic synthesis of
small oligomers in the context of chemical evolution [23], to cite but a few early examples.

Observing bistability in theoretical models is relatively easier than in experiments, because
bifurcation diagrams readily show how the steady state of a system changes as a function of
a control parameter. In the case of bistability, the bifurcation diagram showing the steady state
of a particular variable as a function of a control parameter takes the form of an S- or Z-shaped
curve. Then, in a range bounded by two critical values of the control parameter, the system admits
three steady states, two of which are stable whereas the intermediate steady state is unstable. To
illustrate bistable behaviour we show in figure 1 the multiple steady states obtained in a model
for a regulatory network involved in the control of somitogenesis [24]. This model is based on
the mutual inhibition of the fibroblast growth factor (FGF) and retinoic acid (RA). The curves
show the coexistence between two stable steady states (solid lines) and an unstable steady state
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Figure 1. Bistability in a model for the regulatory network underlying the formation of somites, the precursors of vertebrae, in
the course of development. Themodel is based on themutual inhibition of fibroblast growth factor (FGF) and retinoic acid (RA).
Two stable steady states (solid lines) separated by an unstable steady state (dashed line) coexist in a parameter range bounded
by two critical values. The steady states are plotted as a function of two distinct parameters: (a) an inhibition constant and
(b) an activation constant. See Goldbeter et al. [24] for details.

(dashed line) as a function of two distinct control parameters of the model, an inhibition constant
(figure 1a) and an activation constant (figure 1b).

To demonstrate the coexistence of multiple stable attractors, as in the experiments, one can
demonstrate the existence of hysteresis, by successively increasing and decreasing the value
of some control parameters. In a range bounded by two critical values of this parameter, the
system is capable of evolving to either one of two stable steady states, depending on initial
conditions. The transition from one stable steady state to another can also be triggered by means
of a suprathreshold perturbation, e.g. by increasing or decreasing the level of one of the variables
of the system. This is illustrated in figure 2 in a model for bipolar disorders [25,26] based on the
mutual inhibition of two neural circuits promoting, respectively, depression (D) or mania (M);
the curves show the time evolution of variables D and M for 20 increasing initial values of D,
denoted Di. Above a critical value of Di, M switches abruptly from a high to a low steady state,
while D concomitantly switches from a low to a high steady state. Both stable steady states coexist
for the same set of parameter values. Because the experimental demonstration of bistability is
not as straightforward as observing oscillations, the examples of bistable transitions documented
experimentally may represent only the tip of the iceberg of the phenomenon of multistability,
which could be much more frequent, as suggested by the theoretical predictions of a variety of
models.

Theoretical studies of bistability have accumulated at an accelerating pace in the last decade.
The phenomenon has been invoked in a wide variety of biological contexts. To illustrate how
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Figure 2. Transitions between two stable steady states in a model for bipolar disorders [25,26] based on the putative mutual
inhibition of two neural circuits promoting depression (D) or mania (M), respectively. The curves show the time evolution of
variables D andM for 20 increasing initial values of D, denoted Di. Above a threshold value of Di, D switches abruptly from a low
to a high steady state (a), whileM concomitantly switches from a high to a low steady state (b).

widespread is the range of these contexts let us mention 10 examples of the prediction of
bistability in theoretical models—the list is by no means exhaustive, and a few additional
examples will be mentioned below: (i) the calcium/calmodulin-dependent protein kinase
II (CaMKII) switch implicated in long-term memory in the nervous system [27,28], (ii) an
experimental and theoretical study of the enzyme isocitrate dehydrogenase [29], (iii) mechanisms
for cellular signal transduction [30,31]; (iv) NF-κB signalling [32], (v) the dynamics of the lac
operon in Escherichia coli [33–35], which provided one of the first experimental examples of all-or-
none transition associated with the bistable phenomenon [36]; (vi) the dynamics of the immune
response [37,38] (see [39] for a recent example); (vii) cell signalling involved in the control of
the cytoskeleton [40,41]; (viii) programmed cell death, i.e. apoptosis, involving activation of the
caspase cascade [42,43]; (ix) sex determination in Drosophila [44] and vertebrates [45]; and (x)
transitions in cortical dynamics [46].

Bistable transitions have also been invoked in the pathophysiology of a number of diseases
including type II diabetes [47,48], prion diseases [49], Alzheimer’s disease [50] and autoimmune
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diseases [51]. In many of these models displaying bistability, the two branches of stable steady
states correspond to the healthy and diseased states, respectively. By contrast, in a model for
bipolar disorders [25,26], the two stable steady states correspond to the two poles of the disease,
i.e. mania and depression (figure 2).

In spite of the huge range of topics for which bistability has been invoked in biological
systems at the cellular and supracellular levels, cell differentiation remains the field in which
the occurrence of multiple attractors has repeatedly been implicated [52–59] as a mechanism
underlying cell fate specification. As conjectured by René Thomas [53,54], multistationarity
requires the presence of positive circuits in the underlying regulatory network. Such positive
circuits commonly originate in genetic regulatory networks from direct positive feedback or
mutual inhibition [30,53]. Cell fate specification often involves a succession of binary choices
between two stable steady states, due to mutual inhibition of two transcription factors, as
discussed in detail by Zhou & Huang [59]. Theoretical models suggest that cell fate specification
may sometimes involve more than two stable steady states [60–64].

Platelet aggregation, which has been studied for a long time [65,66], plays key physiological
roles. In haemostasis, the aggregation of platelet cells underlies the formation of the haemostatic
plug that leads to cessation of bleeding from small vascular injuries, while in pathological
conditions platelet aggregation may result in thrombosis. Activated platelets secrete ADP
in response to ADP stimulation—this self-amplification represents a form of direct positive
feedback. As shown by Born [65,66], upon adding incremental amounts of ADP to a platelet
suspension the cells irreversibly aggregate above a critical level of ADP stimulation. A
preliminary theoretical study suggests [67] that this phenomenon may be viewed as a bistable
transition. Platelet aggregation deserves to be studied theoretically in detail in view of its
significance in physiological and pathological conditions.

Besides direct positive feedback, mutual inhibition as a source of bistability is a recurrent
regulatory motif in biological systems [30,53]. This illustrates well how the same regulatory
structure produces similar dynamical phenomena at different levels of biological organization.
Two mutually inhibiting repressors were shown to produce bistability in a synthetic genetic
network referred to as toggle switch [68]. As discussed above, in many instances cell fate
specification appears to be based on mutual inhibition of two transcription factors [59]; a similar
mechanism was proposed for the formation of a sharp determination front in the course of
somitogenesis [24] (figure 1). Mutual inhibition resulting in bistability is also encountered in
ecology, where competition of two animal populations for the same resource can lead either to
their coexistence or to elimination of one or the other population; in the case of bistability, which
population vanishes depends on initial conditions. Such a situation represents, since the work
of Volterra on competing animal populations, a classical problem in theoretical ecology [69].
Mutual inhibition has been invoked as a source of bistability at other levels of biological
organization. Two putative, mutually inhibiting neural circuits producing bistability have
been implicated theoretically in the mechanism underlying REM-non-REM transitions during
sleep [70,71] as well as transitions between mania and depression in bipolar disorders [25,26]
(figure 2).

Bistable transitions originating from positive feedback abound in the cell cycle, which provides
one of the richest sources for bistability at the cellular level. A network of enzymes known as
cyclin-dependent kinases (Cdks) governs progression along the successive phases of the cell
cycle [72]. Positive feedback in Cdk regulation was shown theoretically and experimentally to
lead to bistable transitions [73,74]. The Cdk network presents many instances of positive feedback
and therefore contains multiple sources of bistability, which contribute to render the transition
from one to the next phase of the cycle irreversible [75,76]. As discussed in the following section,
the dynamics of the Cdk network also provides an important example of oscillatory behaviour
at the cellular level [77]. Theoretical studies of models of the Cdk network suggest that the
multiplicity of positive feedback loops enhances the robustness of Cdk oscillations with respect
to molecular noise, by increasing the range of bistability in the various Cdk modules prior to their
coupling and, hence, the resistance of sustained oscillations to fluctuations [78,79].
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Multiple attractors are not limited to the coexistence between two stable steady states, i.e.
bistability. A stable steady state may thus coexist with a stable oscillatory regime; this situation
of hard excitation has been observed experimentally in neuronal dynamics [80,81]. The coexistence
may also involve two stable oscillatory regimes, either periodic or chaotic [82]. Such birhythmicity
has been reported in a chemical system [83]. In a biological context, birhythmicity has been
observed in the R15 neuron in Aplysia, which, upon perturbation, is capable of switching
reversibly between tonic oscillations of the membrane potential and complex oscillations of the
bursting type [84]. The control of transitions between multiple stable steady states or multiple
stable rhythms has been investigated both in physical and biological systems [13,85].

Biological examples of bistability are not limited to the genetic, biochemical and cellular
levels, or to the physiology of an organism. At a higher level, besides the dynamics of animal
populations, the phenomenon has also been discussed in regard to the dynamics of microbial
populations within the gut microbiome [86], and in ecology as a mechanism underlying the switch
between different patterns of vegetation [87].

A particular situation arises when bistable transitions become irreversible [88,89]. This
happens when one of the limit points at which the system switches from one branch of stable
steady states to the other branch becomes physically inaccessible. Then the system can only pass
from one of the two branches of steady states to the other upon changing the control parameter,
and cannot undergo the reverse transition when the parameter changes in the other direction.
Bistability in such a case is not associated with hysteresis. Because of their irreversible nature,
such transitions could play important roles in physiological and pathological conditions. A recent
experimental and theoretical study shows that irreversible bistability may occur in the life cycle
of the parasite Trypanosoma brucei responsible for sleeping sickness [90].

3. Biological rhythms as temporal dissipative structures
Oscillations in chemical systems were initially observed in electrochemistry. Lotka in 1920
proposed a model for undamped chemical oscillations [91]. A few sparse examples of other
chemical oscillations had occasionally been reported over the years, until the publication of
the thermodynamic analysis of oscillatory behaviour by Prigogine & Balescu [5]. Interest in
periodic chemical reactions began to surge at the end of the 1960s [92,93] for a number of
concomitant reasons. While the Belousov–Zhabotinsky reaction provided a prototypic example
of periodic chemical reaction whose mechanism was soon to be elucidated [94], the discovery
of glycolytic oscillations in yeast cells and extracts around 1965 [95–98] provided another
example of oscillatory behaviour, this time in a biochemical system. The thermodynamic
and nonlinear kinetic framework developed at the same time by Prigogine and co-workers
significantly contributed to putting chemical and biochemical oscillations into focus, and to
transform them into a thriving, new topic of research. In subsequent years the field of chemical
oscillations developed rapidly, and new families of oscillatory chemical reactions continue to be
identified [99]. Over the years, it nevertheless became increasingly clear that biological systems
provide the richest source of examples of periodic behaviour. This view was long supported by
observations of periodic variations of the electric activity of nerve cells [100].

Rhythmic phenomena occur at all levels of biological organization, with periods that cover
more than 10 orders of magnitude (see detailed list in Table 1 in a recent review [18]). Most of
these rhythms occur at the cellular level (for more detailed accounts and additional references
see [14–18,98,101]). New examples of biological rhythms continue to be uncovered, while
artificial oscillatory networks based on gene regulation are being synthesized. The reason why
rhythmic behaviour is so tightly associated with life is due to the many feedback processes that
control the dynamics of biological systems at the biochemical, cellular and supracellular levels.
Because oscillations are a systemic property associated with regulatory interactions between the
constitutive elements of biological systems, from metabolic and genetic networks to cell and
animal populations, rhythmic phenomena represent a prototypic field of research in Systems
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Biology. Starting with the work of Volterra [102] on the oscillatory dynamics of predator-
prey systems in ecology, biological rhythms have been studied by means of both experimental
and modelling approaches [14,98,103,104]. The mechanisms and roles of biological rhythms in
physiology and disease were recently reviewed [18].

While bistability is often predicted by the analysis of a model before being observed
experimentally, the opposite generally holds for oscillations: indeed, the experimental evidence
for a particular example of oscillatory behaviour generally precedes its mathematical modelling.
The experimental demonstration of oscillations is more straightforward. Moreover, the existence
of many physiological rhythms is part of our everyday experience, as exemplified by the cardiac
and respiratory rhythms, or the sleep–wake cycle.

Biological rhythms can be classified according to their period. The fastest rhythms occur in
electrically excitable cells such as neurons, or cardiac and other muscle cells, with periods of
a fraction of a second. Flight muscles involved in the beating of insect wings can oscillate as
fast as 1000 beats per second [105]. The mechanism of spontaneous oscillations of the membrane
potential has long been studied experimentally and theoretically in nerve and cardiac cells. The
mechanism involves the interplay between several voltage-dependent membrane conductances
dedicated to a few ionic species such as Na+, K+ and Ca++, as modelled by Hodgkin &
Huxley [106]. Whereas periodic behaviour generally takes the form of trains of action potentials,
oscillations of the bursting type occur when additional ion conductances are implicated in
the oscillations. Bursting consists of a periodic alternation of phases of high-frequency spiking
and rest, as exemplified by the R15 neuron in Aplysia [107,108]. So many rhythms of different
frequencies are observed in the brain that one may consider it as a truly rhythmic organ [109].
The electrocardiogram and the electroencephalogram are commonly used to probe the periodic
activity of the heart and brain, respectively.

The cardiac rhythm is initiated in specialized tissues of the heart, called nodes, which contain
a few thousands of cells. Thus, the periodic signal originates in the sinoatrial node, located in
the right atrium of the heart. The atrioventricular node provides another potential source of
cardiac oscillations. Models for the periodic variation of the membrane potential in these cells
have been developed over time [110]. These models allow the role of each ion conductance in the
origin of various types of cardiac arrhythmia to be tested. Moreover, such models are currently
included in global models of the heart, with the aim of developing a virtual organ by means of a
computational approach [111].

Besides electrical oscillations in neurons and cardiac cells, many types of oscillations have
been observed in non-excitable cells. Examples include intracellular Ca++ oscillations, oscillatory
enzyme reactions, periodic signals controlling the aggregation of social amoebas after starvation,
pulsatile hormone secretion and circadian rhythms.

Discovered some three decades ago, oscillations in intracellular Ca++ occur in a wide variety
of cells stimulated by a hormone or a neurotransmitter. The oscillations occur in a window of
stimulation intensity; when stimulation is too weak or too strong, cells evolve to a low or high
stable steady-state level of intracellular Ca++, respectively [112]. The mechanism of oscillations
involves both positive and negative feedback on Ca++ release from intracellular stores. Models
based on these regulations account for experimental observations [113–115]. A further interest
of the phenomenon is that Ca++ oscillations are encoded in terms of their frequency [113].
‘Encoded’ means that the cellular response is controlled not by the amplitude of Ca++ spikes
(which are often all-or-none) but by their frequency. The mechanism for frequency decoding
involves the enzyme calmodulin kinase II (CaMKII) [116–118]. Among the many roles played
by Ca++ oscillations, one is particularly significant in view of its key role in development. Egg
fertilization by sperm induces a train of Ca++ oscillations, which are required for the exit from
meiosis and resumption of cell divisions leading to the subsequent development of the embryo
into an adult organism [119]. The protein factor injected by sperm into the egg is an isoform
of the enzyme phospholipase C [120] which triggers the onset of Ca++ oscillations by raising the
level of inositol 1,4,5-triphosphate, an intracellular messenger that elicits the release of Ca++ from
intracellular stores.
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Glycolytic oscillations, discovered in yeast some five decades ago, still represent the prototype
of oscillatory behaviour in a metabolic pathway [95–98,121]. This periodic phenomenon also
provided an early example of biochemical clock isolated in vitro, around the time when the
Belousov–Zhabotinsky reaction provided a prototypic example of chemical clock. Sustained
oscillations occur in glycolysis with a period of several minutes as a result of the regulation
of phosphofructokinase, a key allosteric enzyme in the pathway. Models taking into account
the allosteric properties of the enzyme and its activation by a reaction product account for the
in vitro observation that the oscillations occur in a range bounded by two critical values of the
constant rate of substrate input [122,123]. Glycolytic oscillations can be entrained in vitro by a
periodic input of substrate [124]. Coupling allows the synchronization of the oscillations in yeast
cell populations [125,126]. Research on oscillating glycolysis continues to this day, with emphasis
on periodic behaviour in individual yeast cells [127].

Another well-known biochemical oscillator controls the wavelike aggregation of Dictyostelium
discoideum amoebas after starvation [128]. The cells respond chemotactically to signals of cyclic
AMP (cAMP) emitted by aggregation centres with a periodicity of several minutes [129]. The
mechanism responsible for cAMP oscillations involves both positive and negative feedback
through the cAMP receptor present at the surface of the cell membrane: cAMP released
by the cells binds to the receptor and triggers cAMP synthesis by adenylate cyclase inside
the cells, while at the same time extracellular cAMP induces receptor desensitization [130].
This mechanism also underlies the frequency encoding of cAMP oscillations in these
cells [131]. Intracellular regulation of phosphodiesterase, the enzyme degrading cAMP, may
also play a role in the mechanism of oscillations [132]. The cAMP signalling system in
D. discoideum represents a prototype for spatio-temporal organization and for pulsatile
intercellular communication [133].

Frequency encoding based on receptor desensitization provides a link between cAMP
oscillations in D. discoideum and pulsatile patterns of hormone secretion [98,134]. Most hormones
are secreted in pulses rather than continuously [135]. The frequency ranges from one pulse every
10 min for insulin, to one pulse per hour for the hormone GnRH and one pulse of growth hormone
(GH) every 3–5 h. As for Ca++ and cAMP oscillations, pulsatile signals of GnRH and GH are
encoded in terms of their frequency [136,137].

One of the most remarkable examples of spatio-temporal organization is provided by the
segmentation clock, which controls the periodic formation of somites, the precursors of vertebrae,
in the course of embryonic development. This clock has a period that ranges from 30 min in
zebrafish to 90 min and 2 h in chicken and rat, respectively [138–141]. The molecular mechanism
of oscillations is not fully clarified yet but is known to implicate the Notch, Wnt and Fgf signalling
pathways [142]. Modelling the dynamics of the three pathways showed that they can all oscillate
due to negative feedback, and synchronize, when taking into account their coupling through
regulatory interactions [143]. Extending the model to take into account signal propagation in
space allowed to address explicitly the periodic formation of somites along the developing
embryo [144]. The existence of the segmentation clock was predicted theoretically [145] before
it was demonstrated experimentally two decades later [146].

Circadian clocks remain the prototype of biological rhythms [147,148]. At the very core
of chronobiology, these rhythms occur in all eukaryotes and some bacterial species with an
autonomous period close to 24 h. Their role is to allow adaptation of living organisms to the
periodic alternation of day and night, which characterizes the environment on earth. Innumerable
articles—only a few will be mentioned here— have been devoted to the mechanism and function
of circadian rhythms, since the seminal work of Konopka & Benzer, who showed [149] in 1971 that
circadian rhythms of locomotion occur in Drosophila and involve a gene called Per (for ‘period’). In
work which earned them the Nobel Prize in Physiology or Medicine in 2017, Rosbash, Hall and
Young subsequently showed that the PER protein forms a complex with another protein, TIM,
and that the mechanism of circadian oscillations in Drosophila involves negative autoregulation of
gene expression by the PER–TIM complex; moreover, light controls the Drosophila circadian clock
by modulating the rate of TIM degradation [150–152].



10

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170376

........................................................

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4 5 6

pe
r 

m
R

N
A

, M

total PER protein, Pt

0

1

2

3

4

0

1

2

3

4

5

6

12 24 36 48 60 72

M

P1

Pt

 P0

time (h)

PN

P2

PE
R

 f
or

m
s 

or
 M

 

to
ta

l P
E

R
, P

t 

(a) (b)

Figure 3. Sustained oscillations in a model for circadian oscillations of the PER protein in Drosophila. The oscillations (a)
correspond to the evolution to a limit cycle (b), which is reached regardless of initial conditions. Two different initial conditions
lead to the same closed trajectory (from Goldbeter [159]). (Online version in colour.)

These studies were later extended to other organisms, including Neurospora and mammals,
in which similar molecular mechanisms based on transcriptional regulation and protein
modification were uncovered [153–155]. If the circadian mechanism in these cells still relies on
negative autoregulation of gene expression, the nature of the dozen clock genes involved may
differ, as well as the effect of light. Thus, in mammals, light acts by inducing gene expression, in
contrast with the situation observed in Drosophila. The physiological importance of the circadian
clock is reflected by the fact that it controls key functions such as the sleep–wake cycle [156] as
well as the periodic expression of a majority of genes in mammals [157,158].

From a theoretical point of view, models for the circadian clock in Drosophila, Neurospora
and mammals show that negative autoregulation of transcription can give rise to circadian
oscillations of the limit cycle type in a domain in parameter space bounded by critical values of
control parameters [159–162], as illustrated in figure 3. Circadian clocks thus represent temporal
dissipative structures, which originate at the cellular level from regulatory feedback loops
that destabilize a non-equilibrium steady state. In mammals, circadian rhythms synchronize
among cells of the suprachiasmatic nucleus, which is the circadian pacemaker located in the
hypothalamus [163]. In agreement with this observation, models show that coupled circadian
oscillators do spontaneously synchronize [164,165].

In cyanobacteria, circadian rhythm may also originate from a non-transcriptional regulatory
mechanism. Thus, in Synechococcus, in vitro studies show [166] that the mechanism of circadian
oscillations relies on a cascade of phosphorylations of the KaiC protein. This oscillator appears to
be coupled to a mechanism based on transcriptional regulation [167].

The cellular rhythm that controls cell division is referred to as mitotic oscillator. Experimental
progress on the mechanism driving the cell division cycle was first made on early cell cycles
in amphibian embryos, which occur with a period of 30 min. These early cycles are driven by
the periodic activation of a mitosis promoting factor, MPF, which is a complex between a cyclin
protein and a cyclin-dependent kinase, Cdc2 (aka Cdk1) [168]. The periodicity in Cdc2 activity
again relies on a negative feedback loop. Early models for the embryonic cell cycles showed that
sustained oscillations indeed occur as a result of such negative autoregulation [98,169]. Models
incorporating positive feedback loops were proposed by Novák & Tyson [170] for the embryonic
cell cycle. As recalled in the previous section, experimental studies based on theoretical models
demonstrated in frog egg extracts the occurrence of bistability and of the associated phenomenon
of hysteresis in which Cdc2 periodically undergoes abrupt transitions between a low and a
high state of activity, driven by variations in the level of cyclin due to alternating phases of
accumulation and Cdc2-induced degradation [73,74].
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In mammals, a network of cyclin-dependent kinases controls the transitions between
the successive phases G1, S (DNA replication), G2 and M (mitosis) of the cell cycle. The
Cdks are controlled through phosphorylation–dephosphorylation, through cyclin synthesis and
degradation, and also through association with protein inhibitors such as p21 [72]. A detailed
model for the Cdk network shows that in the presence of sufficient amounts of growth factor the
Cdk network is capable of temporal self-organization in the form of sustained oscillations of the
limit cycle type [77,171]. The transition from cell quiescence to cell proliferation can be viewed as
the switch from a stable to an unstable steady state of the Cdk network beyond a bifurcation point.
Beyond this critical point of instability, instead of reaching a stable steady level in the course of
time, the various cyclin/Cdk complexes undergo sustained oscillations, which correspond to the
ordered, sequential activation of the various cyclin/Cdk complexes that control the successive
phases of the cell cycle. The passage through the bifurcation point is also controlled by external
factors such as the stiffness of the extracellular matrix and high cell density, which leads to cell
cycle arrest [172]. Tyson & Novak [173] propose, alternatively, that the cell cycle behaves as a
sequential machine rather than as an autonomous clock. The two views [174] are not necessarily
incompatible when the oscillations are of a relaxation nature [175].

The cell cycle illustrates well how different cellular rhythms may interact within the same cell.
Thus the circadian clock controls the expression of several genes of the cell cycle network [176].
Such coupling of the cell cycle to the circadian clock results in the synchronization of these
two major cellular rhythms [177,178]. Pancreatic β cells, which secrete insulin, provide another
example for the interaction of multiple cellular rhythms—in this case, membrane potential
bursting and oscillations in both glycolysis and Ca2+ signalling [179]. The presence of multiple
sources of instability in complex cellular regulatory networks, such as the Cdk network driving
the mammalian cell cycle, raises the possibility that the interaction between such multiple
oscillatory mechanisms might give rise to complex oscillatory behaviour, including chaos [180].

Since the year 2000 additional examples of cellular rhythms have been uncovered. These
include the oscillatory synthesis of the tumour suppressor p53 [181,182] and of the transcription
factor NF-κB [183] with a periodicity of a few hours, and oscillations with a period of several
minutes in the nucleocytoplasmic shuttling of transcription factors such as Msn2 [184,185] and
Crz1 [186] in yeast cells subjected to stress. Based on identified regulatory mechanisms, models
for each of these oscillatory processes show that periodic behaviour occurs in precise conditions,
beyond a critical point of instability of a non-equilibrium steady state [187–190].

The year 2000 signalled a new transition in the study of cellular rhythms, with the construction
of a first example of synthetic oscillator. The latter, expressed in E. coli, was called Repressilator as
it consists of a set of three repressors coupled cyclically [191]. This example was followed by the
development of a variety of synthetic oscillatory networks expressed in bacteria or mammalian
cells, mostly based on genetic regulation. These synthetic networks display oscillations with
tunable frequencies covering a wide range, from tens of minutes up to 24 h [192,193].

All biological rhythms mentioned so far originate at the cellular level or in networks of
interconnected cells [194], as is the case for neural networks that operate as central pattern
generators which control movement [195]. Rhythms do also occur at the supracellular level,
with longer periods. Examples include the ovarian cycle that controls ovulation, predator–
prey oscillations in ecological systems—which were likely among the first biological rhythms
to be described mathematically [102]—and seasonal rhythms which allow many insect, plant
and animal species to adapt to the other, annual periodicity of the environment. Longer-period
rhythms are known, such as those which characterize the emergence of some species of cicadas
every 13 or 17 years. Some annual rhythms are driven by internal clocks entrained by changes
in the photoperiod, which measures the duration of the light phase with respect to the duration
of night; the photoperiod increases in spring and summer (long days) and decreases in fall and
winter (short days). Cyclical processes such as the ovarian cycle and the life cycle of periodic
cicadas involve the passage through a discontinuity—degeneration of the corpus luteum in the
case of the ovulatory cycle, or death of an organism marking the end of a life cycle. These
processes are cyclical but do nor represent self-sustained oscillations, in contrast with most
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cellular rhythms, which belong to the class of continuous or quasi-discontinuous (relaxation)
oscillations of the limit cycle type.

4. Spatial and spatio-temporal dissipative structures
While the interest of Ilya Prigogine in non-equilibrium self-organization initially pertained to
oscillations, it soon extended to patterns of self-organization in space, which were predicted
mathematically by Turing [7]. Several examples of spatial dissipative structures at the
supracellular level were proposed in the early 1970s. Thus the aggregation of social amoebae
in response to a chemotactic signal emitted by the cells was viewed as an instability of the
homogeneous steady-state distribution of cells, leading to the formation of a spatial structure
in the form of distinct multicellular aggregates [196,197]. A prototypic example of periodic spatial
pattern in developing embryos is provided by the emergence of body segments in Drosophila.
The formation of the segments is associated with the appearance of bands of gene expression.
This band pattern was seen, for a time, as a spatial dissipative structure. However, extensive
genetic and modelling studies showed that the mechanism for the formation of the spatial pattern
is based on gradients in maternal proteins acting on a cascade of gap, pair-rule and segment-
polarity genes [198,199]. Mutations in some of these genes can suppress certain bands in the
pattern, in contrast with what would be expected if the latter would form spontaneously as a
spatial dissipative structure characterized by a unique wavelength.

Spatial dissipative structures involving instability with respect to diffusion, i.e. Turing
patterns, were invoked in the formation of pigmented stripe or dot patterns in fish skin [200–202]
(see [203] for a recent discussion of the genetic aspects of this patterning process), or scale patterns
in lizards [204]. Another example of a Turing pattern studied experimentally and theoretically
pertains to the formation of skeleton [205] and fingers [206,207] in the course of development.
Patterns of spatial self-organization have also been observed and analysed at a more macroscopic
level. One example is given by the vegetation patterns known as ‘tiger bush’, which have been
analysed in terms of spatial dissipative structures [208,209].

Biological pattern formation viewed as spatial self-organization has further been discussed
in the books of Meinhardt [210], Murray [211] and Camazine et al. [212]. The examples cover a
wide range of scales, from spatial patterning in embryos to the construction of nests in insect
societies. The case of social insects shows how regulatory feedback loops can take multiple forms,
depending on the scale of observation. Thus, in ant colonies, because of trail reinforcement by
recruited individuals, the deposition of pheromones by foraging ants gives an example of self-
amplification, or positive feedback [213], which corresponds to autocatalysis in chemical and
biochemical reactions.

Probably more common than purely spatial dissipative structures are spatio-temporal
structures that combine non-equilibrium self-organization in time and space. Spatio-temporal
patterns are observed in a variety of biological phenomena ranging from the axonal propagation
of nerve impulses to the propagation of electrical excitation in the heart, both in physiological
conditions and in cardiac fibrillation. Other examples include the propagation of intracellular
and intercellular Ca++ waves [114,214–216], and the spiral and concentric patterns of chemotactic
movements associated with oscillations and waves of cAMP which govern aggregation in
D. discoideum cells [128,217] (figure 4). Travelling waves were also observed and modelled in
Myxococcus bacteria [218]. The phenomenon involves a biochemical oscillator, modelled as the
Frizzilator (because it involves the Frz protein), which governs the spontaneous reversal of
direction in cell swarming with a period of minutes [219].

Spatial patterns may also originate from the combination of a clock and a moving wavefront
involving the transition between two stables steady states [145]. One of the best examples of
such spatial pattern originating from a combination of oscillations, diffusion and bistability
is provided by the periodic formation of somites in vertebrate embryos [24,138,141,144,145].
Wave propagation has been demonstrated experimentally in this system both within the
embryo [138,141] and in cell preparations removed from the embryo [220]. Wavelike propagation
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1 cm

Figure 4. Wavelike aggregation of Dictyostelium discoideum amoebae after starvation. The amoebae aggregate in bands
forming concentric or spiral patterns in response to pulses of cyclic AMP (cAMP) emitted with a period of 5–10 min by cells
behaving as aggregation centres (reproduced from Alcantara & Monk [128]).

in embryos also occurs for cell division, as shown by recent experiments in Xenopus and Drosophila
embryos, which provide yet further examples of spatio-temporal organization [221–223].

As discussed in §3, experiments in synthetic biology have allowed the construction of
new, artificial oscillators, often with tunable periods. Coupling such oscillatory networks
expressed in bacteria to a mechanism of quorum sensing capable of synchronizing cells gives
rise to propagating waves in bacterial populations [224]. Another example of spatio-temporal
organization in prokaryotes pertains to the wavelike growth of bacterial biofilms, associated with
metabolic oscillations based on time-delayed negative feedback [225,226]. At a macroscopic level
and on much longer time scales, waves are also observed in the spatial propagation of epidemies
with a period of one up to a few years [227].

5. Concluding remarks
Some five decades since the introduction of the concept of dissipative structures by Ilya
Prigogine [2,3,10] this issue of Philosophical Transactions A provides a good opportunity to assess
how his pioneering work has resonated with developments in the field of self-organization,
more specifically in the life sciences. As outlined in the Introduction, it is useful to subdivide
the field of non-equilibrium self-organization into three main classes, which often overlap:
multiple attractors, oscillatory behaviour and patterns of spatio-temporal organization. Each
of these modes of self-organization has been found in chemistry and also in physics, notably
in hydrodynamics and nonlinear optics; these fields are particularly rich in non-equilibrium
instabilities [11–13]. This review makes it clear, however, that biological sciences represent a
privileged domain for the occurrence of dissipative structures of all sorts.

Literally thousands of papers—only a minute fraction of which could be cited here—have been
devoted to experimental and/or theoretical studies of bistability, oscillations, Turing patterns
and propagating waves in biological systems. Among these various modes of non-equilibrium
self-organization, oscillations and bistability appear to be the most common, followed by spatio-
temporal and purely spatial non-equilibrium structures. The number of periodic processes
in biology is truly staggering: as recalled in §3, and recently reviewed in further detail
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elsewhere [17,18], rhythms are observed at all levels of biological organization, with periods
ranging from a fraction of a second to years. Rhythms underlie key physiological functions—the
heartbeat, respiration, functioning of the brain, control of movements, ovulation, plant flowering,
animal migrations, while a ubiquitous cellular rhythm, the circadian clock, controls the periodic
expression of most genes as well as the sleep–wake cycle in mammals. Biological rhythms also
play important roles in the aetiology of many physiological disorders [228]. Some examples
of physiological disorders due to alterations of biological rhythms or to the spurious onset of
oscillatory behaviour are listed in table 2 in ref. [18]).

Multiple attractors represent a form of functional organization, because the phenomenon
endows a system with the capability of operating in either one of two stable states, in the same
experimental conditions, or for the same set of parameter values in a theoretical model. As
outlined in §2, the most common form of multiple attractors involves the coexistence of two stable
steady states, i.e. bistability. The phenomenon of bistability has been observed experimentally
in a number of biological systems, but much more frequently in theoretical models, for reasons
explained above. In contrast with oscillatory behaviour, which occurs or not in a given set of
experimental conditions, the observation of bistability requires suprathreshold perturbations to
demonstrate that the system can switch from one stable state to another, or the demonstration
of hysteresis. This is also easier to achieve in theoretical models than in experiments. Moreover,
one begins to look experimentally for bistability once a model has suggested the possibility of
its occurrence. What is striking, however, is the variety of biological contexts in which bistability
has been invoked, mostly in theoretical models. In §2 we have mentioned more than a dozen
examples; the list is far from being exhaustive, and in fact is rapidly growing. However, the field
in which bistability appears to play major roles is definitely cell fate specification, which process is
of key importance for successful embryonic development. A recent example studied theoretically
and experimentally pertains to the preadipocyte-to-adipocyte conversion in fat cell differentiation
[229,230]. Tristability, i.e. the coexistence between three stable steady states, can also be involved
in cell differentiation into distinct cell fates. The development of an organism can thus be viewed
as a succession of transitions between distinct cell fates produced by ever-changing genetic
regulatory networks admitting multiple steady states [52,53,59,231].

Besides bistability, multiple attractors may also involve the coexistence between a stable steady
state and a stable oscillatory regime (hard excitation), or between two or three stable periodic
regimes (bi- or trirhythmicity). Hard excitation and birhythmicity, as recalled in §2, have been
observed experimentally in neurobiology. They nevertheless remain more rare than bistability.

Spatial patterns of self-organization, known as Turing patterns, were discussed in §4. Several
examples of such structures have been described and modelled, particularly in the context of
morphogenesis. Examples of Turing patterns in biological systems are, so far, less numerous
than those illustrating temporal oscillatory behaviour and, to a lesser extent, bistability. Spatial
dissipative structures are encountered in embryogenesis, even if all types of morphogenetic
processes do not necessarily represent Turing patterns. Besides purely spatial non-equilibrium
structures, propagating waves are frequently observed at the cellular and supracellular levels,
where they appear to be closely associated with cellular rhythms. Such patterns of spatio-
temporal self-organization play roles in intracellular as well as intercellular communication.

Most non-equilibrium structures discussed in this review possess a chemical origin in the
numerous feedback regulations that control the dynamics of cellular processes. Instabilities
leading to bistability or oscillations are known to occur in physical systems, particularly in
mechanics, hydrodynamics and nonlinear optics [11–13]. In biology, an additional source of
instabilities is provided by mechanochemical coupling [232,233], which merges chemical or
biochemical reactions with force-generating physical processes. Non-equilibrium instabilities of
this nature play important roles in the mechanical movements of hair cells [234], in the contractile
dynamics of the actomyosin cortex at the cellular level [40,41,235], in tissue shape changes during
multicellular morphogenetic movements such as endocytosis or gastrulation [236,237], and in the
morphology of cortical folding in the brain [238,239].
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Why are dissipative structures so common in biological systems? If life is such a rich
source for multiple attractors, oscillations and spatio-temporal organization, it is because life
is inherently nonlinear. This nonlinearity is prone to give rise to instabilities, and originates
from the cooperativity of allosteric proteins such as enzymes, ion channels or receptors, and
from the multiple feedback loops which control the operation of biological systems at all levels,
from cells to tissues, organs and animal populations. Life depends on feedback regulation.
Positive feedback is required for bistability, while negative feedback is associated with oscillatory
behaviour. Both types of feedback are often intertwined. The examples of the cell cycle and the
circadian clock illustrate well how positive and negative feedback loops cooperate to confer
on a complex regulatory network the capability of temporal self-organization in the form of
sustained oscillations. The occurrence of nonlinear interactions capable of giving rise to bistability
or oscillations might in fact be more widespread than envisaged on the basis of identified feedback
loops. Thus, while a single cycle of protein phosphorylation–dephosphorylation can give rise
to ultrasensitivity characterized by a steep threshold [240], multiple protein phosphorylation,
which is commonly encountered in cell regulation, could by itself give rise to bistability under
appropriate conditions [241–243]. Other types of protein-protein interactions provide further
potential sources for bistable or oscillatory behaviour [244,245].

Some 50 years after Prigogine introduced dissipative structures in nonlinear science, it appears
that this unifying concept has proved remarkably fruitful for apprehending the dynamic of life
in its multiple aspects. It has also given a crucial impetus for the development of the field of
nonlinear science, in which numerous problems remain open and new questions continually arise.
Studies of non-equilibrium self-organization in biological systems, at the biochemical, cellular as
well as supracellular levels, both in physiological and pathological conditions, are thriving more
than ever.
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